1
|
Jørgensen MP, Øvlisen AK, Jensen JF, El-Galaly TC, Dalager MG, Vestergaard H, Broesby-Olsen S, Severinsen MT. Prevalence and incidence of mastocytosis in adults: a Danish nationwide register study. Eur J Epidemiol 2025:10.1007/s10654-024-01195-5. [PMID: 39751701 DOI: 10.1007/s10654-024-01195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
INTRODUCTION Mastocytosis is a group of rare heterogeneous diseases with a prevalence previously found to be 10-23 per 100,000 persons. More awareness and improvements in the diagnostic methods in later years have led to more patients being diagnosed. Here, we set out to present the prevalence and incidence rate of mastocytosis among the adult Danish population. By merging data from the Danish National Patient Register, the Danish Pathology Register and the Danish Cancer Register we included all adult patients (≥ 18 years) diagnosed with mastocytosis in Denmark prior to 2022. A cohort of 1,594 patients with mastocytosis was identified. The prevalence of mastocytosis was 27.43 per 100,000 persons (95% confidence interval [CI]: 25.95-28.96) as of January 1, 2022, and the 25-year average incidence rate between 1997 and 2021 was 1.21 per 100,000 persons (95%CI: 1.02-1.40) with an increasing incidence rate since 2002. We found a higher prevalence of mastocytosis among adults in the Danish population than previously reported, and an increasing incidence rate during the last 20 years. Increased awareness of the disease and better diagnostic methods most likely contributed to this.
Collapse
Affiliation(s)
- Maren Poulsgaard Jørgensen
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark.
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Andreas Kiesbye Øvlisen
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Jonas Faartoft Jensen
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Tarec Christoffer El-Galaly
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Hanne Vestergaard
- Department of Hematology, Odense University Hospital, Odense, Denmark
- Mastocytosis Centre, Odense University Hospital (MastOUH), Odense University Hospital, Odense, Denmark
| | - Sigurd Broesby-Olsen
- Mastocytosis Centre, Odense University Hospital (MastOUH), Odense University Hospital, Odense, Denmark
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - Marianne Tang Severinsen
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
2
|
Sheikhi N, Bahraminejad M, Saeedi M, Mirfazli SS. A review: FDA-approved fluorine-containing small molecules from 2015 to 2022. Eur J Med Chem 2023; 260:115758. [PMID: 37657268 DOI: 10.1016/j.ejmech.2023.115758] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Fluorine-containing small molecules have occupied a special position in drug discovery research. The successful clinical use of fluorinated corticosteroids in the 1950s and fluoroquinolones in the 1980s led to an ever-increasing number of approved fluorinated compounds over the last 50 years. They have shown various biological properties such as antitumor, antimicrobial, and anti-inflammatory activities. Fluoro-pharmaceuticals have been considered a strong and practical tool in the rational drug design approach due to their benefits from potency and ADME (absorption, distribution, metabolism, and excretion) points of view. Herein, approved fluorinated drugs from 2015 to 2022 were reviewed.
Collapse
Affiliation(s)
- Negar Sheikhi
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Bahraminejad
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyedeh Sara Mirfazli
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Valent P, Akin C, Arock M, Gleixner KV, Greinix H, Hermine O, Horny HP, Ivanov D, Orfao A, Rabitsch W, Reiter A, Schulenburg A, Sotlar K, Sperr WR, Ustun C. Antibody-Based and Cell Therapies for Advanced Mastocytosis: Established and Novel Concepts. Int J Mol Sci 2023; 24:15125. [PMID: 37894806 PMCID: PMC10607143 DOI: 10.3390/ijms242015125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Advanced systemic mastocytosis (SM) is a heterogeneous group of myeloid neoplasms characterized by an uncontrolled expansion of mast cells (MC) in one or more internal organs, SM-induced tissue damage, and poor prognosis. Advanced SM can be categorized into aggressive SM (ASM), MC leukemia (MCL), and SM with an associated hematologic neoplasm (SM-AHN). In a vast majority of all patients, neoplastic cells display a KIT mutation, mostly D816V and rarely other KIT variants. Additional mutations in other target genes, such as SRSF2, ASXL1, or RUNX1, may also be identified, especially when an AHN is present. During the past 10 years, improved treatment approaches have led to a better quality of life and survival in patients with advanced SM. However, despite the availability of novel potent inhibitors of KIT D816V, not all patients enter remission and others relapse, often with a multi-mutated and sometimes KIT D816V-negative disease exhibiting multi-drug resistance. For these patients, (poly)chemotherapy, antibody-based therapies, and allogeneic hematopoietic stem cell transplantation may be viable treatment alternatives. In this article, we discuss treatment options for patients with drug-resistant advanced SM, including novel KIT-targeting drugs, antibody-based drugs, and stem cell-eradicating therapies.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, MI 48106, USA
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, Sorbonne University, 75013 Paris, France
| | - Karoline V. Gleixner
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hildegard Greinix
- Division of Hematology, Medical University of Graz, 8010 Graz, Austria
| | - Olivier Hermine
- Service d’Hématologie, Imagine Institute Université de Paris, INSERM U1163, Centre National de Référence des Mastocytoses, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians University, 80539 Munich, Germany
| | - Daniel Ivanov
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Alberto Orfao
