1
|
Radhakrishnan V, Golla U, Kudva AK. Role of Immune Cells and Immunotherapy in Multiple Myeloma. Life (Basel) 2024; 14:461. [PMID: 38672732 PMCID: PMC11050867 DOI: 10.3390/life14040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
The clinical signs of multiple myeloma, a plasma cell (PC) dyscrasia, include bone loss, renal damage, and paraproteinemia. It can be defined as the uncontrolled growth of malignant PCs within the bone marrow. The distinctive bone marrow milieu that regulates the progression of myeloma disease involves interactions between plasma and stromal cells, and myeloid and lymphoid cells. These cells affect the immune system independently or because of a complicated web of interconnections, which promotes disease development and immune evasion. Due to the importance of these factors in the onset of disease, various therapeutic strategies have been created that either target or improve the immunological processes that influence disease progression. The immune system has a role in the mechanism of action of multiple myeloma treatments. The main contributions of immune cells to the bone marrow microenvironment, as well as how they interact and how immune regulation might lead to therapeutic effects, are covered in this study.
Collapse
Affiliation(s)
- Vijay Radhakrishnan
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA;
| | - Upendarrao Golla
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangothri, Mangaluru 574199, India
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
2
|
Barreto IV, Machado CB, Almeida DB, Pessoa FMCDP, Gadelha RB, Pantoja LDC, Oliveira DDS, Ribeiro RM, Lopes GS, de Moraes Filho MO, de Moraes MEA, Khayat AS, de Oliveira EHC, Moreira-Nunes CA. Kinase Inhibition in Multiple Myeloma: Current Scenario and Clinical Perspectives. Pharmaceutics 2022; 14:pharmaceutics14091784. [PMID: 36145532 PMCID: PMC9506264 DOI: 10.3390/pharmaceutics14091784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) is a blood cell neoplasm characterized by excessive production of malignant monoclonal plasma cells (activated B lymphocytes) by the bone marrow, which end up synthesizing antibodies or antibody fragments, called M proteins, in excess. The accumulation of this production, both cells themselves and of the immunoglobulins, causes a series of problems for the patient, of a systemic and local nature, such as blood hyperviscosity, renal failure, anemia, bone lesions, and infections due to compromised immunity. MM is the third most common hematological neoplasm, constituting 1% of all cancer cases, and is a disease that is difficult to treat, still being considered an incurable disease. The treatments currently available cannot cure the patient, but only extend their lifespan, and the main and most effective alternative is autologous hematopoietic stem cell transplantation, but not every patient is eligible, often due to age and pre-existing comorbidities. In this context, the search for new therapies that can bring better results to patients is of utmost importance. Protein tyrosine kinases (PTKs) are involved in several biological processes, such as cell growth regulation and proliferation, thus, mutations that affect their functionality can have a great impact on crucial molecular pathways in the cells, leading to tumorigenesis. In the past couple of decades, the use of small-molecule inhibitors, which include tyrosine kinase inhibitors (TKIs), has been a hallmark in the treatment of hematological malignancies, and MM patients may also benefit from TKI-based treatment strategies. In this review, we seek to understand the applicability of TKIs used in MM clinical trials in the last 10 years.
Collapse
Affiliation(s)
- Igor Valentim Barreto
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Caio Bezerra Machado
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | | | - Flávia Melo Cunha de Pinho Pessoa
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Renan Brito Gadelha
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Laudreísa da Costa Pantoja
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil
| | | | | | - Germison Silva Lopes
- Department of Hematology, César Cals General Hospital, Fortaleza 60015-152, CE, Brazil
| | - Manoel Odorico de Moraes Filho
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Maria Elisabete Amaral de Moraes
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil
| | - Edivaldo Herculano Correa de Oliveira
- Faculty of Natural Sciences, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Rua Augusto Correa, 01, Belém 66075-990, PA, Brazil
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute (IEC), BR 316, KM 7, s/n, Levilândia, Ananindeua 67030-000, PA, Brazil
| | - Caroline Aquino Moreira-Nunes
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil
- Northeast Biotechnology Network (RENORBIO), Itaperi Campus, Ceará State University, Fortaleza 60740-903, CE, Brazil
- Correspondence:
| |
Collapse
|
3
|
Zhao WH, Wang BY, Chen LJ, Fu WJ, Xu J, Liu J, Jin SW, Chen YX, Cao XM, Yang Y, Zhang YL, Wang FX, Zhang PY, Lei B, Gu LF, Wang JL, Zhang H, Bai J, Xu Y, Zhu H, Du J, Jiang H, Fan XH, Li JY, Hou J, Chen Z, Zhang WG, Mi JQ, Chen SJ, He AL. Four-year follow-up of LCAR-B38M in relapsed or refractory multiple myeloma: a phase 1, single-arm, open-label, multicenter study in China (LEGEND-2). J Hematol Oncol 2022; 15:86. [PMID: 35794616 PMCID: PMC9261106 DOI: 10.1186/s13045-022-01301-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/03/2022] [Indexed: 02/10/2023] Open
Abstract
Background LCAR-B38M is a chimeric antigen receptor T cell product with two binding domains targeting B cell maturation antigen. Our previous reports showed a remarkable efficacy of LCAR-B38M in patients with relapsed/refractory multiple myeloma (RRMM) at a median follow-up of 2 years. Here, we report long-term safety and efficacy data from a median follow-up of 4 years. Methods LEGEND-2 was a phase 1, single-arm, open-label study conducted in four registered sites in China. Seventy-four participants with RRMM received LCAR-B38M treatment. Lymphodepletion was performed using cyclophosphamide or cyclophosphamide plus fludarabine. LCAR-B38M, at a median dose of 0.513 × 106 cells/kg, was intravenously administered either in three split infusions or in a single infusion. The primary objective was the safety of LCAR-B38M, and the secondary objective was efficacy. Results As of May 25, 2021, the median follow-up was 47.8 months. All patients experienced ≥ 1 adverse events (AEs). Grade ≥ 3 AEs were observed in 45/74 (60.8%) patients. Cytokine release syndrome (CRS) occurred in 68/74 (91.9%) cases; 7 (9.5%) had grade ≥ 3 CRS. One patient experienced grade 1 central nervous system toxicity. The overall response rate was 87.8%. Fifty-four out of 74 (73.0%) patients achieved complete response. The median progression-free survival was 18.0 months, and the median overall survival for all patients was not reached. The median duration of response was 23.3 months. Four patients experienced viral infection more than 6 months post-infusion, and four patients developed second primary non-hematological malignancies at a median time of 11.5 months post-CAR-T cell transfer. Conclusions The 4-year follow-up data of LCAR-B38M therapy demonstrated a favorable long-term safety profile and a durable response in patients with RRMM. Trial registration Clinicaltrials.gov NCT03090659 (retrospectively registered on March 27, 2017); ChiCTR-ONH-17012285. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-022-01301-8.
Collapse
Affiliation(s)
- Wan-Hong Zhao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5th Road, Xi'an, 710004, China
| | - Bai-Yan Wang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5th Road, Xi'an, 710004, China
| | - Li-Juan Chen
- Department of Hematology, Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wei-Jun Fu
- Department of Hematology, Changzheng Hospital, The Second Military Medical University, Shanghai, 200003, China.,Department of Hematology, School of Medicine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, China
| | - Jie Xu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Institute of Hematology, Ruijin Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, 197 Rui Jin er Road, Shanghai, 200025, China
| | - Jie Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5th Road, Xi'an, 710004, China
| | - Shi-Wei Jin
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Institute of Hematology, Ruijin Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, 197 Rui Jin er Road, Shanghai, 200025, China
| | - Yin-Xia Chen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5th Road, Xi'an, 710004, China
| | - Xing-Mei Cao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5th Road, Xi'an, 710004, China
| | - Yun Yang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5th Road, Xi'an, 710004, China
| | - Yi-Lin Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5th Road, Xi'an, 710004, China
| | - Fang-Xia Wang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5th Road, Xi'an, 710004, China
| | - Peng-Yu Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5th Road, Xi'an, 710004, China
| | - Bo Lei
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5th Road, Xi'an, 710004, China
| | - Liu-Fang Gu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5th Road, Xi'an, 710004, China
| | - Jian-Li Wang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5th Road, Xi'an, 710004, China
| | - Hui Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5th Road, Xi'an, 710004, China
| | - Ju Bai
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5th Road, Xi'an, 710004, China
| | - Yan Xu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5th Road, Xi'an, 710004, China
| | - Han Zhu
- Department of Hematology, Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Juan Du
- Department of Hematology, Changzheng Hospital, The Second Military Medical University, Shanghai, 200003, China
| | - Hua Jiang
- Department of Hematology, Changzheng Hospital, The Second Military Medical University, Shanghai, 200003, China
| | - Xiao-Hu Fan
- Nanjing Legend Biotech Inc., Nanjing, 210000, China
| | - Jian-Yong Li
- Department of Hematology, Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jian Hou
- Department of Hematology, Renji Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Institute of Hematology, Ruijin Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, 197 Rui Jin er Road, Shanghai, 200025, China
| | - Wang-Gang Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5th Road, Xi'an, 710004, China
| | - Jian-Qing Mi
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Institute of Hematology, Ruijin Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, 197 Rui Jin er Road, Shanghai, 200025, China.
