1
|
Strik H, Efferth T, Kaina B. Artesunate in glioblastoma therapy: Case reports and review of clinical studies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155274. [PMID: 38142662 DOI: 10.1016/j.phymed.2023.155274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/22/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Artesunate, a derivative of the active ingredient artemisinin from Artemisia annua L. used for centuries in the traditional Chinese medicine, is being applied as front-line drug in malaria treatment. As it is cytotoxic for cancer cells, trials are ongoing to include this drug as supplement in cancer therapy. In glioblastoma cells, artesunate was shown to induce oxidative stress, DNA base damage and double-strand breaks (DSBs), apoptosis, and necroptosis. It also inhibits DNA repair functions and bears senolytic activity. Compared to ionizing radiation, DNA damages accumulate over the whole exposure period, which makes the agent unique in its genotoxic profile. Artesunate has been used in adjuvant therapy of various cancers. PURPOSE As artesunate has been used in adjuvant therapy of different types of cancer and clinical trials are lacking in brain cancer, we investigated its activity in glioma patients with focus on possible side effects. STUDY DESIGN Between 2014 and 2020, twelve patients were treated with artesunate for relapsing glioma and analyzed retrospectively: 8 males and 4 females, median age 45 years. HISTOLOGY 4 glioblastomas WHO grade 4, 5 astrocytomas WHO grade 3, 3 oligodendrogliomas grade 2 or 3. All patients were pretreated with radiation and temozolomide-based chemotherapy. Artesunate 100 mg was applied twice daily p.o. combined with dose-dense temozolomide alone (100 mg/m2 day 1-5/7, 10 patients) or with temozolomide (50 mg/m2 day 1-5/7) plus lomustine (CCNU, 40 mg day 6/7). Blood count, C-reactive protein (CRP), liver enzymes, and renal parameters were monitored weekly. RESULTS Apart from one transient grade 3 hematological toxicity, artesunate was well tolerated. No liver toxicity was observed. While 8 patients with late stage of the disease had a median survival of 5 months after initiation of artesunate treatment, 4 patients with treatment for remission maintenance showed a median survival of 46 months. We also review clinical trials that have been performed in other cancers where artesunate was included in the treatment regimen. CONCLUSIONS Artesunate administered at a dose of 2 × 100 mg/day was without harmful side effects, even if combined with alkylating agents used in glioma therapy. Thus, the phytochemical, which is also utilized as food supplement, is an interesting, well tolerated supportive agent useful for long-term maintenance treatment. Being itself cytotoxic on glioblastoma cells and enhancing the cytotoxicity of temozolomide as well as in view of its senolytic activity, artesunate has clearly a potential to enhance the efficacy of malignant brain cancer therapy.
Collapse
Affiliation(s)
- Herwig Strik
- Department of Neurology, Sozialstiftung Bamberg, Bamberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| |
Collapse
|
2
|
Kaina B. Temozolomide, Procarbazine and Nitrosoureas in the Therapy of Malignant Gliomas: Update of Mechanisms, Drug Resistance and Therapeutic Implications. J Clin Med 2023; 12:7442. [PMID: 38068493 PMCID: PMC10707404 DOI: 10.3390/jcm12237442] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2024] Open
Abstract
The genotoxic methylating agents temozolomide (TMZ) and procarbazine and the chloroethylating nitrosourea lomustine (CCNU) are part of the standard repertoire in the therapy of malignant gliomas (CNS WHO grade 3 and 4). This review describes the mechanisms of their cytotoxicity and cytostatic activity through apoptosis, necroptosis, drug-induced senescence, and autophagy, interaction of critical damage with radiation-induced lesions, mechanisms of glioblastoma resistance to alkylating agents, including the alkyltransferase MGMT, mismatch repair, DNA double-strand break repair and DNA damage responses, as well as IDH-1 and PARP-1. Cyclin-dependent kinase inhibitors such as regorafenib, synthetic lethality using PARP inhibitors, and alternative therapies including tumor-treating fields (TTF) and CUSP9v3 are discussed in the context of alkylating drug therapy and overcoming glioblastoma chemoresistance. Recent studies have revealed that senescence is the main trait induced by TMZ in glioblastoma cells, exhibiting hereupon the senescence-associated secretory phenotype (SASP). Strategies to eradicate therapy-induced senescence by means of senolytics as well as attenuating SASP by senomorphics are receiving increasing attention, with therapeutic implications to be discussed.