- Servicio Central de Citometria, Centro de Investigacion del Cancer (IBMCC; CSIC/USAL) Instituto Biosanitario de Salamanca (IBSAL), CIBERONC and Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Werner Rabitsch
- Department of Internal Medicine I, Stem Cell Transplantation Unit, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, 68135 Mannheim, Germany
| | - Axel Schulenburg
- Department of Internal Medicine I, Stem Cell Transplantation Unit, Medical University of Vienna, 1090 Vienna, Austria
| | - Karl Sotlar
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Wolfgang R. Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Celalettin Ustun
- Department of Medicine, Division of Hematology, Oncology, and Cell Therapy, Coleman Foundation Blood and Marrow Transplant Center at Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Gotlib J, Schwaab J, Shomali W, George TI, Radia DH, Castells M, Carter MC, Hartmann K, Álvarez-Twose I, Brockow K, Bonadonna P, Hermine O, Niedoszytko M, Hoermann G, Sperr WR, Elberink HO, Siebenhaar F, Butterfield JH, Ustun C, Zanotti R, Triggiani M, Schwartz LB, Lyons JJ, Orfao A, Sotlar K, Horny HP, Arock M, Metcalfe DD, Akin C, Lübke J, Valent P, Reiter A. Proposed European Competence Network on Mastocytosis-American Initiative in Mast Cell Diseases (ECNM-AIM) Response Criteria in Advanced Systemic Mastocytosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2025-2038.e1. [PMID: 35724948 DOI: 10.1016/j.jaip.2022.05.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/18/2022]
Abstract
Advanced systemic mastocytosis (AdvSM) is characterized by the presence of KIT D816V and other somatic mutations (eg, in SRSF2, ASXL1, and RUNX1) in 95% and 60% to 70% of patients, respectively. The biological and clinical consequences of AdvSM include multilineage involvement (eg, associated hematologic neoplasm) in 60% to 80% of patients, variable infiltration and damage (C-findings) of predominantly bone marrow and visceral organs through affected mast cell (MC) and non-MC lineages, and elevated levels of serum tryptase. Recently, the treatment landscape has substantially changed with the introduction of the multikinase/KIT inhibitor midostaurin and the selective KIT D816V inhibitor avapritinib. In this review, we discuss the evolution of AdvSM response criteria that have been developed to better capture clinical benefit (eg, improved responses and progression-free and overall survival). We propose refined response criteria from European Competence Network on Mastocytosis and American Initiative in Mast Cell Diseases investigators that use a tiered approach to segregate the effects of histopathologic (eg, bone marrow MC burden, tryptase), molecular (eg, KIT D816V variant allele frequency), clinical (eg, C-findings), and symptom response on long-term outcomes. These response criteria require evaluation in future prospective clinical trials of selective KIT inhibitors and other novel agents.
Collapse
Affiliation(s)
- Jason Gotlib
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, Calif.
| | - Juliana Schwaab
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - William Shomali
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, Calif
| | - Tracy I George
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Deepti H Radia
- Department of Clinical Haematology, Guys and St Thomas' NHS Hospitals, London, United Kingdom
| | - Mariana Castells
- Division of Allergy and Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Melody C Carter
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Ivan Álvarez-Twose
- Instituto de Estudios de Mastocitosis de Castilla La Mancha and Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Hospital Virgen del Valle, Toledo, Spain
| | - Knut Brockow
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Olivier Hermine
- Imagine Institute Université de Paris, Sorbonne, INSERM U1163, Centre National de Référence des Mastocytoses, Hôpital Necker, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Gregor Hoermann
- MLL Munich Leukemia Laboratory, Munich, Germany; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang R Sperr
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Hanneke Oude Elberink
- Department of Allergology, University Medical Center Groningen and GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Frank Siebenhaar
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | | | - Celalettin Ustun
- Department of Medicine, Division of Hematology, Oncology, and Cell Therapy, Coleman Foundation Blood and Marrow Transplant Center at Rush University Medical Center, Chicago, Ill
| | - Roberta Zanotti
- Section of Hematology, Multidisciplinary Outpatients Clinics for Mastocytosis, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy
| | - Lawrence B Schwartz
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Immunology, Virginia Commonwealth University, Richmond, Va
| | - Jonathan J Lyons
- Translational Allergic Immunopathology Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alberto Orfao
- Servicio Central de Citometria (NUCLEUS), Instituto de Biología Molecular y Celular del Cáncer (IBMCC) Instituto Biosanitario de Salamanca, CIBERONC and Department of Medicine, University of Salamanca, Salamanca, Spain; Utah
| | - Karl Sotlar
- Institute of Pathology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, Pierre et Marie Curie University, Paris, France
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, Mich
| | - Johannes Lübke
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
5
|
Systemic Mastocytosis and Other Entities Involving Mast Cells: A Practical Review and Update. Cancers (Basel) 2022; 14:cancers14143474. [PMID: 35884535 PMCID: PMC9322501 DOI: 10.3390/cancers14143474] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