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Institute of Hematology, Ruijin Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, 197 Rui Jin er Road, Shanghai, 200025, China.
| | - Ai-Li He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5th Road, Xi'an, 710004, China. .,Department of Hematology and National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
4
|
Wu L, Huang Y, Sienkiewicz J, Sun J, Guiang L, Li F, Yang L, Golubovskaya V. Bispecific BCMA-CD3 Antibodies Block Multiple Myeloma Tumor Growth. Cancers (Basel) 2022; 14:cancers14102518. [PMID: 35626122 PMCID: PMC9139578 DOI: 10.3390/cancers14102518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
BCMA antigen is overexpressed in multiple myeloma cells and has been shown to be a promising target for novel cellular and antibody therapeutics. The humanized BCMA (clone 4C8A) antibody that effectively targeted multiple myeloma in a CAR (chimeric antigen receptor) format was used for designing several formats of bispecific BCMA-CD3 antibodies. Several different designs of univalent and bivalent humanized BCMA-CD3 CrossMAB and BCMA-FAB-CD3 ScFv-Fc antibodies were tested for binding with BCMA-positive cells and T cells and for killing by real time cytotoxic activity and IFN-gamma secretion with CHO-BCMA target cells and with multiple myeloma MM1S and H929 cell lines. All BCMA-CD3 antibodies demonstrated specific binding by FACS to CHO-BCMA, multiple myeloma cells, and to T cells with affinity Kd in the nM range. All antibodies with T cells specifically killed CHO-BCMA and multiple myeloma cells in a dose-dependent manner. The BCMA-CD3 antibodies with T cells secreted IFN-gamma with EC50 in the nM range. In addition, three BCMA bispecific antibodies had high in vivo efficacy using an MM1S xenograft NSG mouse model. The data demonstrate the high efficacy of novel hBCMA-CD3 antibodies with multiple myeloma cells and provide a basis for future pre-clinical and clinical development.
Collapse
Affiliation(s)
- Lijun Wu
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (L.W.); (Y.H.); (J.S.); (J.S.); (L.G.); (F.L.); (L.Y.)
- Forevertek Biotechnology, Janshan Road, Changsha Hi-Tech Industrial Development Zone, Changsha 410205, China
| | - Yanwei Huang
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (L.W.); (Y.H.); (J.S.); (J.S.); (L.G.); (F.L.); (L.Y.)
| | - John Sienkiewicz
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (L.W.); (Y.H.); (J.S.); (J.S.); (L.G.); (F.L.); (L.Y.)
| | - Jinying Sun
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (L.W.); (Y.H.); (J.S.); (J.S.); (L.G.); (F.L.); (L.Y.)
| | - Liselle Guiang
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (L.W.); (Y.H.); (J.S.); (J.S.); (L.G.); (F.L.); (L.Y.)
| | - Feng Li
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (L.W.); (Y.H.); (J.S.); (J.S.); (L.G.); (F.L.); (L.Y.)
| | - Liming Yang
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (L.W.); (Y.H.); (J.S.); (J.S.); (L.G.); (F.L.); (L.Y.)
| | - Vita Golubovskaya
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (L.W.); (Y.H.); (J.S.); (J.S.); (L.G.); (F.L.); (L.Y.)
- Correspondence: ; Tel.: +1-510-974-0697
| |
Collapse
|
5
|
Quazi S. An Overview of CAR T Cell Mediated B Cell Maturation Antigen Therapy. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e392-e404. [PMID: 34992008 DOI: 10.1016/j.clml.2021.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Multiple Myeloma (MM) is one of the incurable types of cancer in plasma cells. While immense progress has been made in the treatment of this malignancy, a large percentage of patients were unable to adapt to such therapy. Additionally, these therapies might be associated with significant diseases and are not always tolerated well in all patients. Since cancer in plasma cells has no cure, patients develop resistance to treatments, resulting in R/R MM (Refractory/Relapsed Multiple Myeloma). BCMA (B cell maturation antigen) is primarily produced on mature B cells. It's up-regulation and activation are associated with multiple myeloma in both murine and human models, indicating that this might be an effective therapeutic target for this type of malignancy. Additionally, BCMA's predictive value, association with effective clinical trials, and capacity to be utilized in previously difficult to observe patient populations, imply that it might be used as a biomarker for multiple myeloma. Numerous kinds of BCMA-targeting medicines have demonstrated antimyeloma efficacy in individuals with refractory/relapsed MM, including CAR T-cell (Chimeric antigen receptor T cell) treatments, ADCs (Antibody-drug conjugate s), bispecific antibody constructs. Among these medications, CART cell-mediated BCMA therapy has shown significant outcomes in multiple myeloma clinical trials. This review article outlines CAR T cell mediated BCMA medicines have the efficiency to change the therapeutic pattern for multiple myeloma significantly.
Collapse
Affiliation(s)
- Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore, Karnataka, India.
| |
Collapse
|
6
|
Novel CS1 CAR-T Cells and Bispecific CS1-BCMA CAR-T Cells Effectively Target Multiple Myeloma. Biomedicines 2021; 9:biomedicines9101422. [PMID: 34680541 PMCID: PMC8533376 DOI: 10.3390/biomedicines9101422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/26/2022] Open
Abstract
Multiple myeloma (MM) is a hematological cancer caused by abnormal proliferation of plasma cells in the bone marrow, and novel types of treatment are needed for this deadly disease. In this study, we aimed to develop novel CS1 CAR-T cells and bispecific CS1-BCMA CAR-T cells to specifically target multiple myeloma. We generated a new CS1 (CD319, SLAM-7) antibody, clone (7A8D5), which specifically recognized the CS1 antigen, and we applied it for the generation of CS1-CAR. CS1-CAR-T cells caused specific killing of CHO-CS1 target cells with secretion of IFN-gamma and targeted multiple myeloma cells. In addition, bispecific CS1-BCMA-41BB-CD3 CAR-T cells effectively killed CHO-CS1 and CHO-BCMA target cells, killed CS1/BCMA-positive multiple myeloma cells, and secreted IFN-gamma. Moreover, CS1-CAR-T cells and bispecific CS1-BCMA CAR-T cells effectively blocked MM1S multiple myeloma tumor growth in vivo. These data for the first time demonstrate that novel CS1 and bispecific CS1-BCMA-CAR-T cells are effective in targeting MM cells and provide a basis for future clinical trials.
Collapse
|
7
|
Bergin K, Wellard C, Augustson B, Cooke R, Blacklock H, Harrison SJ, Ho J, King T, Quach H, Mollee P, Walker P, Moore E, McQuilten Z, Wood E, Spencer A. Real-world utilisation of ASCT in multiple myeloma (MM): a report from the Australian and New Zealand myeloma and related diseases registry (MRDR). Bone Marrow Transplant 2021; 56:2533-2543. [PMID: 34011965 DOI: 10.1038/s41409-021-01308-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022]
Abstract
Supported by clinical trial proven survival benefit, clinical guidelines recommend upfront autologous stem cell transplantation (ASCT) for eligible MM patients. However, reported real-world utilisation is lower than expected (40-60%). We reviewed ASCT utilisation, demographics and outcomes for MM patients (≤70 years, ≥12-month follow-up) enroled onto the Australian/New Zealand MRDR from June 2012 to May 2020. In 982 patients (<65 years: 684, 65-70 years: 298), ASCT utilisation was 76% overall (<65 years: 83%, 65-70 years: 61%, front-line therapy: 67%). Non-ASCT recipients were older (median age: 65 years vs 60 years, p < 0.001), had more comorbidities (cardiac disease: 16.9% vs 5.4%, p < 0.001; diabetes: 19.1% vs 7.0%, p < 0.001; renal dysfunction: median eGFR(ml/min): 68 vs 80, p < 0.001), inferior performance status (ECOG ≥ 2: 26% vs 13%, p < 0.001) and higher-risk MM (ISS-3: 37% vs 26%, p = 0.009, R-ISS-3 18.6% vs 11.8%, p = 0.051) than ASCT recipients. ASCT survival benefit (median progression-free survival (PFS): 45.3 months vs 35.2 months, p < 0.001; overall survival (OS): NR vs 64.0 months, p < 0.001) was maintained irrespective of age (<65 years: median PFS: 45.3 months vs 37.7 months, p = 0.04, OS: NR vs 68.2 months, p = 0.002; 65-70 years: median PFS: 46.7 months vs 29.2 months, p < 0.001, OS: 76.9 months vs 55.6 months, p = 0.005). This large, real-world cohort reaffirms ASCT survival benefit, including in 'older' patients necessitating well-designed studies evaluating ASCT in 'older' MM to inform evidence-based patient selection.
