1
|
Roos J, Zinngrebe J, Huber-Lang M, Lupu L, Schmidt MA, Strobel H, Westhoff MA, Stifel U, Gebhard F, Wabitsch M, Mollnes TE, Debatin KM, Halbgebauer R, Fischer-Posovszky P. Trauma-associated extracellular histones mediate inflammation via a MYD88-IRAK1-ERK signaling axis and induce lytic cell death in human adipocytes. Cell Death Dis 2024; 15:285. [PMID: 38653969 PMCID: PMC11039744 DOI: 10.1038/s41419-024-06676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Despite advances in the treatment and care of severe physical injuries, trauma remains one of the main reasons for disability-adjusted life years worldwide. Trauma patients often suffer from disturbances in energy utilization and metabolic dysfunction, including hyperglycemia and increased insulin resistance. White adipose tissue plays an essential role in the regulation of energy homeostasis and is frequently implicated in traumatic injury due to its ubiquitous body distribution but remains poorly studied. Initial triggers of the trauma response are mainly damage-associated molecular patterns (DAMPs) such as histones. We hypothesized that DAMP-induced adipose tissue inflammation contributes to metabolic dysfunction in trauma patients. Therefore, we investigated whether histone release during traumatic injury affects adipose tissue. Making use of a murine polytrauma model with hemorrhagic shock, we found increased serum levels of histones accompanied by an inflammatory response in white adipose tissue. In vitro, extracellular histones induced an inflammatory response in human adipocytes. On the molecular level, this inflammatory response was mediated via a MYD88-IRAK1-ERK signaling axis as demonstrated by pharmacological and genetic inhibition. Histones also induced lytic cell death executed independently of caspases and RIPK1 activity. Importantly, we detected increased histone levels in the bloodstream of patients after polytrauma. Such patients might benefit from a therapy consisting of activated protein C and the FDA-approved ERK inhibitor trametinib, as this combination effectively prevented histone-mediated effects on both, inflammatory gene activation and cell death in adipocytes. Preventing adipose tissue inflammation and adipocyte death in patients with polytrauma could help minimize posttraumatic metabolic dysfunction.
Collapse
Affiliation(s)
- Julian Roos
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Julia Zinngrebe
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Medical Center, Ulm, Germany
| | - Ludmila Lupu
- Institute of Clinical and Experimental Trauma Immunology, University Medical Center, Ulm, Germany
| | - Miriam A Schmidt
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Hannah Strobel
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Ulrich Stifel
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Florian Gebhard
- Department of Orthopedic Trauma, Hand, and Reconstructive Surgery, University Medical Center, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital Trust, Bodo, Norway
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, University Medical Center, Ulm, Germany
| | | |
Collapse
|
2
|
Bode C, Weis S, Sauer A, Wendel-Garcia P, David S. Targeting the host response in sepsis: current approaches and future evidence. Crit Care 2023; 27:478. [PMID: 38057824 PMCID: PMC10698949 DOI: 10.1186/s13054-023-04762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
Sepsis, a dysregulated host response to infection characterized by organ failure, is one of the leading causes of death worldwide. Disbalances of the immune response play an important role in its pathophysiology. Patients may develop simultaneously or concomitantly states of systemic or local hyperinflammation and immunosuppression. Although a variety of effective immunomodulatory treatments are generally available, attempts to inhibit or stimulate the immune system in sepsis have failed so far to improve patients' outcome. The underlying reason is likely multifaceted including failure to identify responders to a specific immune intervention and the complex pathophysiology of organ dysfunction that is not exclusively caused by immunopathology but also includes dysfunction of the coagulation system, parenchymal organs, and the endothelium. Increasing evidence suggests that stratification of the heterogeneous population of septic patients with consideration of their host response might led to treatments that are more effective. The purpose of this review is to provide an overview of current studies aimed at optimizing the many facets of host response and to discuss future perspectives for precision medicine approaches in sepsis.