Evidence in the recent literature suggests that the presentation spectrum of mast cell neoplasms is broad. In this article, we elaborate on recent data pertaining to minor diagnostic criteria of systemic mastocytosis (SM), including sensitive testing methods for detection of activating mutations in the KIT gene or its variants, and adjusted serum tryptase levels in cases with hereditary α-tryptasemia. We also summarize entities that require differential diagnosis, such as the recently reclassified SM subtype named bone marrow mastocytosis, mast cell leukemia (an SM subtype that can be acute or chronic); the rare morphological variant of all SM subtypes known as well-differentiated systemic mastocytosis; the extremely rare myelomastocytic leukemia and its differentiating features from mast cell leukemia; and mast cell activation syndrome. In addition, we provide a concise clinical update of the latest adjusted risk stratification model incorporating genomic data to define prognosis in SM and new treatments that were approved for advanced SM (midostaurin, avapritinib).
Collapse
|
6
|
Valent P, Akin C, Hartmann K, Reiter A, Gotlib J, Sotlar K, Sperr WR, Degenfeld-Schonburg L, Smiljkovic D, Triggiani M, Horny HP, Arock M, Galli SJ, Metcalfe DD. Drug-Induced Mast Cell Eradication: A Novel Approach to Treat Mast Cell Activation Disorders? J Allergy Clin Immunol 2022; 149:1866-1874. [PMID: 35421448 DOI: 10.1016/j.jaci.2022.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
Mast cell activation is a key event in allergic reactions, other inflammatory states, and mast cell activation syndromes. Mast cell-stabilizing agents, mediator-targeting drugs and drugs interfering with mediator effects are often prescribed in these patients. However, the clinical efficacy of these drugs varies, depending on the numbers of involved mast cells and the underlying pathology. One straightforward approach would be to eradicate the primary target cell. However, to date, no mast cell-eradicating treatment approach has been developed for patients suffering from mast cell activation disorders. Nevertheless, recent data suggest that long-term treatment with agents that effectively inhibit KIT-function results in the virtual eradication of tissue mast cells and a sustained decrease in serum tryptase levels. In many of these patients, mast cell depletion is associated with a substantial improvement in mediator-induced symptoms. In patients with an underlying KIT D816V+ mastocytosis, such mast cell eradication requires an effective inhibitor of KIT D816V, such as avapritinib. However, the use of KIT inhibitors must be balanced against potential side effects. We here discuss mast cell-eradicating strategies in various disease models, the feasibility of this approach, available clinical data, and future prospects for the use of KIT-targeting drugs in mast cell activation disorders.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria.
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Switzerland; Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Germany
| | - Jason Gotlib
- Stanford Cancer Institute/Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| | - Karl Sotlar
- Institute of Pathology, Paracelsus Medical University Salzburg, Austria
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria
| | - Lina Degenfeld-Schonburg
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria
| | - Dubravka Smiljkovic
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Italy
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilian-University, Munich, Germany
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Charles-Foix Hospital, AP-HP Sorbonne University, Paris, France
| | - Stephen J Galli
- Department of Pathology, Department of Microbiology and Immunology, and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, MD, USA
| |
Collapse
|
7
|
Zimmermann N, Abonia JP, Dreskin SC, Akin C, Bolton S, Happel CS, Geller M, Larenas-Linnemann D, Nanda A, Peterson K, Wasan A, Wechsler J, Zhang S, Bernstein JA. Developing a standardized approach for assessing mast cells and eosinophils on tissue biopsies: A Work Group Report of the AAAAI Allergic Skin Diseases Committee. J Allergy Clin Immunol 2021; 148:964-983. [PMID: 34384610 DOI: 10.1016/j.jaci.2021.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Mast cells and eosinophils are commonly found, expectedly or unexpectedly, in human tissue biopsies. Although the clinical significance of their presence, absence, quantity, and quality continues to be investigated in homeostasis and disease, there are currently gaps in knowledge related to what constitutes quantitatively relevant increases in mast cell and eosinophil number in tissue specimens for several clinical conditions. Diagnostically relevant thresholds of mast cell and eosinophil numbers have been proposed and generally accepted by the medical community for a few conditions, such as systemic mastocytosis and eosinophilic esophagitis. However, for other mast cell- and eosinophil-associated disorders, broad discrepancies remain regarding diagnostic thresholds and how samples are processed, routinely and/or specially stained, and interpreted and/or reported by pathologists. These discrepancies can obfuscate or delay a patient's correct diagnosis. Therefore, a work group was assembled to review the literature and develop a standardized consensus for assessing the presence of mast cells and eosinophils for a spectrum of clinical conditions, including systemic mastocytosis and cutaneous mastocytosis, mast cell activation syndrome, eosinophilic esophagitis, eosinophilic gastritis/enteritis, and hypereosinophilia/hypereosinophilic syndrome. The intent of this work group is to build a consensus among pathology, allergy, dermatology, hematology/oncology, and gastroenterology stakeholders for qualitatively and quantitatively assessing mast cells and eosinophils in skin, gastrointestinal, and bone marrow pathologic specimens for the benefit of clinical practice and patients.