Collapse
Affiliation(s)
- Krystal Bergin
- Alfred Health-Monash University, Melbourne, VIC, Australia
| | - Cameron Wellard
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | | | | | | | - Simon J Harrison
- Peter MacCallum Cancer Centre/Royal Melbourne Hospital, Melbourne, VIC, Australia
- Sir Peter MacCallum Dept of Oncology, Melbourne University, Melbourne, VIC, Australia
| | - Joy Ho
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Tracy King
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Hang Quach
- St.Vincent's Hospital, Melbourne, VIC, Australia
| | - Peter Mollee
- Princess Alexandra Hospital and University of Queensland, Brisbane, QLD, Australia
| | | | - Elizabeth Moore
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Zoe McQuilten
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Erica Wood
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Andrew Spencer
- Alfred Health-Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Mann H, Katiyar V, Varga C, Comenzo RL. Smoldering multiple myeloma - Past, present, and future. Blood Rev 2021; 52:100869. [PMID: 34312016 DOI: 10.1016/j.blre.2021.100869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
Smoldering multiple myeloma (SMM) routinely precedes the development of multiple myeloma. While some patients experience aggressive disease, others have more indolent courses akin to those with monoclonal gammopathy of undetermined significance. Much effort has been made to understand the pathobiological basis of this heterogeneity. Scientific advancements have led to the emergence of various clinical and genomic markers of relevance, translating into evolution of disease definitions over time. More recently, the interest in manipulation of biological pathways has intensified in a bid to stall or halt disease progression. Studies with lenalidomide have exemplified the promise of early intervention, whereas numerous therapeutic approaches remain the subject of ongoing clinical investigation. This review summarizes the historic progress made in defining SMM as a distinct clinicopathologic entity, provides a critical appraisal of the evidence guiding risk assessment, and suggests a pragmatic approach to its modern-day management. Finally, an overview of developments on the horizon is also provided.
Collapse
Affiliation(s)
- Hashim Mann
- Division of Hematology/Oncology, Tufts Medical Center, Boston, MA, USA; The John Conant Davis Myeloma and Amyloid Program, Tufts Medical Center, Boston, MA, USA.
| | - Vatsala Katiyar
- Division of Hematology/Oncology, Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Cindy Varga
- Division of Hematology/Oncology, Tufts Medical Center, Boston, MA, USA; The John Conant Davis Myeloma and Amyloid Program, Tufts Medical Center, Boston, MA, USA
| | - Raymond L Comenzo
- Division of Hematology/Oncology, Tufts Medical Center, Boston, MA, USA; The John Conant Davis Myeloma and Amyloid Program, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
9
|
Bergin K, Wellard C, Moore E, McQuilten Z, Blacklock H, Harrison SJ, Ho PJ, King T, Quach H, Mollee P, Walker P, Wood E, Spencer A. The Myeloma Landscape in Australia and New Zealand: The First 8 Years of the Myeloma and Related Diseases Registry (MRDR). CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:e510-e520. [PMID: 33785297 DOI: 10.1016/j.clml.2021.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Real-world multiple myeloma (MM) data are scarce, with most data originating from clinical trials. The Myeloma and Related Diseases Registry (MRDR) is a prospective clinical-quality registry of newly diagnosed cases of plasma cell disorders established in 2012 and operating at 44 sites in Australia and New Zealand as of April 2020. METHODS We reviewed all patients enrolled onto the MRDR between June 2012 and April 2020. Baseline characteristics, treatment, and outcome data were reviewed for MM patients with comparisons made by chi-square tests (categorical variables) and rank sum tests (continuous variables). Kaplan-Meier analysis was used to estimate progression-free survival and overall survival (OS). RESULTS As of April 2020, a total of 2405 MM patients were enrolled (median age, 67 years, with 40% aged > 70 years). High-risk features were present in 13% to 31% of patients: fluorescence in-situ hybridization (FISH) ≥ 1 of t(4;14), t(14;16), or del(17p) 18%, International Staging System (ISS)-3 31%, and Revised ISS (R-ISS)-3 13%. Cytogenetic/FISH analyses were performed in 50% and 68% of patients, respectively, with an abnormal karyotype result in 34%. Bortezomib-containing therapy was the most common first-line therapy (79.3%, n = 1706). Patients not receiving bortezomib were older (median age, 76 vs 65 years, P < .001) with inferior performance status (Eastern Cooperative Oncology Group performance status ≥ 2, 41% vs 18%, P < .001). Median progression-free survival and OS were 30.8 and 65.8 months, respectively. Younger patients had superior OS (76.3 vs 46.7 months, P < .001, < 70 and ≥ 70 years, respectively). R-ISS score was available in 50.7% (n = 1220) of patients, and higher R-ISS was associated with inferior OS (R-ISS-1 vs R-ISS-2 vs R-ISS-3: not reached vs 68.1 months vs 33.2 months, respectively, P < .001). CONCLUSION Clinical registries provide a more complete picture of MM diagnosis and treatment, and highlight the challenges of adhering to best practices in a real-world context.
Collapse
Affiliation(s)
- Krystal Bergin
- Department of Haematology, Alfred Health-Monash University, Melbourne, Victoria, Australia
| | - Cameron Wellard
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Elizabeth Moore
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Zoe McQuilten
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Hilary Blacklock
- Clinical Haematology, Middlemore Hospital, Middlemore, Auckland, New Zealand
| | - Simon J Harrison
- Clinical Haematology, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, Melbourne University, Parkville, Melbourne, Victoria, Australia; Clinical Haematology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - P Joy Ho
- Royal Prince Alfred Hospital, Camperdown, and University of Sydney, Sydney, New South Wales, Australia
| | - Tracy King
- Royal Prince Alfred Hospital, Camperdown, and University of Sydney, Sydney, New South Wales, Australia
| | - Hang Quach
- Clinical Haematology, University of Melbourne and St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Peter Mollee
- Clinical Haematology, Princess Alexandra Hospital and University of Queensland, Brisbane, Queensland, Australia
| | - Patricia Walker
- Clinical Haematology, Peninsula Health, Frankston, Victoria, Australia
| | - Erica Wood
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Andrew Spencer
- Department of Haematology, Alfred Health-Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
10
|
Bonello F, Grasso M, D’Agostino M, Celeghini I, Castellino A, Boccadoro M, Bringhen S. The Role of Monoclonal Antibodies in the First-Line Treatment of Transplant-Ineligible Patients with Newly Diagnosed Multiple Myeloma. Pharmaceuticals (Basel) 2020; 14:20. [PMID: 33383757 PMCID: PMC7823261 DOI: 10.3390/ph14010020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022] Open
Abstract
Elderly transplant-ineligible (NTE) patients represent the majority of patients affected by multiple myeloma (MM). Elderly patients are a highly heterogeneous population, with large variability in health and functional status. Thus, choosing their optimal treatment is challenging. A wide range of first-line treatments is available, and novel-agent combinations, including monoclonal antibodies (mAbs), have recently entered clinical practice. The combination of the anti-CD38 mAb daratumumab with bortezomib, melphalan and prednisone (Dara-VMP) or lenalidomide and dexamethasone (Dara-Rd) demonstrated impressive advantages in terms of progression-free survival and minimal residual disease negativity, as compared to VMP and Rd, without safety concerns. Another anti-CD38 mAb, isatuximab, is showing encouraging results, and new isatuximab-based combinations might enter clinical practice in the future. Nevertheless, available data come from clinical trials with selected patient populations and, to date, the manageability of these regimens in real-life patients or in frail patients remains unknown. Frailty-tailored treatments, including mAbs, are under evaluation in preliminary studies. In this review, we analyze recently approved mAb-based treatments for NTE newly diagnosed MM patients and new combinations under evaluation, focusing on the efficacy and safety of these regimens and on open issues regarding the choice of therapy for elderly patients.
Collapse
Affiliation(s)
- Francesca Bonello
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Mariella Grasso
- S.C. Ematologia, Azienda Ospedaliera Santa Croce-Carle, 88900 Cuneo, Italy
| | - Mattia D’Agostino
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Ivana Celeghini
- S.C. Ematologia, Azienda Ospedaliera Santa Croce-Carle, 88900 Cuneo, Italy
| | - Alessia Castellino
- S.C. Ematologia, Azienda Ospedaliera Santa Croce-Carle, 88900 Cuneo, Italy
| | - Mario Boccadoro
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Sara Bringhen
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| |
Collapse
|
11
|
Zhang Y, Huang N, Xu J, Zheng W, Cui X. Homoharringtonine Exerts an Antimyeloma Effect by Promoting Excess Parkin-Dependent Mitophagy. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4749-4763. [PMID: 33177810 PMCID: PMC7652225 DOI: 10.2147/dddt.s279054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022]
Abstract
Purpose Homoharringtonine (HHT) has been used as an antileukemia agent in the clinic which processes a high-potential therapeutic efficacy against multiple myeloma (MM). In this study, we investigated the antimyeloma mechanism of HHT. Methods Three MM cell lines and a xenograft model were applied. Mitochondrial function was evaluated by detecting MitoTracker Green, the mtDNA copy number, mitochondrial protein and enzyme activity, the mitochondrial membrane potential and mitochondrial morphology. Mitophagy levels were assessed by monitoring autophagosomes, performing a colocalization analysis and determining the levels of related proteins. An shRNA was applied to knockdown Parkin. Results Based on the results of the in vitro experiments, HHT exerted a promising antiproliferative effect on the MM.1S, RPMI 8226 and H929 cell lines by increasing mitophagy. In addition, HHT markedly inhibited myeloma tumor growth and prolonged survival by promoting mitophagy in vivo. Furthermore, HHT treatment contributed to notable mitochondrial dysfunction and Parkin-dependent mitophagy, as evidenced by the destruction of mitochondria, the decrease in the mtDNA copy number, decrease in the Bcl-2/Bax ratio, and decrease in the levels of mitochondrial proteins and the optimal expression of Parkin and NDP52. However, the addition of rapamycin did not produce significant synergistic effect with HHT, indicating that HHT reached the threshold level to induce mitophagy. The colocalization analysis and assessment of mitochondrial function examination further confirmed that HHT triggered mitophagy and mitochondrial dysfunction. Moreover, the antiproliferative effect of HHT was reversed by an shRNA targeting Parkin, highlighting the indispensable role of Parkin-dependent mitophagy in the antimyeloma effect of HHT. Conclusion HHT exerts an antimyeloma effect by inducing excess mitophagy, providing new mechanistic insights into a therapeutic strategy for MM.