Collapse
Affiliation(s)
- Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Sebastian Weis
- Institute for Infectious Disease and Infection Control, University Hospital Jena, Friedrich-Schiller University Jena, Jena, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Friedrich-Schiller University Jena, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll Institute-HKI, Jena, Germany
| | - Andrea Sauer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Pedro Wendel-Garcia
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Marques A, Torre C, Pinto R, Sepodes B, Rocha J. Treatment Advances in Sepsis and Septic Shock: Modulating Pro- and Anti-Inflammatory Mechanisms. J Clin Med 2023; 12:2892. [PMID: 37109229 PMCID: PMC10142733 DOI: 10.3390/jcm12082892] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Sepsis is currently defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection, and it affects over 25 million people every year. Even more severe, septic shock is a subset of sepsis defined by persistent hypotension, and hospital mortality rates are higher than 40%. Although early sepsis mortality has greatly improved in the past few years, sepsis patients who survive the hyperinflammation and subsequent organ damage often die from long-term complications, such as secondary infection, and despite decades of clinical trials targeting this stage of the disease, currently, no sepsis-specific therapies exist. As new pathophysiological mechanisms have been uncovered, immunostimulatory therapy has emerged as a promising path forward. Highly investigated treatment strategies include cytokines and growth factors, immune checkpoint inhibitors, and even cellular therapies. There is much to be learned from related illnesses, and immunotherapy trials in oncology, as well as the recent COVID-19 pandemic, have greatly informed sepsis research. Although the journey ahead is a long one, the stratification of patients according to their immune status and the employment of combination therapies represent a hopeful way forward.
Collapse
Affiliation(s)
- Adriana Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.M.); (C.T.); (R.P.); (B.S.)
| | - Carla Torre
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.M.); (C.T.); (R.P.); (B.S.)
| | - Rui Pinto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.M.); (C.T.); (R.P.); (B.S.)
- Joaquim Chaves Saúde, Joaquim Chaves Laboratório de Análises Clínicas, Miraflores, 1495-069 Algés, Portugal
| | - Bruno Sepodes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.M.); (C.T.); (R.P.); (B.S.)
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.M.); (C.T.); (R.P.); (B.S.)
| |
Collapse
|
4
|
Ding X, Kambara H, Guo R, Kanneganti A, Acosta-Zaldívar M, Li J, Liu F, Bei T, Qi W, Xie X, Han W, Liu N, Zhang C, Zhang X, Yu H, Zhao L, Ma F, Köhler JR, Luo HR. Inflammasome-mediated GSDMD activation facilitates escape of Candida albicans from macrophages. Nat Commun 2021; 12:6699. [PMID: 34795266 PMCID: PMC8602704 DOI: 10.1038/s41467-021-27034-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is the most common cause of fungal sepsis. Inhibition of inflammasome activity confers resistance to polymicrobial and LPS-induced sepsis; however, inflammasome signaling appears to protect against C. albicans infection, so inflammasome inhibitors are not clinically useful for candidiasis. Here we show disruption of GSDMD, a known inflammasome target and key pyroptotic cell death mediator, paradoxically alleviates candidiasis, improving outcomes and survival of Candida-infected mice. Mechanistically, C. albicans hijacked the canonical inflammasome-GSDMD axis-mediated pyroptosis to promote their escape from macrophages, deploying hyphae and candidalysin, a pore-forming toxin expressed by hyphae. GSDMD inhibition alleviated candidiasis by preventing C. albicans escape from macrophages while maintaining inflammasome-dependent but GSDMD-independent IL-1β production for anti-fungal host defenses. This study demonstrates key functions for GSDMD in Candida's escape from host immunity in vitro and in vivo and suggests that GSDMD may be a potential therapeutic target in C. albicans-induced sepsis.