Collapse
Affiliation(s)
- Nives Zimmermann
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - J Pablo Abonia
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Stephen C Dreskin
- Division of Allergy and Immunology, Department of Internal Medicine, University of Colorado, Aurora, Colo
| | - Cem Akin
- Division of Allergy and Immunology, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich
| | - Scott Bolton
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio; Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Corinne S Happel
- Division of Allergy and Immunology, Department of Internal Medicine, John Hopkins School of Medicine, Baltimore, Md
| | - Mario Geller
- Department of Medicine, the Academy of Medicine of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Anil Nanda
- Asthma and Allergy Center, Lewisville, Tex; Asthma and Allergy Center, Flower Mound, Tex; Division of Allergy and Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Kathryn Peterson
- Division of Gastroenterology, Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Anita Wasan
- Division of Gastroenterology, Hepatology, and Nutrition, Allergy and Asthma Center, McLean, Va
| | - Joshua Wechsler
- Division of Allergy and Immunology, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill
| | - Simin Zhang
- Allergy Section, Division of Immunology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Jonathan A Bernstein
- Allergy Section, Division of Immunology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
8
|
Nintedanib targets KIT D816V neoplastic cells derived from induced pluripotent stem cells of systemic mastocytosis. Blood 2021; 137:2070-2084. [PMID: 33512435 DOI: 10.1182/blood.2019004509] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/08/2020] [Indexed: 01/10/2023] Open
Abstract
The KIT D816V mutation is found in >80% of patients with systemic mastocytosis (SM) and is key to neoplastic mast cell (MC) expansion and accumulation in affected organs. Therefore, KIT D816V represents a prime therapeutic target for SM. Here, we generated a panel of patient-specific KIT D816V induced pluripotent stem cells (iPSCs) from patients with aggressive SM and mast cell leukemia to develop a patient-specific SM disease model for mechanistic and drug-discovery studies. KIT D816V iPSCs differentiated into neoplastic hematopoietic progenitor cells and MCs with patient-specific phenotypic features, thereby reflecting the heterogeneity of the disease. CRISPR/Cas9n-engineered KIT D816V human embryonic stem cells (ESCs), when differentiated into hematopoietic cells, recapitulated the phenotype observed for KIT D816V iPSC hematopoiesis. KIT D816V causes constitutive activation of the KIT tyrosine kinase receptor, and we exploited our iPSCs and ESCs to investigate new tyrosine kinase inhibitors targeting KIT D816V. Our study identified nintedanib, a US Food and Drug Administration-approved angiokinase inhibitor that targets vascular endothelial growth factor receptor, platelet-derived growth factor receptor, and fibroblast growth factor receptor, as a novel KIT D816V inhibitor. Nintedanib selectively reduced the viability of iPSC-derived KIT D816V hematopoietic progenitor cells and MCs in the nanomolar range. Nintedanib was also active on primary samples of KIT D816V SM patients. Molecular docking studies show that nintedanib binds to the adenosine triphosphate binding pocket of inactive KIT D816V. Our results suggest nintedanib as a new drug candidate for KIT D816V-targeted therapy of advanced SM.
Collapse
|
9
|
Ruksha TG, Sergeeva EY, Fefelova YA, Khorzhevsky VA. [The significance of C-KIT gene mutations in the diagnosis and prognosis of malignant tumors]. Arkh Patol 2021; 83:61-68. [PMID: 34278763 DOI: 10.17116/patol20218304161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mutations in the C-KIT gene encoding type III receptor tyrosine kinase that regulates cellular processes, such as differentiation, survival, proliferation, migration, and apoptosis, are found in some neoplasms: gastrointestinal stromal tumor, mastocytosis, melanoma, breast carcinomas, myeloid leukemias, and a number of others. Tumors that exhibit these mutations are sensitive to therapy with tyrosine kinase inhibitors, which makes it necessary to correctly identify the mutation status by C-KIT in order to apply a personalized approach to therapy. This literature review shows that the type and localization of the C-KIT gene mutation are of crucial prognostic value and significance in choosing drugs for antitumor therapy, but traditional diagnostic methods fail to determine accurate mutation characteristics. Routine sequencing techniques focus on identifying the gene mutations associated with specific cellular processes, such as DNA damage and repair. The emergence of next-generation sequencing techniques has solved this problem, making it possible to fully analyze the genome of a malignant neoplasm, with constant screening for new mutations that appear as the tumor develops, affect the prognosis of the disease, and change its sensitivity to the antitumor therapy.