Collapse
Affiliation(s)
- Yanyu Zhang
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Ning Huang
- Clinical Laboratory Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Jie Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Wei Zheng
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xing Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| |
Collapse
|
12
|
Hultcrantz M, Richter J, Rosenbaum CA, Patel D, Smith EL, Korde N, Lu SX, Mailankody S, Shah UA, Lesokhin AM, Hassoun H, Tan C, Maura F, Derkach A, Diamond B, Rossi A, Pearse RN, Madduri D, Chari A, Kaminetzky D, Braunstein MJ, Gordillo C, Reshef R, Taur Y, Davies FE, Jagannath S, Niesvizky R, Lentzsch S, Morgan GJ, Landgren O. COVID-19 Infections and Clinical Outcomes in Patients with Multiple Myeloma in New York City: A Cohort Study from Five Academic Centers. Blood Cancer Discov 2020; 1:234-243. [PMID: 34651141 PMCID: PMC7668224 DOI: 10.1158/2643-3230.bcd-20-0102] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 01/08/2023] Open
Abstract
Patients with multiple myeloma have a compromised immune system, due to both the disease and antimyeloma therapies, and may therefore be particularly susceptible to COVID-19. Here, we report outcomes and risk factors for serious disease in patients with multiple myeloma treated at five large academic centers in New York City in the spring of 2020, during which it was a global epicenter of the SARS-CoV-2 pandemic. Of 100 patients with multiple myeloma (male 58%; median age 68) diagnosed with COVID-19, 75 were admitted; of these, 13 patients (17%) were placed on invasive mechanical ventilation, and 22 patients (29%) expired. Of the 25 nonadmitted patients, 4 were asymptomatic. There was a higher risk of adverse outcome (intensive care unit admission, mechanical ventilation, or death) in Hispanics/Latinos (n = 21), OR = 4.7 (95% confidence interval, 1.3-16.7), and African American Blacks (n = 33), OR = 3.5 (1.1-11.5), as compared with White patients (n = 36). Patients who met the adverse combined endpoint had overall higher levels of inflammatory markers and cytokine activation. None of the other studied risk factors were significantly associated (P > 0.05) with adverse outcome: hypertension (n = 56), OR = 2.2 (0.9-5.4); diabetes (n = 18), OR = 0.9 (0.3-2.9); age >65 years (n = 63), OR = 1.8 (0.7-4.6); high-dose melphalan with autologous stem cell transplant <12 months (n = 7), OR = 0.9 (0.2-5.4); and immunoglobulin G <650 mg/dL (n = 42), OR = 0.9 (0.3-2.2). In this largest cohort to date of patients with multiple myeloma and COVID-19, we found the case fatality rate to be 29% among hospitalized patients and that race/ethnicity was the most significant risk factor for adverse outcome. Significance Patients with multiple myeloma are immunocompromised, raising the question whether they are at higher risk of severe COVID-19 disease. In this large case series on COVID-19 in patients with multiple myeloma, we report 29% mortality rates among hospitalized patients and identify race/ethnicity as the most significant risk factor for severe outcome.See related commentary by Munshi and Anderson, p. 218. This article is highlighted in the In This Issue feature, p. 215.
Collapse
Affiliation(s)
- Malin Hultcrantz
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joshua Richter
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cara A. Rosenbaum
- Center for Myeloma, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Dhwani Patel
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric L. Smith
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neha Korde
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sydney X. Lu
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sham Mailankody
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Urvi A. Shah
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexander M. Lesokhin
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hani Hassoun
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Carlyn Tan
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Francesco Maura
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andriy Derkach
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Benjamin Diamond
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Adriana Rossi
- Center for Myeloma, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Roger N. Pearse
- Center for Myeloma, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Deepu Madduri
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ajai Chari
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - David Kaminetzky
- Department of Medicine, Multiple Myeloma Research Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Marc J. Braunstein
- Department of Medicine, Multiple Myeloma Research Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Christian Gordillo
- Division of Hematology and Oncology, Columbia University Medical Center, New York, New York
| | - Ran Reshef
- Division of Hematology and Oncology, Columbia University Medical Center, New York, New York
| | - Ying Taur
- Infectious Diseases, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Joan and Sanford Weill Medical College of Cornell University, New York, New York
| | - Faith E. Davies
- Department of Medicine, Multiple Myeloma Research Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Sundar Jagannath
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ruben Niesvizky
- Center for Myeloma, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Suzanne Lentzsch
- Division of Hematology and Oncology, Columbia University Medical Center, New York, New York
| | - Gareth J. Morgan
- Department of Medicine, Multiple Myeloma Research Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Ola Landgren
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
13
|
D’Agostino M, Innorcia S, Boccadoro M, Bringhen S. Monoclonal Antibodies to Treat Multiple Myeloma: A Dream Come True. Int J Mol Sci 2020; 21:E8192. [PMID: 33139668 PMCID: PMC7662679 DOI: 10.3390/ijms21218192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy is increasingly used in the treatment of multiple myeloma (MM). Monoclonal antibodies (mAbs) are safe and effective ways to elicit immunotherapeutic responses. In 2015, daratumumab has become the first mAb approved by the Food and Drug Administration for clinical use in MM and, in the last 5 years, a lot of clinical and preclinical research has been done to optimize the use of this drug class. Currently, mAbs have already become part of standard-of-care combinations for the treatment of relapsed/refractory MM and very soon they will also be used in the frontline setting. The success of simple mAbs ('naked mAbs') prompted the development of new types of molecules. Antibody-drug conjugates (ADCs) are tumor-targeting mAbs that release a cytotoxic payload into the tumor cells upon antigen binding in order to destroy them. Bispecific antibodies (BiAbs) are mAbs simultaneously targeting a tumor-associated antigen and an immune cell-associated antigen in order to redirect the immune cell cytotoxicity against the tumor cell. These different constructs produced solid preclinical data and promising clinical data in phase I/II trials. The aim of this review article is to summarize all the recent developments in the field, including data on naked mAbs, ADCs and BiAbs.
Collapse
Affiliation(s)
| | | | | | - Sara Bringhen
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy; (M.D.); (S.I.); (M.B.)
| |
Collapse
|
14
|
Nadeem O, Tai YT, Anderson KC. Immunotherapeutic and Targeted Approaches in Multiple Myeloma. Immunotargets Ther 2020; 9:201-215. [PMID: 33117743 PMCID: PMC7569026 DOI: 10.2147/itt.s240886] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
The multiple myeloma (MM) therapeutic landscape has evolved significantly with the approval of numerous novel agents, including next generation proteasome inhibitors (PIs), immunomodulatory agents (IMIDs), and monoclonal antibodies (MoABs) targeting CD38 and SLAMF7. While these discoveries have led to an unprecedented improval in patient outcomes, the disease still remains incurable. Immunotherapeutic approaches have shown substantial promise in recent studies of chimeric antigen receptor T-cell (CAR T-cell) therapy, bispecific antibodies, and antibody drug conjugates targeting B-cell maturation antigen (BCMA). This review will highlight these novel and targeted therapies in MM, with particular focus on PIs, IMIDs, MoAb and BCMA-directed immunotherapy.