Collapse
Affiliation(s)
- Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| |
Collapse
|
3
|
Stillger MN, Chen CY, Lai ZW, Li M, Schäfer A, Pagenstecher A, Nimsky C, Bartsch JW, Schilling O. Changes in calpain-2 expression during glioblastoma progression predisposes tumor cells to temozolomide resistance by minimizing DNA damage and p53-dependent apoptosis. Cancer Cell Int 2023; 23:49. [PMID: 36932402 PMCID: PMC10022304 DOI: 10.1186/s12935-023-02889-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/04/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is characterized by an unfavorable prognosis for patients affected. During standard-of-care chemotherapy using temozolomide (TMZ), tumors acquire resistance thereby causing tumor recurrence. Thus, deciphering essential molecular pathways causing TMZ resistance are of high therapeutic relevance. METHODS Mass spectrometry based proteomics were used to study the GBM proteome. Immunohistochemistry staining of human GBM tissue for either calpain-1 or -2 was performed to locate expression of proteases. In vitro cell based assays were used to measure cell viability and survival of primary patient-derived GBM cells and established GBM cell lines after TMZ ± calpain inhibitor administration. shRNA expression knockdowns of either calpain-1 or calpain-2 were generated to study TMZ sensitivity of the specific subunits. The Comet assay and ɣH2AX signal measurements were performed in order to assess the DNA damage amount and recognition. Finally, quantitative real-time PCR of target proteins was applied to differentiate between transcriptional and post-translational regulation. RESULTS Calcium-dependent calpain proteases, in particular calpain-2, are more abundant in glioblastoma compared to normal brain and increased in patient-matched initial and recurrent glioblastomas. On the cellular level, pharmacological calpain inhibition increased the sensitivities of primary glioblastoma cells towards TMZ. A genetic knockdown of calpain-2 in U251 cells led to increased caspase-3 cleavage and sensitivity to neocarzinostatin, which rapidly induces DNA strand breakage. We hypothesize that calpain-2 causes desensitization of tumor cells against TMZ by preventing strong DNA damage and subsequent apoptosis via post-translational TP53 inhibition. Indeed, proteomic comparison of U251 control vs. U251 calpain-2 knockdown cells highlights perturbed levels of numerous proteins involved in DNA damage response and downstream pathways affecting TP53 and NF-κB signaling. TP53 showed increased protein abundance, but no transcriptional regulation. CONCLUSION TMZ-induced cell death in the presence of calpain-2 expression appears to favor DNA repair and promote cell survival. We conclude from our experiments that calpain-2 expression represents a proteomic mode that is associated with higher resistance via "priming" GBM cells to TMZ chemotherapy. Thus, calpain-2 could serve as a prognostic factor for GBM outcome.
Collapse
Affiliation(s)
- Maren Nicole Stillger
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Chia-Yi Chen
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Zon Weng Lai
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, MA, USA
| | - Mujia Li
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Agnes Schäfer
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany
| | - Axel Pagenstecher
- Institute of Neuropathology, Philipps-University, Marburg, Germany.,Center for Mind, Brain and Behavior, CMBB, Marburg University, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, CMBB, Marburg University, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany
| | - Jörg Walter Bartsch
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany. .,Center for Mind, Brain and Behavior, CMBB, Marburg University, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany. .,Philipps-University Marburg, Laboratory, Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033, Marburg, Germany.