Collapse
Affiliation(s)
- T G Ruksha
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Health of Russia, Krasnoyarsk, Russia
| | - E Yu Sergeeva
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Health of Russia, Krasnoyarsk, Russia
| | - Yu A Fefelova
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Health of Russia, Krasnoyarsk, Russia
| | - V A Khorzhevsky
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Health of Russia, Krasnoyarsk, Russia
| |
Collapse
|
10
|
Pilla Reddy V, Anjum R, Grondine M, Smith A, Bhavsar D, Barry E, Guichard SM, Shao W, Kettle JG, Brown C, Banks E, Jones RDO. The Pharmacokinetic-Pharmacodynamic (PKPD) Relationships of AZD3229, a Novel and Selective Inhibitor of KIT, in a Range of Mouse Xenograft Models of GIST. Clin Cancer Res 2020; 26:3751-3759. [PMID: 32220888 DOI: 10.1158/1078-0432.ccr-19-2848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/15/2020] [Accepted: 03/23/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE The emergence of secondary mutations is a cause of resistance to current KIT inhibitors used in the treatment of patients with gastrointestinal stromal tumors (GIST). AZD3229 is a selective inhibitor of wild-type KIT and a wide spectrum of primary and secondary mutations seen in patients with GIST. The objective of this analysis is to establish the pharmacokinetic-pharmacodynamic (PKPD) relationship of AZD3229 in a range of mouse GIST tumor models harboring primary and secondary KIT mutations, and to benchmark AZD3229 against other KIT inhibitors. EXPERIMENTAL DESIGN A PKPD model was developed for AZD3229 linking plasma concentrations to inhibition of phosphorylated KIT using data generated from several in vivo preclinical tumor models, and in vitro data generated in a panel of Ba/F3 cell lines. RESULTS AZD3229 drives inhibition of phosphorylated KIT in an exposure-dependent manner, and optimal efficacy is observed when >90% inhibition of KIT phosphorylation is sustained over the dosing interval. Integrating the predicted human pharmacokinetics into the mouse PKPD model predicts that an oral twice daily human dose greater than 34 mg is required to ensure adequate coverage across the mutations investigated. Benchmarking shows that compared with standard-of-care KIT inhibitors, AZD3229 has the potential to deliver the required target coverage across a wider spectrum of primary or secondary mutations. CONCLUSIONS We demonstrate that AZD3229 warrants clinical investigation as a new treatment for patients with GIST based on its ability to inhibit both ATP-binding and A-loop mutations of KIT at clinically relevant exposures.
Collapse
Affiliation(s)
| | - Rana Anjum
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Michael Grondine
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Aaron Smith
- Research and Early Development, Oncology R&D, AstraZeneca, United Kingdom
| | - Deepa Bhavsar
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Evan Barry
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Sylvie M Guichard
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Wenlin Shao
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Jason G Kettle
- Research and Early Development, Oncology R&D, AstraZeneca, United Kingdom
| | - Crystal Brown
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Erica Banks
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Rhys D O Jones
- Research and Early Development, Oncology R&D, AstraZeneca, United Kingdom.
| |
Collapse
|
11
|
Brachet-Botineau M, Polomski M, Neubauer HA, Juen L, Hédou D, Viaud-Massuard MC, Prié G, Gouilleux F. Pharmacological Inhibition of Oncogenic STAT3 and STAT5 Signaling in Hematopoietic Cancers. Cancers (Basel) 2020; 12:E240. [PMID: 31963765 PMCID: PMC7016966 DOI: 10.3390/cancers12010240] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Signal Transducer and Activator of Transcription (STAT) 3 and 5 are important effectors of cellular transformation, and aberrant STAT3 and STAT5 signaling have been demonstrated in hematopoietic cancers. STAT3 and STAT5 are common targets for different tyrosine kinase oncogenes (TKOs). In addition, STAT3 and STAT5 proteins were shown to contain activating mutations in some rare but aggressive leukemias/lymphomas. Both proteins also contribute to drug resistance in hematopoietic malignancies and are now well recognized as major targets in cancer treatment. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations during the last decade. This review summarizes the current knowledge of oncogenic STAT3 and STAT5 functions in hematopoietic cancers as well as advances in preclinical and clinical development of pharmacological inhibitors.