Collapse
Affiliation(s)
- Omar Nadeem
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yu-Tzu Tai
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
15
|
Zhang L, Wang Q, Wu X, Zhao A, Feng J, Zhang H, Cao X, Li S, Cai H, Sun Z, Duan M, Zhu T, Zhang W, Jin Z, Zhou D, Xue H, Li J. Baseline bone marrow ADC value of diffusion-weighted MRI: a potential independent predictor for progression and death in patients with newly diagnosed multiple myeloma. Eur Radiol 2020; 31:1843-1852. [PMID: 32965573 DOI: 10.1007/s00330-020-07295-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/07/2020] [Accepted: 09/15/2020] [Indexed: 01/22/2023]
Abstract
OBJECTIVES To illuminate the prognostic value of ADC (apparent diffusion coefficient), an important quantitative parameter of diffusion-weighted MRI, for multiple myeloma (MM). METHODS A prospective single-center study which enrolled 114 consecutive newly diagnosed MM patients with baseline whole-body diffusion-weighted MRI (WB DW-MRI) results was conducted. Baseline clinical and MRI parameters were analyzed with univariate and multivariate approaches to identify independent risk factors for progression-free survival (PFS) and overall survival (OS). RESULTS Five different DW-MRI patterns were seen, and the mean ADC value of the representative background bone marrow was 0.4662 ± 0.1939 × 10-3 mm2/s. After a mean follow-up of 50.2 months (range, 15.7-75.8 months), twenty-four patients died and seven were lost to follow-up. The mean ADC value of the representative background bone marrow was showed to be an independent risk factor for both PFS (HR 4.664; 95% confidence interval (CI) 1.138-19.121; p = 0.032) and OS (HR 14.130; 95% CI 1.544-129.299; p = 0.019). Normal/salt-and-pepper pattern on DW-MRI was associated with PFS using univariate analysis (p = 0.035) but lost the significance with multivariate Cox regression. CONCLUSIONS Mean ADC value of the representative background bone marrow predicts both PFS and OS which suggests the role of baseline DW-MRI for risk stratification in newly diagnosed MM patients. KEY POINTS • Whole-body diffusion-weighted MRI (WB DW-MRI) might be helpful to improve the current risk stratification systems for newly diagnosed multiple myeloma (MM). • Morphological parameters as MRI pattern and focal lesion-associated parameters have been reported to be related to survival. However, important functional parameters such as apparent diffusion coefficient (ADC) values were not incorporated into the current risk stratification model. • This study is one of the first endeavors to delineate the correlation of baseline ADC values and survival in MM patients. It is revealed that the mean ADC value of the representative background bone marrow (L3-S1 and iliac bone) was an independent risk factor for both PFS and OS.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qin Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xia Wu
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ailin Zhao
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jun Feng
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Haibo Zhang
- Department of Radiology, China-Japan Friendship Hospital, Yinghua East Road 2#, Heping Street, Chaoyang District, Beijing, 100029, China
| | - Xinxin Cao
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Shuo Li
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huacong Cai
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhaoyong Sun
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Minghui Duan
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tienan Zhu
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wei Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhengyu Jin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Daobin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huadan Xue
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
16
|
Bertamini L, Gay F. Checkpoint inhibitors and myeloma: promises, deadlocks and new directions. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:777. [PMID: 32647702 PMCID: PMC7333157 DOI: 10.21037/atm.2020.02.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Luca Bertamini
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Francesca Gay
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
17
|
Hultcrantz M, Richter J, Rosenbaum C, Patel D, Smith E, Korde N, Lu S, Mailankody S, Shah U, Lesokhin A, Hassoun H, Tan C, Maura F, Derkacs A, Diamond B, Rossi A, Pearse RN, Madduri D, Chari A, Kaminetsky D, Braunstein M, Gordillo C, Davies F, Jagannath S, Niesvizky R, Lentzsch S, Morgan G, Landgren O. COVID-19 infections and outcomes in patients with multiple myeloma in New York City: a cohort study from five academic centers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.06.09.20126516. [PMID: 32577667 PMCID: PMC7302217 DOI: 10.1101/2020.06.09.20126516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Importance New York City is a global epicenter for the SARS-CoV-2 outbreak with a significant number of individuals infected by the virus. Patients with multiple myeloma have a compromised immune system, due to both the disease and anti-myeloma therapies, and may therefore be particularly susceptible to coronavirus disease 2019 (COVID-19); however, there is limited information to guide clinical management. Objective To assess risk factors and outcomes of COVID-19 in patients with multiple myeloma. Design Case-series. Setting Five large academic centers in New York City. Participants Patients with multiple myeloma and related plasma cell disorders who were diagnosed with COVID-19 between March 10th, 2020 and April 30th, 2020. Exposures Clinical features and risk factors were analyzed in relation to severity of COVID-19. Main Outcomes and Measures Descriptive statistics as well as logistic regression were used to estimate disease severity reflected in hospital admissions, intensive care unit (ICU) admission, need for mechanical ventilation, or death. Results Of 100 multiple myeloma patients (male 58%; median age 68, range 41-91) diagnosed with COVID-19, 74 (74%) were admitted; of these 13 (18%) patients were placed on mechanical ventilation, and 18 patients (24%) expired. None of the studied risk factors were significantly associated (P>0.05) with adverse outcomes (ICU-admission, mechanical ventilation, or death): hypertension (N=56) odds ratio (OR) 2.3 (95% confidence interval [CI] 0.9-5.9); diabetes (N=18) OR 1.1 (95% CI 0.3-3.2); age >65 years (N=63) OR 2.0 (95% CI 0.8-5.3); high dose melphalan with autologous stem cell transplant <12 months (N=7) OR 1.2 (95% CI 0.2-7.4), IgG<650 mg/dL (N=42) OR=1.2 (95% CI 0.4-3.1). In the entire series of 127 patients with plasma cell disorders, hypertension was significantly associated with the combined end-point (OR 3.4, 95% CI 1.5-8.1). Conclusions and Relevance Although multiple myeloma patients have a compromised immune system due to both the disease and therapy; in this largest disease specific cohort to date of patients with multiple myeloma and COVID-19, compared to the general population, we found risk factors for adverse outcome to be shared and mortality rates to be within the higher range of officially reported mortality rates.
Collapse
Affiliation(s)
- Malin Hultcrantz
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joshua Richter
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cara Rosenbaum
- Center for Myeloma, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY, USA
| | - Dhwani Patel
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Smith
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Neha Korde
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sydney Lu
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sham Mailankody
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Urvi Shah
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Lesokhin
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hani Hassoun
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carlyn Tan
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Francesco Maura
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andriy Derkacs
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin Diamond
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adriana Rossi
- Center for Myeloma, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY, USA
| | - Roger N Pearse
- Center for Myeloma, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY, USA
| | - Deepu Madduri
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ajai Chari
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Kaminetsky
- Dpt. of Medicine, Multiple Myeloma Research Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Marc Braunstein
- Dpt. of Medicine, Multiple Myeloma Research Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Christian Gordillo
- Division of Hematology and Oncology, Columbia University Medical Center, New York, NY, USA
| | - Faith Davies
- Dpt. of Medicine, Multiple Myeloma Research Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Sundar Jagannath
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruben Niesvizky
- Center for Myeloma, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY, USA
| | - Suzanne Lentzsch
- Division of Hematology and Oncology, Columbia University Medical Center, New York, NY, USA
| | - Gareth Morgan
- Dpt. of Medicine, Multiple Myeloma Research Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Ola Landgren
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
18
|
Xu S, Lam KP. Transmembrane Activator and CAML Interactor (TACI): Another Potential Target for Immunotherapy of Multiple Myeloma? Cancers (Basel) 2020; 12:cancers12041045. [PMID: 32340409 PMCID: PMC7226350 DOI: 10.3390/cancers12041045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) has emerged as the next most likely oncological or hematological disease indication amenable for cellular immunotherapy. Much of the attention has been focused on B cell maturation antigen (BCMA) as a unique cell surface protein on myeloma cells that is available for monoclonal antibodies, antibody drug conjugates (ADCs), T-cell redirecting bispecific molecules, and chimeric antigen receptor (CAR) T cell targeting. BCMA is a member of the tumor necrosis factor receptor (TNFR) superfamily that binds two ligands B-cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL) and mediates the growth and survival of plasma and MM cells. Interestingly, transmembrane activator and CAML interactor (TACI), another TNFR superfamily member, also binds the same ligands and plays largely overlapping roles as BCMA in normal plasma and malignant MM cells. In this article, we review the biology of TACI, focusing on its role in normal B and plasma cells and malignant MM cells, and also discuss various ways to incorporate TACI as a potential target for immunotherapies against MM.
Collapse
Affiliation(s)
- Shengli Xu
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Correspondence: (S.X); (K.-P.L)
| | - Kong-Peng Lam
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Correspondence: (S.X); (K.-P.L)
| |
Collapse
|
19
|
B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches. Leukemia 2020; 34:985-1005. [PMID: 32055000 PMCID: PMC7214244 DOI: 10.1038/s41375-020-0734-z] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022]
Abstract
Despite considerable advances in the treatment of multiple myeloma (MM) in the last decade, a substantial proportion of patients do not respond to current therapies or have a short duration of response. Furthermore, these treatments can have notable morbidity and are not uniformly tolerated in all patients. As there is no cure for MM, patients eventually become resistant to therapies, leading to development of relapsed/refractory MM. Therefore, an unmet need exists for MM treatments with novel mechanisms of action that can provide durable responses, evade resistance to prior therapies, and/or are better tolerated. B-cell maturation antigen (BCMA) is preferentially expressed by mature B lymphocytes, and its overexpression and activation are associated with MM in preclinical models and humans, supporting its potential utility as a therapeutic target for MM. Moreover, the use of BCMA as a biomarker for MM is supported by its prognostic value, correlation with clinical status, and its ability to be used in traditionally difficult-to-monitor patient populations. Here, we review three common treatment modalities used to target BCMA in the treatment of MM: bispecific antibody constructs, antibody–drug conjugates, and chimeric antigen receptor (CAR)-modified T-cell therapy. We provide an overview of preliminary clinical data from trials using these therapies, including the BiTE® (bispecific T-cell engager) immuno-oncology therapy AMG 420, the antibody–drug conjugate GSK2857916, and several CAR T-cell therapeutic agents including bb2121, NIH CAR-BCMA, and LCAR-B38M. Notable antimyeloma activity and high minimal residual disease negativity rates have been observed with several of these treatments. These clinical data outline the potential for BCMA-targeted therapies to improve the treatment landscape for MM. Importantly, clinical results to date suggest that these therapies may hold promise for deep and durable responses and support further investigation in earlier lines of treatment, including newly diagnosed MM.