Collapse
Affiliation(s)
- Xionghui Ding
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
- Department of Burn and Plastic Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Hiroto Kambara
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
| | - Rongxia Guo
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS Key laboratory for prevention and control of hematological disease treatment related infection, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Apurva Kanneganti
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
| | - Maikel Acosta-Zaldívar
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Jiajia Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS Key laboratory for prevention and control of hematological disease treatment related infection, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Fei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS Key laboratory for prevention and control of hematological disease treatment related infection, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Ting Bei
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
| | - Wanjun Qi
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Xuemei Xie
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
| | - Wenli Han
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
| | - Ningning Liu
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Cunling Zhang
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
| | - Xiaoyu Zhang
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
| | - Hongbo Yu
- VA Boston Healthcare System, Department of Pathology and Laboratory Medicine, 1400 VFW Parkway West Roxbury, Boston, MA, 02132, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Li Zhao
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
| | - Fengxia Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS Key laboratory for prevention and control of hematological disease treatment related infection, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Julia R Köhler
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Hongbo R Luo
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Juffermans NP, van den Brom CE, Kleinveld DJB. Targeting Endothelial Dysfunction in Acute Critical Illness to Reduce Organ Failure. Anesth Analg 2020; 131:1708-1720. [PMID: 33186159 DOI: 10.1213/ane.0000000000005023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During hyperinflammatory conditions that can occur in acute critical illness, such as shock or hypoperfusion, inflammatory mediators activate the endothelium, fueling a proinflammatory host-response as well as procoagulant processes. These changes result in shedding of the glycocalyx, endothelial hyperpermeability, edema formation, and lead to disturbed microcirculatory perfusion and organ failure. Different fluid strategies that are used in shock may have differential effects on endothelial integrity. Collectively, low protein content fluids seem to have negative effects on the endothelial glycocalyx, aggravating endothelial hyperpermeability, whereas fluids containing albumin or plasma proteins may be superior to normal saline in protecting the glycocalyx and endothelial barrier function. Targeting the endothelium may be a therapeutic strategy to limit organ failure, which hitherto has not received much attention. Treatment targets aimed at restoring the endothelium should focus on maintaining glycocalyx function and/or targeting coagulation pathways or specific endothelial receptors. Potential treatments could be supplementing glycocalyx constituents or inhibiting glycocalyx breakdown. In this review, we summarize mechanisms of endothelial dysfunction during acute critical illness, such as the systemic inflammatory response, shedding of the glycocalyx, endothelial activation, and activation of coagulation. In addition, this review focuses on the effects of different fluid strategies on endothelial permeability. Also, potential mechanisms for treatment options to reduce endothelial hyperpermeability with ensuing organ failure are evaluated. Future research is needed to elucidate these pathways and to translate these data to the first human safety and feasibility trials.
Collapse
Affiliation(s)
- Nicole P Juffermans
- From the Department of Intensive Care, Onze Lieve Vrouwe Gasthuis, Amsterdam, the Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Charissa E van den Brom
- Department of Anesthesiology, Amsterdam UMC, VU Amsterdam, Amsterdam, the Netherlands.,Experimental Laboratory for Vital Signs, Amsterdam UMC, VU Amsterdam, Amsterdam, the Netherlands
| | - Derek J B Kleinveld
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Endothelial Injury and Glycocalyx Degradation in Critically Ill Coronavirus Disease 2019 Patients: Implications for Microvascular Platelet Aggregation. Crit Care Explor 2020; 2:e0194. [PMID: 32904031 PMCID: PMC7449254 DOI: 10.1097/cce.0000000000000194] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objectives Coronavirus disease 2019 is caused by the novel severe acute respiratory syndrome coronavirus 2 virus. Patients admitted to the ICU suffer from microvascular thrombosis, which may contribute to mortality. Our aim was to profile plasma thrombotic factors and endothelial injury markers in critically ill coronavirus disease 2019 ICU patients to help understand their thrombotic mechanisms. Design Daily blood coagulation and thrombotic factor profiling with immunoassays and in vitro experiments on human pulmonary microvascular endothelial cells. Setting Tertiary care ICU and academic laboratory. Subjects All patients admitted to the ICU suspected of being infected with severe acute respiratory syndrome coronavirus 2, using standardized hospital screening methodologies, had daily blood samples collected until testing was confirmed coronavirus disease 2019 negative on either ICU day 3 or ICU day 7 if the patient was coronavirus disease 2019 positive. Interventions None. Measurement and Main Results Age- and sex-matched healthy control subjects and ICU patients that were either coronavirus disease 2019 positive or coronavirus disease 2019 negative were enrolled. Cohorts were well balanced with the exception that coronavirus disease 2019 positive patients were more likely than coronavirus disease 2019 negative patients to suffer bilateral pneumonia. Mortality rate for coronavirus disease 2019 positive ICU patients was 40%. Compared with healthy control subjects, coronavirus disease 2019 positive patients had higher plasma von Willebrand factor (p < 0.001) and glycocalyx-degradation products (chondroitin sulfate and syndecan-1; p < 0.01). When compared with coronavirus disease 2019 negative patients, coronavirus disease 2019 positive patients had persistently higher soluble P-selectin, hyaluronic acid, and syndecan-1 (p < 0.05), particularly on ICU day 3 and thereafter. Thrombosis profiling on ICU days 1-3 predicted coronavirus disease 2019 status with 85% accuracy and patient mortality with 86% accuracy. Surface hyaluronic acid removal from human pulmonary microvascular endothelial cells with hyaluronidase treatment resulted in depressed nitric oxide, an instigating mechanism for platelet adhesion to the microvascular endothelium. Conclusions Thrombosis profiling identified endothelial activation and glycocalyx degradation in coronavirus disease 2019 positive patients. Our data suggest that medications to protect and/or restore the endothelial glycocalyx, as well as platelet inhibitors, should be considered for further study.