Collapse
Affiliation(s)
- Marie Brachet-Botineau
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| | - Marion Polomski
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria;
| | - Ludovic Juen
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Damien Hédou
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Marie-Claude Viaud-Massuard
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Gildas Prié
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Fabrice Gouilleux
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| |
Collapse
|
12
|
Weiler CR, Austen KF, Akin C, Barkoff MS, Bernstein JA, Bonadonna P, Butterfield JH, Carter M, Fox CC, Maitland A, Pongdee T, Mustafa SS, Ravi A, Tobin MC, Vliagoftis H, Schwartz LB. AAAAI Mast Cell Disorders Committee Work Group Report: Mast cell activation syndrome (MCAS) diagnosis and management. J Allergy Clin Immunol 2019; 144:883-896. [DOI: 10.1016/j.jaci.2019.08.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022]
|
13
|
Obata Y, Hara Y, Shiina I, Murata T, Tasaki Y, Suzuki K, Ito K, Tsugawa S, Yamawaki K, Takahashi T, Okamoto K, Nishida T, Abe R. N822K- or V560G-mutated KIT activation preferentially occurs in lipid rafts of the Golgi apparatus in leukemia cells. Cell Commun Signal 2019; 17:114. [PMID: 31484543 PMCID: PMC6727407 DOI: 10.1186/s12964-019-0426-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Background KIT tyrosine kinase is expressed in mast cells, interstitial cells of Cajal, and hematopoietic cells. Permanently active KIT mutations lead these host cells to tumorigenesis, and to such diseases as mast cell leukemia (MCL), gastrointestinal stromal tumor (GIST), and acute myeloid leukemia (AML). Recently, we reported that in MCL, KIT with mutations (D816V, human; D814Y, mouse) traffics to endolysosomes (EL), where it can then initiate oncogenic signaling. On the other hand, KIT mutants including KITD814Y in GIST accumulate on the Golgi, and from there, activate downstream. KIT mutations, such as N822K, have been found in 30% of core binding factor-AML (CBF-AML) patients. However, how the mutants are tyrosine-phosphorylated and where they activate downstream molecules remain unknown. Moreover, it is unclear whether a KIT mutant other than KITD816V in MCL is able to signal on EL. Methods We used leukemia cell lines, such as Kasumi-1 (KITN822K, AML), SKNO-1 (KITN822K, AML), and HMC-1.1 (KITV560G, MCL), to explore how KIT transduces signals in these cells and to examine the signal platform for the mutants using immunofluorescence microscopy and inhibition of intracellular trafficking. Results In AML cell lines, KITN822K aberrantly localizes to EL. After biosynthesis, KIT traffics to the cell surface via the Golgi and immediately migrates to EL through endocytosis in a manner dependent on its kinase activity. However, results of phosphorylation imaging show that KIT is preferentially activated on the Golgi. Indeed, blockade of KITN822K migration to the Golgi with BFA/M-COPA inhibits the activation of KIT downstream molecules, such as AKT, ERK, and STAT5, indicating that KIT signaling occurs on the Golgi. Moreover, lipid rafts in the Golgi play a role in KIT signaling. Interestingly, KITV560G in HMC-1.1 migrates and activates downstream in a similar manner to KITN822K in Kasumi-1. Conclusions In AML, KITN822K mislocalizes to EL. Our findings, however, suggest that the mutant transduces phosphorylation signals on lipid rafts of the Golgi in leukemia cells. Unexpectedly, the KITV560G signal platform in MCL is similar to that of KITN822K in AML. These observations provide new insights into the pathogenic role of KIT mutants as well as that of other mutant molecules. Electronic supplementary material The online version of this article (10.1186/s12964-019-0426-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuuki Obata
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba, 278-0022, Japan. .,Division of Cancer Differentiation, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, 104-0045, Tokyo, Japan.
| | - Yasushi Hara
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba, 278-0022, Japan
| | - Isamu Shiina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Takatsugu Murata
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Yasutaka Tasaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Kyohei Suzuki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Keiichi Ito
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Shou Tsugawa
- Division of Cancer Differentiation, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, 104-0045, Tokyo, Japan.,Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Kouhei Yamawaki
- Division of Cancer Differentiation, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, 104-0045, Tokyo, Japan
| | - Tsuyoshi Takahashi
- Department of Surgery, Osaka University, Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Koji Okamoto
- Division of Cancer Differentiation, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, 104-0045, Tokyo, Japan
| | - Toshirou Nishida
- National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, 104-0045, Tokyo, Japan
| | - Ryo Abe
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba, 278-0022, Japan. .,SIRC, Teikyo University, Itabashi-ku 2-11-1, Itabashi-ku, 173-8605, Tokyo, Japan.