Collapse
|
20
|
D'Agostino M, Raje N. Anti-BCMA CAR T-cell therapy in multiple myeloma: can we do better? Leukemia 2019; 34:21-34. [PMID: 31780814 DOI: 10.1038/s41375-019-0669-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/27/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022]
Abstract
Despite a substantial survival improvement and the availability of many new drugs in the last 2 decades, multiple myeloma (MM) remains largely incurable. Immunotherapeutic approaches are changing the current landscape in MM with B-cell maturation antigen (BCMA) as one of the most promising target antigens. Chimeric antigen receptor (CAR) T-cell therapy targeting BCMA produced unprecedented results in heavily pretreated relapsed and/or refractory MM. Data on more than 300 MM patients treated with anti-BCMA directed CAR T cells are available and these numbers are rapidly increasing. The response rate and the depth of responses induced by anti-BCMA CAR T cells are impressive; however, the majority of patients eventually relapse. Understanding the underlying mechanisms of response and resistance in treated MM patients will be critical to the rational development of this therapy. Moreover, the ideal place of this therapy in the treatment paradigm for MM is an important question that needs biological and clinical correlative data to help elucidate. T-cell-related, tumor-related and microenvironmental factors may play a role in the efficacy of anti-BCMA CAR T-cell therapy. In this review we summarize key clinical and correlative data on anti-BCMA CAR T-cell therapy. Based on available data we will try to highlight opportunities to further optimize this potential game-changing therapy for MM.
Collapse
Affiliation(s)
- Mattia D'Agostino
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy.,Center for Multiple Myeloma, Division of Hematology and Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Noopur Raje
- Center for Multiple Myeloma, Division of Hematology and Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
D’Agostino M, Gazzera G, Cetani G, Bringhen S, Boccadoro M, Gay F. Clinical and Pharmacologic Features of Monoclonal Antibodies and Checkpoint Blockade Therapy in Multiple Myeloma. Curr Med Chem 2019; 26:5968-5981. [DOI: 10.2174/0929867325666180514114806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/06/2018] [Accepted: 05/03/2018] [Indexed: 01/05/2023]
Abstract
Background:
Survival of multiple myeloma patients has considerably improved in
the last decades thanks to the introduction of many new drugs, including immunomodulatory
agents, proteasome inhibitors and, more recently, monoclonal antibodies.
Methods:
We analyzed the most recent literature focusing on the clinical and pharmacologic
aspects of monoclonal antibody-based therapies in multiple myeloma, including monoclonal
antibodies directed against plasma cell antigens, as well as checkpoint blockade therapy directed
against immune inhibitory molecules, used as single agents or in combination therapy.
Results:
Anti-CD38 monoclonal antibodies including daratumumab, isatuximab and
MOR202 have shown outstanding results in relapsed and/or refractory multiple myeloma patients.
The addition of daratumumab to bortezomib-dexamethasone or lenalidomidedexamethasone
substantially improved patients’ outcome in this patient population. The anti-
SLAMF7 molecule elotuzumab in combination with lenalidomide-dexamethasone showed to
be superior to lenalidomide-dexamethasone alone, without adding meaningful toxicity.
Checkpoint blockade therapy in combination with immunomodulatory agents produced objective
responses in more than 50% of treated patients. However, this combination was also associated
with an increase in toxicity and a thorough safety evaluation is currently ongoing.
Conclusion:
Monoclonal antibodies are reshaping the standard of care for multiple myeloma
and ongoing trials will help physicians to optimize their use in order to further improve patients’
outcome.
Collapse
Affiliation(s)
- Mattia D’Agostino
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Giulia Gazzera
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Giusy Cetani
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Sara Bringhen
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Mario Boccadoro
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Francesca Gay
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
22
|
Catuogno S, Di Martino MT, Nuzzo S, Esposito CL, Tassone P, de Franciscis V. An Anti-BCMA RNA Aptamer for miRNA Intracellular Delivery. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 18:981-990. [PMID: 31778956 PMCID: PMC6889555 DOI: 10.1016/j.omtn.2019.10.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/11/2019] [Accepted: 10/21/2019] [Indexed: 12/28/2022]
Abstract
B cell maturation antigen is highly expressed on malignant plasma cells in human multiple myeloma and has recently emerged as a very promising target for therapeutic interventions. Nucleic-acid-based aptamers are small oligonucleotides with high selective targeting properties and functional advantages over monoclonal antibodies, as both diagnostic and therapeutic tools. Here, we describe the generation of the first-ever-described nuclease resistant RNA aptamer selectively binding to B cell maturation antigen. We adopted a modified cell-based systematic evolution of ligands by exponential enrichment approach allowing the enrichment for internalizing aptamers. The selected 2′Fluoro-Pyrimidine modified aptamer, named apt69.T, effectively and selectively bound B cell maturation antigen-expressing myeloma cells with rapid and efficient internalization. Interestingly, apt69.T inhibited APRIL-dependent nuclear factor κB (NF-κB) pathway in vitro. Moreover, the aptamer was conjugated to microRNA-137 (miR-137) and anti-miR-222, demonstrating high potential against tumor cells. In conclusion, apt69.T is a novel tool suitable for direct targeting and delivery of therapeutics to B cell maturation antigen-expressing myeloma cells.
Collapse
Affiliation(s)
- Silvia Catuogno
- IEOS - Istituto per l'endocrinologia e l'oncologia "Gaetano Salvatore," CNR, Naples, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | | | - Carla Lucia Esposito
- IEOS - Istituto per l'endocrinologia e l'oncologia "Gaetano Salvatore," CNR, Naples, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy.
| | - Vittorio de Franciscis
- IEOS - Istituto per l'endocrinologia e l'oncologia "Gaetano Salvatore," CNR, Naples, Italy.
| |
Collapse
|
23
|
Panowski SH, Kuo TC, Zhang Y, Chen A, Geng T, Aschenbrenner L, Kamperschroer C, Pascua E, Chen W, Delaria K, Farias S, Bateman M, Dushin RG, Chin SM, Van Blarcom TJ, Yeung YA, Lindquist KC, Chunyk AG, Kuang B, Han B, Mirsky M, Pardo I, Buetow B, Martin TG, Wolf JL, Shelton D, Rajpal A, Strop P, Chaparro-Riggers J, Sasu BJ. Preclinical Efficacy and Safety Comparison of CD3 Bispecific and ADC Modalities Targeting BCMA for the Treatment of Multiple Myeloma. Mol Cancer Ther 2019; 18:2008-2020. [DOI: 10.1158/1535-7163.mct-19-0007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/03/2019] [Accepted: 08/12/2019] [Indexed: 11/16/2022]
|
24
|
Guillerey C, Nakamura K, Pichler AC, Barkauskas D, Krumeich S, Stannard K, Miles K, Harjunpää H, Yu Y, Casey M, Doban AI, Lazar M, Hartel G, Smith D, Vuckovic S, Teng MW, Bergsagel PL, Chesi M, Hill GR, Martinet L, Smyth MJ. Chemotherapy followed by anti-CD137 mAb immunotherapy improves disease control in a mouse myeloma model. JCI Insight 2019; 5:125932. [PMID: 31194697 DOI: 10.1172/jci.insight.125932] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy holds promise for multiple myeloma (MM) patients but little is known about how MM-induced immunosuppression influences response to therapy. Here, we investigated the impact of disease progression on immunotherapy efficacy in the Vk*MYC mouse model. Treatment with agonistic anti-CD137 (4-1BB) mAbs efficiently protected mice when administered early but failed to contain MM growth when delayed more than three weeks after Vk*MYC tumor cell challenge. The quality of CD8+ T cell response to CD137 stimulation was not altered by the presence of MM, but CD8+ T cell numbers were profoundly reduced at the time of treatment. Our data suggest that an insufficient ratio of CD8+ T cells over MM cells (CD8/MM) accounts for the loss of anti-CD137 mAb efficacy. We established serum M-protein levels prior to therapy as a predictive factor of response. Moreover, we developed an in silico model to capture the dynamic interactions between CD8+ T cells and MM cells. Finally, we explored two methods to improve the CD8/MM ratio: anti-CD137 mAb immunotherapy combined with Treg-depletion or administered after chemotherapy treatment with cyclophosphamide or melphalan efficiently reduced MM burden and prolonged survival. Altogether, our data indicate that consolidation treatment with anti-CD137 mAbs might prevent MM relapse.