| | - Oliver Schilling
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Karve AS, Desai JM, Dave N, Wise-Draper TM, Gudelsky GA, Phoenix TN, DasGupta B, Sengupta S, Plas DR, Desai PB. Potentiation of temozolomide activity against glioblastoma cells by aromatase inhibitor letrozole. Cancer Chemother Pharmacol 2022; 90:345-356. [PMID: 36050497 PMCID: PMC10208076 DOI: 10.1007/s00280-022-04469-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE The DNA alkylating agent temozolomide (TMZ), is the first-line therapeutic for the treatment of glioblastoma (GBM). However, its use is confounded by the occurrence of drug resistance and debilitating adverse effects. Previously, we observed that letrozole (LTZ), an aromatase inhibitor, has potent activity against GBM in pre-clinical models. Here, we evaluated the effect of LTZ on TMZ activity against patient-derived GBM cells. METHODS Employing patient-derived G76 (TMZ-sensitive), BT142 (TMZ-intermediately sensitive) and G43 and G75 (TMZ-resistant) GBM lines we assessed the influence of LTZ and TMZ on cell viability and neurosphere growth. Combination Index (CI) analysis was performed to gain quantitative insights of this interaction. We then assessed DNA damaging effects by conducting flow-cytometric analysis of ˠH2A.X formation and induction of apoptotic signaling pathways (caspase3/7 activity). The effects of adding estradiol on LTZ-induced cytotoxicity and DNA damage were also evaluated. RESULTS Co-treatment with LTZ at a non-cytotoxic concentration (40 nM) reduced TMZ IC50 by 8, 37, 240 and 640 folds in G76, BT-142, G43 and G75 cells, respectively. The interaction was deemed to be synergistic based on CI analysis. LTZ co-treatment also significantly increased DNA damaging effects of TMZ. Addition of estradiol abrogated these LTZ effects. CONCLUSIONS LTZ increases DNA damage and synergistically enhances TMZ activity in TMZ sensitive and TMZ-resistant GBM lines. These effects are abrogated by the addition of exogenous estradiol underscoring that the observed effects of LTZ may be mediated by estrogen deprivation. Our study provides a strong rationale for investigating the clinical potential of combining LTZ and TMZ for GBM therapy.
Collapse
Affiliation(s)
- Aniruddha S Karve
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Janki M Desai
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Nimita Dave
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
- Nimbus Therapeutics, MA, Cambridge, USA
| | - Trisha M Wise-Draper
- Division of Hematology/Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gary A Gudelsky
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Timothy N Phoenix
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Biplab DasGupta
- Division of Oncology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David R Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Pankaj B Desai
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
5
|
Kong BY, Sim HW, Barnes EH, Nowak AK, Hovey EJ, Jeffree R, Harrup R, Parkinson J, Gan HK, Pinkham MB, Yip S, Hall M, Tu E, Carter C, Koh ES, Lwin Z, Dowling A, Simes JS, Gedye C. Multi-Arm GlioblastoMa Australasia (MAGMA): protocol for a multiarm randomised clinical trial for people affected by glioblastoma. BMJ Open 2022; 12:e058107. [PMID: 36104135 PMCID: PMC10441685 DOI: 10.1136/bmjopen-2021-058107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 08/12/2022] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common malignant primary central nervous system cancer in adults. The objective of the Multi-Arm GlioblastoMa Australasia (MAGMA) trial is to test hypotheses in real world setting to improve survival of people with GBM. Initial experimental arms are evaluating the effectiveness of interventions in newly diagnosed GBM (ndGBM). This study will compare maximal surgical resection followed by chemoradiotherapy plus adjuvant chemotherapy for 6 months with the addition of (1) 'neoadjuvant' chemotherapy beginning as soon as possible after surgery and/or (2) adjuvant chemotherapy continued until progression within the same study platform. METHODS AND ANALYSIS MAGMA will establish a platform for open-label, multiarm, multicentre randomised controlled testing of treatments for GBM. The study began recruiting in September 2020 and recruitment to the initial two interventions in MAGMA is expected to continue until September 2023.Adults aged ≥18 years with ndGBM will be given the option of undergoing randomisation to each study intervention separately, thereby giving rise to a partial factorial design, with two separate randomisation time points, one for neoadjuvant therapy and one for extended therapy. Patients will have the option of being randomised at each time point or continuing on with standard treatment.The primary outcome for the study is overall survival from the date of initial surgery until death from any cause. Secondary outcomes include progression-free survival, time to first non-temozolomide treatment, overall survival from each treatment randomisation, clinically significant toxicity as measured by grade 3 or 4 adverse events and health-related quality-of-life measures. Tertiary outcomes are predictive/prognostic biomarkers and health utilities and incremental cost-effectiveness ratio.The primary analysis of overall survival will be performed separately for each study intervention according to the intention to treat principle on all patients randomised to each study intervention. ETHICS AND DISSEMINATION The study (Protocol version 2.0 dated 23 November 2020) was approved by a lead Human Research Ethics Committee (Sydney Local Health District: 2019/ETH13297). The study will be conducted in accordance with the principles of the Declaration of Helsinki and Good Clinical Practice. TRIAL REGISTRATION NUMBER ACTRN12620000048987.