| |
Collapse
|
14
|
Shraim AS, Hunaiti A, Awidi A, Alshaer W, Ababneh NA, Abu-Irmaileh B, Odeh F, Ismail S. Developing and Characterization of Chemically Modified RNA Aptamers for Targeting Wild Type and Mutated c-KIT Receptor Tyrosine Kinases. J Med Chem 2019; 63:2209-2228. [PMID: 31369705 DOI: 10.1021/acs.jmedchem.9b00868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The c-KIT receptor represents an attractive target for cancer therapy. Aptamers are emerging as a new promising class of nucleic acid therapeutics. In this study, a conventional SELEX approach was applied against the kinase domain of a group of c-KIT proteins (c-KITWT, c-KITD816V, and c-KITD816H) to select aptamers from a random RNA pool that can bind to the kinase domain of each target with high affinity and can selectively interfere with their kinase activities. Interestingly, our data indicated that one candidate aptamer, called V15, can specifically inhibit the in vitro kinase activity of mutant c-KITD816V with an IC50 value that is 9-fold more potent than the sunitinib drug tested under the same conditions. Another aptamer, named as H5/V36, showed the potential to distinguish between the c-KIT kinases by modulating the phosphorylation activity of each in a distinct mechanism of action and in a different potency.
Collapse
Affiliation(s)
- Ala'a S Shraim
- Department of Biological Sciences, School of Science, The University of Jordan, Amman JO 11942, Jordan.,Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman JO 19328, Jordan
| | - Abdelrahim Hunaiti
- Department of Clinical Laboratory Sciences, School of Science, The University of Jordan, Amman JO 11942, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman JO 11942, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman JO 11942, Jordan
| | - Nidaa A Ababneh
- Cell Therapy Center, The University of Jordan, Amman JO 11942, Jordan
| | - Bashaer Abu-Irmaileh
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman JO 11942, Jordan
| | - Fadwa Odeh
- Department of Chemistry, School of Science, The University of Jordan, Amman JO 11942, Jordan
| | - Said Ismail
- Department of Biochemistry and Physiology, School of Medicine, The University of Jordan, Amman JO 11942, Jordan.,Qatar Genome Project, Qatar Foundation, Doha, Qatar
| |
Collapse
|
15
|
Gilreath JA, Tchertanov L, Deininger MW. Novel approaches to treating advanced systemic mastocytosis. Clin Pharmacol 2019; 11:77-92. [PMID: 31372066 PMCID: PMC6630092 DOI: 10.2147/cpaa.s206615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022] Open
Abstract
Mastocytosis is a myeloproliferative neoplasm characterized by expansion of abnormal mast cells (MCs) in various tissues, including skin, bone marrow, gastrointestinal tract, liver, spleen, or lymph nodes. Subtypes include indolent systemic mastocytosis, smoldering systemic mastocytosis and advanced systemic mastocytosis (AdvSM), a term collectively used for the three most aggressive forms of the disease: aggressive systemic mastocytosis, mast cell leukemia, and systemic mastocytosis with an associated clonal hematological non-mast cell disease (SM-AHNMD). MC activation and proliferation is physiologically controlled in part through stem cell factor (SCF) binding to its cognate receptor, KIT. Gain-of-function KIT mutations that lead to ligand-independent kinase activation are found in most SM subtypes, and the overwhelming majority of AdvSM patients harbor the KITD816V mutation. Several approved tyrosine kinase inhibitors (TKIs), such as imatinib and nilotinib, have activity against wild-type KIT but lack activity against KITD816V. Midostaurin, a broad spectrum TKI with activity against KITD816V, has a 60% clinical response rate, and is currently the only drug specifically approved for AdvSM. While this agent improves the prognosis of AdvSM patients and provides proof of principle for targeting KITD816V as a driver mutation, most responses are partial and/or not sustained, indicating that more potent and/or specific inhibitors are required. Avapritinib, a KIT and PDGFRα inhibitor, was specifically designed to inhibit KITD816V. Early results from a Phase 1 trial suggest that avapritinib has potent antineoplastic activity in AdvSM, extending to patients who failed midostaurin. Patients exhibited a rapid reduction in both symptoms as well as reductions of bone marrow MCs, serum tryptase, and KITD816V mutant allele burden. Adverse effects include expected toxicities such as myelosuppression and periorbital edema, but also cognitive impairment in some patients. Although considerable excitement about avapritinib exists, more data are needed to assess long-term responses and adverse effects of this novel TKI.