Collapse
|
7
|
Lasola JJM, Kamdem H, McDaniel MW, Pearson RM. Biomaterial-Driven Immunomodulation: Cell Biology-Based Strategies to Mitigate Severe Inflammation and Sepsis. Front Immunol 2020; 11:1726. [PMID: 32849612 PMCID: PMC7418829 DOI: 10.3389/fimmu.2020.01726] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammation is an essential component of a wide variety of disease processes and oftentimes can increase the deleterious effects of a disease. Finding ways to modulate this essential immune process is the basis for many therapeutics under development and is a burgeoning area of research for both basic and translational immunology. In addition to developing therapeutics for cellular and molecular targets, the use of biomaterials to modify innate and adaptive immune responses is an area that has recently sparked significant interest. In particular, immunomodulatory activity can be engineered into biomaterials to elicit heightened or dampened immune responses for use in vaccines, immune tolerance, or anti-inflammatory applications. Importantly, the inherent physicochemical properties of the biomaterials play a significant role in determining the observed effects. Properties including composition, molecular weight, size, surface charge, and others affect interactions with immune cells (i.e., nano-bio interactions) and allow for differential biological responses such as activation or inhibition of inflammatory signaling pathways, surface molecule expression, and antigen presentation to be encoded. Numerous opportunities to open new avenues of research to understand the ways in which immune cells interact with and integrate information from their environment may provide critical solutions needed to treat a variety of disorders and diseases where immune dysregulation is a key inciting event. However, to elicit predictable immune responses there is a great need for a thorough understanding of how the biomaterial properties can be tuned to harness a designed immunological outcome. This review aims to systematically describe the biological effects of nanoparticle properties-separate from additional small molecule or biologic delivery-on modulating innate immune cell responses in the context of severe inflammation and sepsis. We propose that nanoparticles represent a potential polypharmacological strategy to simultaneously modify multiple aspects of dysregulated immune responses where single target therapies have fallen short for these applications. This review intends to serve as a resource for immunology labs and other associated fields that would like to apply the growing field of rationally designed biomaterials into their work.
Collapse
Affiliation(s)
- Jackline Joy Martín Lasola
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Henry Kamdem
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Michael W. McDaniel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Ryan M. Pearson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Britton GW, Babcock C, Colombo CJ. All Organ Dysfunctions Are Equal…But Some Are More Equal Than Others. Crit Care Med 2019; 46:818-819. [PMID: 29652709 DOI: 10.1097/ccm.0000000000003042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Garrett W Britton
- Department of Medicine, Critical Care Section, Walter Reed National Military Medical Center, Bethesda, MD Department of Medicine, Critical Care Section, Dwight David Eisenhower Army Medical Center, Fort Gordon, GA
| | | | | |
Collapse
|
9
|
Abstract
Proteases drive the life cycle of all proteins, ensuring the transportation and activation of newly minted, would-be proteins into their functional form while recycling spent or unneeded proteins. Far from their image as engines of protein digestion, proteases play fundamental roles in basic physiology and regulation at multiple levels of systems biology. Proteases are intimately associated with disease and modulation of proteolytic activity is the presumed target for successful therapeutics. "Proteases: Pivot Points in Functional Proteomics" examines the crucial roles of proteolysis across a wide range of physiological processes and diseases. The existing and potential impacts of proteolysis-related activity on drug and biomarker development are presented in detail. All told the decisive roles of proteases in four major categories comprising 23 separate subcategories are addressed. Within this construct, 15 sets of subject-specific, tabulated data are presented that include identification of proteases, protease inhibitors, substrates, and their actions. Said data are derived from and confirmed by over 300 references. Cross comparison of datasets indicates that proteases, their inhibitors/promoters and substrates intersect over a range of physiological processes and diseases, both chronic and pathogenic. Indeed, "Proteases: Pivot Points …" closes by dramatizing this very point through association of (pro)Thrombin and Fibrin(ogen) with: hemostasis, innate immunity, cardiovascular and metabolic disease, cancer, neurodegeneration, and bacterial self-defense.