Collapse
Affiliation(s)
- Benjamin Y Kong
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Hao-Wen Sim
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | | | - Anna K Nowak
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Perth, Australia
| | - Elizabeth J Hovey
- Department of Medical Oncology, Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Randwick, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Rosalind Jeffree
- Department of Neurosurgery, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Rosemary Harrup
- Cancer and Blood Services, Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Jonathon Parkinson
- Department of Neurosurgery, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Hui K Gan
- Olivia Newton-John Cancer Research Institute, Austin Health, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Heidelberg, VIC, Australia
| | - Mark B Pinkham
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Sonia Yip
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
| | - Merryn Hall
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
| | - Emily Tu
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
| | - Candace Carter
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
| | - Eng-Siew Koh
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Radiation Oncology, Liverpool Cancer Therapy Centre, Liverpool, New South Wales, Australia
- Collaboration for Cancer Outcomes, Research and Evaluation, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Zarnie Lwin
- Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Anthony Dowling
- Department of Medicine, University of Melbourne Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Department of Medical Oncology, St Vincent's Hospital Melbourne Pty Ltd, Fitzroy, Victoria, Australia
| | - John S Simes
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | - Craig Gedye
- Department of Medical Oncology, Calvary Mater Newcastle, Waratah, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| |
Collapse
|
6
|
Kaina B, Beltzig L, Strik H. Temozolomide – Just a Radiosensitizer? Front Oncol 2022; 12:912821. [PMID: 35785203 PMCID: PMC9246413 DOI: 10.3389/fonc.2022.912821] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/05/2022] [Indexed: 01/04/2023] Open
Abstract
Radiation concomitant with the DNA methylating drug temozolomide (TMZ) is the gold standard in the treatment of glioblastoma. In this adjuvant setting, TMZ is regarded to be a radiation sensitizer. However, similar to ionising radiation, TMZ induces DNA double-strand breaks and is itself a potent trigger of apoptosis, cellular senescence and autophagy, suggesting that radiation and TMZ act independently. Although cell culture experiments yielded heterogeneous results, some data indicate that the cytotoxic effect of radiation was only enhanced when TMZ was given before radiation treatment. Based on the molecular mechanism of action of TMZ, the importance of specific TMZ and radiation-induced DNA lesions, their repair as well as their interactions, possible scenarios for an additive or synergistic effect of TMZ and radiation are discussed, and suggestions for an optimal timing of radio-chemical treatments are proposed.