Collapse
Affiliation(s)
- Camille Guillerey
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,School of Medicine, The University of Queensland, Herston, Queensland, Australia.,Cancer Immunotherapies Laboratory, Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Kyohei Nakamura
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Andrea C Pichler
- Cancer Research Center of Toulouse, INSERM UMR 1037, Toulouse, France
| | - Deborah Barkauskas
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Sophie Krumeich
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kimberley Stannard
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kim Miles
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Heidi Harjunpää
- School of Medicine, The University of Queensland, Herston, Queensland, Australia.,Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Yuan Yu
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mika Casey
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Mircea Lazar
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | | | | | - Slavica Vuckovic
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Multiple Myeloma Research Group, Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Michele Wl Teng
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - P Leif Bergsagel
- Comprehensive Cancer Center, Mayo Clinic, Scottsdale, Arizona, USA
| | - Marta Chesi
- Comprehensive Cancer Center, Mayo Clinic, Scottsdale, Arizona, USA
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ludovic Martinet
- Cancer Research Center of Toulouse, INSERM UMR 1037, Toulouse, France
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,School of Medicine, The University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
25
|
Costello C, Davies FE, Cook G, Vela-Ojeda J, Omel J, Rifkin RM, Berdeja J, Puig N, Usmani SZ, Weisel K, Zonder JA, Terpos E, Spencer A, Leleu X, Boccadoro M, Thompson MA, Romanus D, Stull DM, Hungria V. INSIGHT MM: a large, global, prospective, non-interventional, real-world study of patients with multiple myeloma. Future Oncol 2019; 15:1411-1428. [PMID: 30816809 PMCID: PMC6854441 DOI: 10.2217/fon-2019-0013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/07/2019] [Indexed: 12/27/2022] Open
Abstract
With the introduction of new drugs with different mechanisms of action, multiple myeloma (MM) patients' outcomes have improved. However, the efficacy seen in clinical trials is often not seen in real-world settings and data on the effectiveness of MM therapies are needed. INSIGHT MM is a prospective, global, non-interventional, observational study that is enrolling approximately 4200 patients with newly diagnosed or relapsed/refractory MM, making it the largest study of its kind to date. The study aims to describe contemporary, real-world patterns of patient characteristics, clinical disease presentation, therapies chosen, clinical outcomes (response, treatment duration, time-to-next-therapy, progression-free and overall survival), safety, healthcare resource utilization and quality of life. One interim analysis has been conducted to date; current accrual is approximately 3094 patients. Trial registration number: NCT02761187.
Collapse
Affiliation(s)
- Caitlin Costello
- Department of Medicine, Division of Blood and Marrow Transplantation, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Faith E Davies
- Myeloma Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Gordon Cook
- Department of Haematology, Leeds Cancer Centre, St James's University Hospital, Leeds, UK
| | - Jorge Vela-Ojeda
- Hematology Department, La Raza Medical Center, IMSS, México City, México
| | - Jim Omel
- The Central Nebraska Myeloma Support Group, Grand Island, NE 68801, USA
| | - Robert M Rifkin
- Department of Hematology Research, US Oncology Research/Rocky Mountain Cancer Centers, Denver, CO 80218, USA
| | - Jesus Berdeja
- Department of Hematology, Sarah Cannon Research Institute, Nashville, TN 37203, USA
| | - Noemi Puig
- Department of Hematology, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Saad Z Usmani
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Charlotte, NC 28204, USA
| | - Katja Weisel
- Department of Hematology, University of Tuebingen, Tuebingen, Germany
- Department of Oncology, Hematology & Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jeffrey A Zonder
- Department of Oncology, Barbara Ann Karmanos Cancer Institute/Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Evangelos Terpos
- Department of Clinical Therapeutics, National & Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Andrew Spencer
- Department of Clinical Haematology, Alfred Health-Monash University, Melbourne, Australia
| | - Xavier Leleu
- Pôle Régional de Cancérologie and CIC1402 INSERM, CHU de Poitiers, France
| | - Mario Boccadoro
- Myeloma Unit, Division of Hematology, University of Torino, Torino, Italy
| | | | - Dorothy Romanus
- Global Outcomes Research, Millennium Pharmaceuticals, Inc., Cambridge, MA 02139, USA
| | - Dawn M Stull
- Global Medical Affairs, Millenium Pharmaceuticals, Inc., Cambridge, MA 02139, USA
| | - Vania Hungria
- Department of Hematology, Clinica São Germano and Santa Casa Medical School, São Paulo, Brazil
| |
Collapse
|
26
|
Costello C, Davies FE, Cook G, Vela-Ojeda J, Omel J, Rifkin RM, Berdeja J, Puig N, Usmani SZ, Weisel K, Zonder JA, Terpos E, Spencer A, Leleu X, Boccadoro M, Thompson MA, Romanus D, Stull DM, Hungria V. INSIGHT MM: a large, global, prospective, non-interventional, real-world study of patients with multiple myeloma. Future Oncol 2019. [DOI: 10.2217/fon-2019-0013 and 21=21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
With the introduction of new drugs with different mechanisms of action, multiple myeloma (MM) patients’ outcomes have improved. However, the efficacy seen in clinical trials is often not seen in real-world settings and data on the effectiveness of MM therapies are needed. INSIGHT MM is a prospective, global, non-interventional, observational study that is enrolling approximately 4200 patients with newly diagnosed or relapsed/refractory MM, making it the largest study of its kind to date. The study aims to describe contemporary, real-world patterns of patient characteristics, clinical disease presentation, therapies chosen, clinical outcomes (response, treatment duration, time-to-next-therapy, progression-free and overall survival), safety, healthcare resource utilization and quality of life. One interim analysis has been conducted to date; current accrual is approximately 3094 patients. Trial registration number: NCT02761187
Collapse
Affiliation(s)
- Caitlin Costello
- Department of Medicine, Division of Blood and Marrow Transplantation, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Faith E Davies
- Myeloma Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Gordon Cook
- Department of Haematology, Leeds Cancer Centre, St James's University Hospital, Leeds, UK
| | - Jorge Vela-Ojeda
- Hematology Department, La Raza Medical Center, IMSS, México City, México
| | - Jim Omel
- The Central Nebraska Myeloma Support Group, Grand Island, NE 68801, USA
| | - Robert M Rifkin
- Department of Hematology Research, US Oncology Research/Rocky Mountain Cancer Centers, Denver, CO 80218, USA
| | - Jesus Berdeja
- Department of Hematology, Sarah Cannon Research Institute, Nashville, TN 37203, USA
| | - Noemi Puig
- Department of Hematology, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Saad Z Usmani
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Charlotte, NC 28204, USA
| | - Katja Weisel
- Department of Hematology, University of Tuebingen, Tuebingen, Germany
- Department of Oncology, Hematology & Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jeffrey A Zonder
- Department of Oncology, Barbara Ann Karmanos Cancer Institute/Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Evangelos Terpos
- Department of Clinical Therapeutics, National & Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Andrew Spencer
- Department of Clinical Haematology, Alfred Health-Monash University, Melbourne, Australia
| | - Xavier Leleu
- Pôle Régional de Cancérologie and CIC1402 INSERM, CHU de Poitiers, France
| | - Mario Boccadoro
- Myeloma Unit, Division of Hematology, University of Torino, Torino, Italy
| | | | - Dorothy Romanus
- Global Outcomes Research, Millennium Pharmaceuticals, Inc., Cambridge, MA 02139, USA
| | - Dawn M Stull
- Global Medical Affairs, Millenium Pharmaceuticals, Inc., Cambridge, MA 02139, USA
| | - Vania Hungria
- Department of Hematology, Clinica São Germano and Santa Casa Medical School, São Paulo, Brazil
| |
Collapse
|
27
|
Abstract
Genetically engineered T cells are powerful new medicines, offering hope for curative responses in patients with cancer. Chimeric antigen receptor (CAR) T cells were recently approved by the US Food and Drug Administration and are poised to enter the practice of medicine for leukemia and lymphoma, demonstrating that engineered immune cells can serve as a powerful new class of cancer therapeutics. The emergence of synthetic biology approaches for cellular engineering provides a broadly expanded set of tools for programming immune cells for enhanced function. Advances in T cell engineering, genetic editing, the selection of optimal lymphocytes, and cell manufacturing have the potential to broaden T cell-based therapies and foster new applications beyond oncology, in infectious diseases, organ transplantation, and autoimmunity.