Collapse
Affiliation(s)
- Ingrid M Verhamme
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Sarah E Leonard
- Chemical and Biomolecular Engineering, University of Illinois Champaign-Urbana School of Chemical Sciences, Champaign, IL, USA
| | - Ray C Perkins
- New Liberty Proteomics Corporation, New Liberty, KY, USA.
| |
Collapse
|
10
|
Del Carmen S, Hapak SM, Ghosh S, Rothlin CV. Coagulopathies and inflammatory diseases: '…glimpse of a Snark'. Curr Opin Immunol 2018; 55:44-53. [PMID: 30268838 DOI: 10.1016/j.coi.2018.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/10/2018] [Indexed: 11/18/2022]
Abstract
Coagulopathies and inflammatory diseases, ostensibly, have distinct underlying molecular bases. Notwithstanding, both are host defense mechanisms to physical injury. In invertebrates, clotting can function directly in anti-pathogen defense. Molecules of the vertebrate clotting cascade have also been directly linked to the regulation of inflammation. We posit that thrombophilia may provide resistance against pathogens in vertebrates. The selective pressure of improved anti-pathogen defense may have retained mutations associated with a thrombophilic state in the human population and directly contributed to enhanced inflammation. Indeed, in some inflammatory diseases, at least a subset of patients can be identified as hypercoagulable. Therefore, anticoagulants such as warfarin or apixaban may have a therapeutic role in some inflammatory diseases.
Collapse
Affiliation(s)
- Silvina Del Carmen
- Department of Immunobiology, School of Medicine, Yale University, 300 Cedar Street, New Haven, CT 06520, United States
| | - Sophie M Hapak
- Department of Medicine, School of Medicine, University of Minnesota, 401 East River Parkway, Minneapolis, MN 55455, United States
| | - Sourav Ghosh
- Department of Neurology, School of Medicine, Yale University, 15 York Street, New Haven, CT 06510, United States; Department of Pharmacology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, United States.
| | - Carla V Rothlin
- Department of Immunobiology, School of Medicine, Yale University, 300 Cedar Street, New Haven, CT 06520, United States; Department of Pharmacology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, United States.
| |
Collapse
|
11
|
Kumar V. Dendritic cells in sepsis: Potential immunoregulatory cells with therapeutic potential. Mol Immunol 2018; 101:615-626. [DOI: 10.1016/j.molimm.2018.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 12/13/2022]
|
12
|
Abstract
For more than two decades, sepsis was defined as a microbial infection that produces fever (or hypothermia), tachycardia, tachypnoea and blood leukocyte changes. Sepsis is now increasingly being considered a dysregulated systemic inflammatory and immune response to microbial invasion that produces organ injury for which mortality rates are declining to 15-25%. Septic shock remains defined as sepsis with hyperlactataemia and concurrent hypotension requiring vasopressor therapy, with in-hospital mortality rates approaching 30-50%. With earlier recognition and more compliance to best practices, sepsis has become less of an immediate life-threatening disorder and more of a long-term chronic critical illness, often associated with prolonged inflammation, immune suppression, organ injury and lean tissue wasting. Furthermore, patients who survive sepsis have continuing risk of mortality after discharge, as well as long-term cognitive and functional deficits. Earlier recognition and improved implementation of best practices have reduced in-hospital mortality, but results from the use of immunomodulatory agents to date have been disappointing. Similarly, no biomarker can definitely diagnose sepsis or predict its clinical outcome. Because of its complexity, improvements in sepsis outcomes are likely to continue to be slow and incremental.