Collapse
Affiliation(s)
- Bernd Kaina
- Institute of Toxicology, University Medical Center, Mainz, Germany
- *Correspondence: Bernd Kaina,
| | - Lea Beltzig
- Institute of Toxicology, University Medical Center, Mainz, Germany
| | - Herwig Strik
- Department of Neurology, Sozialstiftung, Bamberg, Germany
| |
Collapse
|
7
|
Accumulation of Temozolomide-Induced Apoptosis, Senescence and DNA Damage by Metronomic Dose Schedule: A Proof-of-Principle Study with Glioblastoma Cells. Cancers (Basel) 2021; 13:cancers13246287. [PMID: 34944906 PMCID: PMC8699541 DOI: 10.3390/cancers13246287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Severe toxic side effects do not allow unlimited dose escalation of anticancer drugs, and the doses used in cancer therapy are therefore often rather low regarding the required target concentration. For temozolomide (TMZ), which is used in glioblastoma therapy, single high dose protocols are used in nearly all experimental studies, while the drug is administered repeatedly on patients, with a daily (metronomic) low dose schedule. Here, we show that the therapeutically relevant glioblastoma cell death and senescence responses do accumulate if a high dose of TMZ is split up in small low doses. The data support the metronomic dose schedule and suggest that even low doses are effective in glioblastoma therapy. The predominance and accumulation of TMZ-refractory senescent survivors may provide an explanation for the overall low curative response. Abstract Temozolomide (TMZ), a first-line drug in glioma therapy, targets the tumor DNA at various sites. One of the DNA alkylation products is O6-methylguanine (O6MeG), which is, in the low dose range of TMZ, responsible for nearly all genotoxic and cytotoxic effects relevant for cancer therapy. There is, however, a dispute regarding whether the TMZ concentration in the tumor tissue in patients is sufficient to elicit a significant cytotoxic or cytostatic response. Although treatment with TMZ occurs repeatedly with daily doses (metronomic dose schedule) and in view of the short half-life of the drug it is unclear whether doses are accumulating. Here, we addressed the question whether repeated low doses elicit similar effects in glioblastoma cells than a high cumulative dose. We show that repeated treatments with a low dose of TMZ (5 × 5 µM) caused an accumulation of cytotoxicity through apoptosis, cytostasis through cellular senescence, and DNA double-strand breaks, which was similar to the responses induced by a single cumulative dose of 25 µM TMZ. This finding, together with the previously reported linear dose–response curves, support the notion that TMZ is able to trigger a significant cytotoxic and cytostatic effect in vivo if the low-dose metronomic schedule is applied.
Collapse
|
8
|
Stratenwerth B, Geisen SM, He Y, Beltzig L, Sturla SJ, Kaina B. Molecular Dosimetry of Temozolomide: Quantification of Critical Lesions, Correlation to Cell Death Responses, and Threshold Doses. Mol Cancer Ther 2021; 20:1789-1799. [PMID: 34253592 PMCID: PMC9398175 DOI: 10.1158/1535-7163.mct-21-0228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/01/2021] [Accepted: 06/25/2021] [Indexed: 01/07/2023]
Abstract
Temozolomide (TMZ) is a DNA-methylating agent used in cancer chemotherapy, notably for glioblastoma multiforme (GBM), where it is applied as a front-line drug. One of the DNA alkylation products of TMZ is the minor lesion O6 -methylguanine (O6 MeG), which is responsible for nearly all genotoxic, cytotoxic, and cytostatic effects induced in the low-dose range relevant for cancer therapy. Here, we addressed the question of how many O6 MeG adducts are required to elicit cytotoxic responses. Adduct quantification revealed that O6 MeG increases linearly with dose. The same was observed for DNA double-strand breaks (DSB) and p53ser15. Regarding apoptosis, hockeystick modeling indicated a possible threshold for A172 cells at 2.5 μmol/L TMZ, whereas for LN229 cells no threshold was detected. Cellular senescence, which is the main cellular response, also increased linearly, without a threshold. Using a dose of 20 μmol/L, which is achievable in a therapeutic setting, we determined that 14,000 adducts give rise to 32 DSBs (γH2AX foci) in A172 cells. This leads to 12% cell death and 35% of cells entering senescence. In LN229 cells, 20 μmol/L TMZ induced 20,600 O6 MeG adducts, 66 DSBs (γH2AX foci), 24% apoptosis, and 52% senescence. The linear dose response and the genotoxic and cytotoxic effects observed at therapeutically relevant dose levels make it very likely that the TMZ target concentration triggers a significant cytotoxic and cytostatic effect in vivo Despite a linear increase in the O6 MeG adduct level, DSBs, and p53 activation, the low curative effect of TMZ results presumably from the low rate of apoptosis compared to senescence.