Collapse
Affiliation(s)
- Sonia Guedan
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Parker Institute for Cellular Immunotherapy at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Parker Institute for Cellular Immunotherapy at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
28
|
CD38 Deficiency Downregulates the Onset and Pathogenesis of Collagen-Induced Arthritis through the NF- κB Pathway. J Immunol Res 2019; 2019:7026067. [PMID: 30949517 PMCID: PMC6425382 DOI: 10.1155/2019/7026067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/08/2019] [Indexed: 01/09/2023] Open
Abstract
Aim The RelB gene plays an important role in guiding the progression of arthritis. We have previously demonstrated that the expression of the RelB gene is decreased significantly in bone marrow DCs of CD38−/− mice. In this study, we demonstrate that the cluster of the differentiation (CD38) gene could be a potentially therapeutic target for autoimmune arthritis. Method Collagen-induced arthritis (CIA) models were generated with both the wild-type (WT) C57BL/6 and CD38−/− mice. The expression of the RelB gene and maturation of bone marrow-derived dendritic cells (DCs) from the WT and CD38−/− mice were detected. Antigen-specific T cell responses, joint damage, and expression of proinflammatory cytokines were assessed. The effects of the Nuclear Factor Kappa B (NF-κB) transcription factor and its mechanisms were characterized. Results We demonstrated that in CD38−/− mice, the expression of the RelB gene and major histocompatibility complex II (MHC II) was decreased, accompanied with the inhibited T cell reaction in a mixed lymphocyte reaction (MLR) in bone marrow-derived DCs. Compared to the serious degeneration of the cartilage and the enlarged gap of the cavum articular in WT CIA mice, joint pathological changes of the CD38−/− CIA mice revealed marked attenuation, while the joint structures were well preserved. The preserved effects were observed by the inhibition of proinflammatory cytokines and promotion of anti-inflammatory cytokines. Furthermore, decreased phosphorylation of NF-κB was also observed in CD38−/− CIA mice. Conclusion We demonstrate that CD38 could regulate CIA through NF-κB and this regulatory molecule could be a novel target for the treatment of autoimmune inflammatory joint disease.
Collapse
|
29
|
Bonello F, D’Agostino M, Moscvin M, Cerrato C, Boccadoro M, Gay F. CD38 as an immunotherapeutic target in multiple myeloma. Expert Opin Biol Ther 2018; 18:1209-1221. [DOI: 10.1080/14712598.2018.1544240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Francesca Bonello
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Mattia D’Agostino
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Maria Moscvin
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Chiara Cerrato
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Mario Boccadoro
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Francesca Gay
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
30
|
Berahovich R, Zhou H, Xu S, Wei Y, Guan J, Guan J, Harto H, Fu S, Yang K, Zhu S, Li L, Wu L, Golubovskaya V. CAR-T Cells Based on Novel BCMA Monoclonal Antibody Block Multiple Myeloma Cell Growth. Cancers (Basel) 2018; 10:cancers10090323. [PMID: 30208593 PMCID: PMC6162381 DOI: 10.3390/cancers10090323] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023] Open
Abstract
The cell-surface protein B cell maturation antigen (BCMA, CD269) has emerged as a promising target for CAR-T cell therapy for multiple myeloma. In order to create a novel BCMA CAR, we generated a new BCMA monoclonal antibody, clone 4C8A. This antibody exhibited strong and selective binding to human BCMA. BCMA CAR-T cells containing the 4C8A scFv were readily detected with recombinant BCMA protein by flow cytometry. The cells were cytolytic for RPMI8226, H929, and MM1S multiple myeloma cells and secreted high levels of IFN-γ in vitro. BCMA-dependent cytotoxicity and IFN-γ secretion were also observed in response to CHO (Chinese Hamster Ovary)-BCMA cells but not to parental CHO cells. In a mouse subcutaneous tumor model, BCMA CAR-T cells significantly blocked RPMI8226 tumor formation. When BCMA CAR-T cells were given to mice with established RPMI8226 tumors, the tumors experienced significant shrinkage due to CAR-T cell activity and tumor cell apoptosis. The same effect was observed with 3 humanized BCMA-CAR-T cells in vivo. These data indicate that novel CAR-T cells utilizing the BCMA 4C8A scFv are effective against multiple myeloma and warrant future clinical development.
Collapse
Affiliation(s)
- Robert Berahovich
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
| | - Hua Zhou
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
| | - Shirley Xu
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
| | - Yuehua Wei
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
| | - Jasper Guan
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
| | - Jian Guan
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
| | - Hizkia Harto
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
| | - Shuxiang Fu
- Forevertek Biotechnology Co., Ltd., Building M0, Oversea Graduate Park National High-Tech Industrial Zone, Changsha 410003, China.
| | - Kaihuai Yang
- Forevertek Biotechnology Co., Ltd., Building M0, Oversea Graduate Park National High-Tech Industrial Zone, Changsha 410003, China.
| | - Shuying Zhu
- Forevertek Biotechnology Co., Ltd., Building M0, Oversea Graduate Park National High-Tech Industrial Zone, Changsha 410003, China.
| | - Le Li
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
- Forevertek Biotechnology Co., Ltd., Building M0, Oversea Graduate Park National High-Tech Industrial Zone, Changsha 410003, China.
| | - Lijun Wu
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
| | - Vita Golubovskaya
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
| |
Collapse
|
31
|
TIGIT immune checkpoint blockade restores CD8 + T-cell immunity against multiple myeloma. Blood 2018; 132:1689-1694. [PMID: 29986909 DOI: 10.1182/blood-2018-01-825265] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
Immune-based therapies hold promise for the treatment of multiple myeloma (MM), but so far, immune checkpoint blockade targeting programmed cell death protein 1 has not proven effective as single agent in this disease. T-cell immunoglobulin and ITIM domains (TIGIT) is another immune checkpoint receptor known to negatively regulate T-cell functions. In this study, we investigated the therapeutic potential of TIGIT blockade to unleash immune responses against MM. We observed that, in both mice and humans, MM progression was associated with high levels of TIGIT expression on CD8+ T cells. TIGIT+ CD8+ T cells from MM patients exhibited a dysfunctional phenotype characterized by decreased proliferation and inability to produce cytokines in response to anti-CD3/CD28/CD2 or myeloma antigen stimulation. Moreover, when challenged with Vk*MYC mouse MM cells, TIGIT-deficient mice showed decreased serum monoclonal immunoglobulin protein levels associated with reduced tumor burden and prolonged survival, indicating that TIGIT limits antimyeloma immune responses. Importantly, blocking TIGIT using monoclonal antibodies increased the effector function of MM patient CD8+ T cells and suppressed MM development. Altogether our data provide evidence for an immune-inhibitory role of TIGIT in MM and support the development of TIGIT-blocking strategies for the treatment of MM patients.
Collapse
|
32
|
Menssen HD, Harnack U, Erben U, Neri D, Hirsch B, Dürkop H. Antibody-based delivery of tumor necrosis factor (L19-TNFα) and interleukin-2 (L19-IL2) to tumor-associated blood vessels has potent immunological and anticancer activity in the syngeneic J558L BALB/c myeloma model. J Cancer Res Clin Oncol 2018; 144:499-507. [PMID: 29327244 DOI: 10.1007/s00432-017-2564-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE To analyze the impact of TNFα or IL2 on human lymphocytes in vitro and the anti-tumor and immune-modifying effects of L19-IL2 and L19-TNFα on subcutaneously growing J558L myeloma in immunocompetent mice. METHODS PBMCs from three healthy volunteers were incubated with IL2, TNFα, or with IL2 plus addition of TNFα (final 20 h). BALB/c J558L mice with subcutaneous tumors were treated with intravenous L19-TNFα plus L19-IL2, or controls. Tumor growth and intra- and peri-tumoral tissues were analyzed for micro-vessel density, necrosis, immune cell composition, and PD1 or PD-L1 expressing cells. RESULTS Exposure of PBMC in vitro to IL2, TNFα, or to IL2 over 3 and 5 days plus TNFα for the final 20 h resulted in an approximately 50 and 75% reduction of the CD25low effector cell/CD25high Treg cell ratio, respectively, compared to medium control. IL2 or TNFα increased the proportion of CD4- CD25low effector lymphocytes while reducing the proportion of CD4+ CD25low Teff cells. In the J558L myeloma model, tumor eradication was observed in 58, 42, 25, and 0% of mice treated with L19-TNFα plus L19-IL2, L19-TNFα, L19-IL2, and PBS, respectively. L19-TNFα/L19-IL2 combination caused tumor necrosis, capillary density doubling, peri-tumoral T cell and PD1+ T cell reduction (- 50%), and an increase in PD-L1+ myeloma cells. CONCLUSION IL2, TNFα, or IL2 plus TNFα (final 20 h) increased the proportion of CD4- CD25low effector lymphocytes possibly indicating immune activation. L19-TNFα/L19-IL2 combination therapy eradicated tumors in J558L myeloma BALB/c mice likely via TNFα-induced tumor necrosis and L19-TNFα/L19-IL2-mediated local cellular immune reactions.
Collapse
Affiliation(s)
- Hans D Menssen
- Division of Hematology and Oncology, Campus Benjamin Franklin, Department of Medicine, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Ulf Harnack
- Division of Oncology and Hematology, Campus Mitte, Department of Medicine, Charité-Universitätsmedizin Berlin, Charité-Platz 1, 10117, Berlin, Germany
| | - Ulrike Erben
- Division of Gastroenterology, Infectious Diseases and Rheumatology, Medical Department, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093, Zurich, Switzerland
| | - Burkhard Hirsch
- Department of Pathology at Campus Benjamin Franklin, Campus Mitte, Institute of Pathology, Charité-Universitätsmedizin Berlin, Virchowweg 15, 10117, Berlin, Germany.,Department of Medicine, Campus Mitte, Institute of Pathology, Charité-Universitätsmedizin Berlin, Virchowweg 15, 10117, Berlin, Germany
| | - Horst Dürkop
- Pathodiagnostik Berlin, Komturstrasse 58-62, 12099, Berlin, Germany
| |
Collapse
|