Collapse
Affiliation(s)
- Richard S Hotchkiss
- Department of Anesthesiology, Washington University of St. Louis, St. Louis, Missouri, USA
| | - Lyle L Moldawer
- Department of Surgery, University of Florida College of Medicine, Shands Hospital, Room 6116, 1600 SW Archer Road, Gainesville, Florida 32610-0019, USA
| | - Steven M Opal
- Department of Infectious Diseases and Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Konrad Reinhart
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Jena, Germany
| | - Isaiah R Turnbull
- Department of Anesthesiology, Washington University of St. Louis, St. Louis, Missouri, USA
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
13
|
Gene control of tyrosine kinase TIE2 and vascular manifestations of infections. Proc Natl Acad Sci U S A 2016; 113:2472-7. [PMID: 26884170 DOI: 10.1073/pnas.1519467113] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ligands of the endothelial-enriched tunica interna endothelial cell kinase 2 (Tie2) are markedly imbalanced in severe infections associated with vascular leakage, yet regulation of the receptor itself has been understudied in this context. Here, we show that TIE2 gene expression may constitute a novel vascular barrier control mechanism in diverse infections. Tie2 expression declined rapidly in wide-ranging models of leak-associated infections, including anthrax, influenza, malaria, and sepsis. Forced Tie2 suppression sufficed to attenuate barrier function and sensitize endothelium to permeability mediators. Rapid reduction of pulmonary Tie2 in otherwise healthy animals attenuated downstream kinase signaling to the barrier effector vascular endothelial (VE)-cadherin and induced vascular leakage. Compared with wild-type littermates, mice possessing one allele of Tie2 suffered more severe vascular leakage and higher mortality in two different sepsis models. Common genetic variants that influence TIE2 expression were then sought in the HapMap3 cohort. Remarkably, each of the three strongest predicted cis-acting SNPs in HapMap3 was also associated with the risk of acute respiratory distress syndrome (ARDS) in an intensive care unit cohort of 1,614 subjects. The haplotype associated with the highest TIE2 expression conferred a 28% reduction in the risk of ARDS independent of other major clinical variables, including disease severity. In contrast, the most common haplotype was associated with both the lowest TIE2 expression and 31% higher ARDS risk. Together, the results implicate common genetic variation at the TIE2 locus as a determinant of vascular leak-related clinical outcomes from common infections, suggesting new tools to identify individuals at unusual risk for deleterious complications of infection.
Collapse
|
14
|
Lovewell RR, Patankar YR, Berwin B. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 2014; 306:L591-603. [PMID: 24464809 DOI: 10.1152/ajplung.00335.2013] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for a high incidence of acute and chronic pulmonary infection. These infections are particularly prevalent in patients with chronic obstructive pulmonary disease and cystic fibrosis: much of the morbidity and pathophysiology associated with these diseases is due to a hypersusceptibility to bacterial infection. Innate immunity, primarily through inflammatory cytokine production, cellular recruitment, and phagocytic clearance by neutrophils and macrophages, is the key to endogenous control of P. aeruginosa infection. In this review, we highlight recent advances toward understanding the innate immune response to P. aeruginosa, with a focus on the role of phagocytes in control of P. aeruginosa infection. Specifically, we summarize the cellular and molecular mechanisms of phagocytic recognition and uptake of P. aeruginosa, and how current animal models of P. aeruginosa infection reflect clinical observations in the context of phagocytic clearance of the bacteria. Several notable phenotypic changes to the bacteria are consistently observed during chronic pulmonary infections, including changes to mucoidy and flagellar motility, that likely enable or reflect their ability to persist. These traits are likewise examined in the context of how the bacteria avoid phagocytic clearance, inflammation, and sterilizing immunity.
Collapse
Affiliation(s)
- Rustin R Lovewell
- Dept. of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr., Lebanon, NH 03756.
| | | | | |
Collapse
|