Collapse
Affiliation(s)
- J A Gilreath
- Department of Pharmacotherapy, College of Pharmacy and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - L Tchertanov
- Centre de Mathématiques et de Leurs Applications (CMLA-CNRS), ENS Paris-Saclay, Cachan 94235, France
| | - M W Deininger
- Division of Hematology and Hematologic Malignancies and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
16
|
Mughal TI, Pemmaraju N, Radich JP, Deininger MW, Kucine N, Kiladjian JJ, Bose P, Gotlib J, Valent P, Chen CC, Barbui T, Rampal R, Verstovsek S, Koschmieder S, Saglio G, Van Etten RA. Emerging translational science discoveries, clonal approaches, and treatment trends in chronic myeloproliferative neoplasms. Hematol Oncol 2019; 37:240-252. [PMID: 31013548 DOI: 10.1002/hon.2622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 12/19/2022]
Abstract
The 60th American Society of Hematology (ASH) held in San Diego in December 2018 was followed by the 13th Post-ASH chronic myeloproliferative neoplasms (MPNs) workshop on December 4 and 5, 2018. This closed annual workshop, first introduced in 2006 by Goldman and Mughal, was organized in collaboration with Alpine Oncology Foundation and allowed experts in preclinical and clinical research in the chronic MPNs to discuss the current scenario, including relevant presentations at ASH, and address pivotal open questions that impact translational research and clinical management. This review is based on the presentations and deliberations at this workshop, and rather than provide a resume of the proceedings, we have selected some of the important translational science and treatment issues that require clarity. We discuss the experimental and observational evidence to support the intimate interaction between aging, inflammation, and clonal evolution of MPNs, the clinical impact of the unfolding mutational landscape on the emerging targets and treatment of MPNs, new methods to detect clonal heterogeneity, the challenges in managing childhood and adolescent MPN, and reflect on the treatment of systemic mastocytosis (SM) following the licensing of midostaurin.
Collapse
Affiliation(s)
- Tariq I Mughal
- Division of Hematology-Oncology, Tufts University Cancer Center, Boston, Massachusetts
| | - Naveen Pemmaraju
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jerald P Radich
- Fred Hutch Cancer Research Center, Fred Hutchinson Cancer Center, Seattle, Washington
| | | | - Nicole Kucine
- Division of Pediatric Hematology, Weill Cornell Medicine, New York, New York
| | | | - Prithviraj Bose
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Gotlib
- Division of Hematology, Stanford Cancer Institute, Stanford, California
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Chih-Cheng Chen
- Chang-Gung Memorial Hospital, Chiayi; College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Tiziano Barbui
- Foundation for Clinical Research (FROM), Papa Giovanni XXIIII Hospital, Bergamo, Italy
| | - Raajit Rampal
- Division of Hematology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Srdan Verstovsek
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steffen Koschmieder
- Department of Medicine IV, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Giuseppe Saglio
- Divison of Hematology, Orbassano University Hospital, Turin, Italy
| | - Richard A Van Etten
- Division of Hematology-Oncology, University of California Irvine, Irvine, California
| |
Collapse
|
17
|
Valent P, Akin C, Gleixner KV, Sperr WR, Reiter A, Arock M, Triggiani M. Multidisciplinary Challenges in Mastocytosis and How to Address with Personalized Medicine Approaches. Int J Mol Sci 2019; 20:E2976. [PMID: 31216696 PMCID: PMC6627900 DOI: 10.3390/ijms20122976] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/05/2019] [Accepted: 06/16/2019] [Indexed: 12/27/2022] Open
Abstract
Mastocytosis is a hematopoietic neoplasm defined by abnormal expansion and focal accumulation of clonal tissue mast cells in various organ-systems. The disease exhibits a complex pathology and an equally complex clinical behavior. The classification of the World Health Organization (WHO) divides mastocytosis into cutaneous forms, systemic variants, and localized mast cell tumors. In >80% of patients with systemic mastocytosis (SM), a somatic point mutation in KIT at codon 816 is found. Whereas patients with indolent forms of the disease have a normal or near-normal life expectancy, patients with advanced mast cell neoplasms, including aggressive SM and mast cell leukemia, have a poor prognosis with short survival times. In a majority of these patients, multiple somatic mutations and/or an associated hematologic neoplasm, such as a myeloid leukemia, may be detected. Independent of the category of mastocytosis and the serum tryptase level, patients may suffer from mediator-related symptoms and/or osteopathy. Depending on the presence of co-morbidities, the symptomatology in such patients may be mild, severe or even life-threatening. Most relevant co-morbidities in such patients are IgE-dependent allergies, psychiatric, psychological or mental problems, and vitamin D deficiency. The diagnosis and management of mastocytosis is an emerging challenge in clinical practice and requires vast knowledge, a multidisciplinary approach, and personalized medicine procedures. In this article, the current knowledge about mastocytosis is reviewed with special emphasis on the multidisciplinary aspects of the disease and related challenges in daily practice.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria.
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, MI 48106, USA.
| | - Karoline V Gleixner
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria.
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria.
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Andreas Reiter
- III. Medizinische Klinik, Universitätsmedizin Mannheim, 68167 Mannheim, Germany.
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, Pierre et Marie Curie University (UPMC), 75005 Paris, France.
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, 84131 Salerno, Italy.
| |
Collapse
|