Collapse
Affiliation(s)
- Björn Stratenwerth
- Institute of Toxicology, University Medical Center, University Mainz, Mainz, Germany
| | - Susanne M. Geisen
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Yang He
- Institute of Toxicology, University Medical Center, University Mainz, Mainz, Germany
| | - Lea Beltzig
- Institute of Toxicology, University Medical Center, University Mainz, Mainz, Germany
| | - Shana J. Sturla
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, University Mainz, Mainz, Germany.,Corresponding Author: Bernd Kaina, Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Str. 67, Mainz D-55131, Germany. E-mail:
| |
Collapse
|
9
|
Cytotoxic and Senolytic Effects of Methadone in Combination with Temozolomide in Glioblastoma Cells. Int J Mol Sci 2020; 21:ijms21197006. [PMID: 32977591 PMCID: PMC7582495 DOI: 10.3390/ijms21197006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 01/29/2023] Open
Abstract
Methadone is an analgesic drug used for pain treatment and heroin substitution. Recently, methadone has been proposed to be useful also for cancer therapy, including glioblastoma multiforme (GBM), the most severe form of brain cancer, because experiments on cultured glioma cells treated with doxorubicin showed promising results. Doxorubicin, however, is not used first-line in GBM therapy. Therefore, we analyzed the cytotoxic effect of methadone alone and in combination with temozolomide, a DNA-alkylating drug that is first-line used in GBM treatment, utilizing GBM-derived cell lines and a human fibroblast cell line. We show that methadone is cytotoxic on its own, inducing apoptosis and necrosis, which was observed at a concentration above 20 µg/mL. Methadone was similar toxic in isogenic MGMT expressing and non-expressing cells, and in LN229 glioblastoma and VH10T human fibroblasts. The apoptosis-inducing activity of methadone is not bound on the opioid receptor (OR), since naloxone, a competitive inhibitor of OR, did not attenuate methadone-induced apoptosis/necrosis. Administrating methadone and temozolomide together, temozolomide had no impact on methadone-induced apoptosis (which occurred 3 days after treatment), while temozolomide-induced apoptosis (which occurred 5 days after treatment) was unaffected at low (non-toxic) methadone concentration (5 µg/mL), and at high (toxic) methadone concentration (20 µg/mL) the cytotoxic effects of methadone and temozolomide were additive. Methadone is not genotoxic, as revealed by comet and γH2AX assay, and did not ameliorate the genotoxic effect of temozolomide. Further, methadone did not induce cellular senescence and had no effect on temozolomide-induced senescence. Although methadone was toxic on senescent cells, it cannot be considered a senolytic drug since cytotoxicity was not specific for senescent cells. Finally, we show that methadone had no impact on the MGMT promoter methylation. Overall, the data show that methadone on glioblastoma cells in vitro is cytotoxic and induces apoptosis/necrosis at doses that are above the level that can be achieved in vivo. It is not genotoxic, and does not ameliorate the cell killing or the senescence-inducing effect of temozolomide (no synergistic effect), indicating it has no impact on temozolomide-induced signaling pathways. The data do not support the notion that concomitant methadone treatment supports temozolomide-based chemotherapy.
Collapse
|
10
|
Kaina B, Christmann M. DNA repair in personalized brain cancer therapy with temozolomide and nitrosoureas. DNA Repair (Amst) 2019; 78:128-141. [PMID: 31039537 DOI: 10.1016/j.dnarep.2019.04.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 12/16/2022]
Abstract
Alkylating agents have been used since the 60ties in brain cancer chemotherapy. Their target is the DNA and, although the DNA of normal and cancer cells is damaged unselectively, they exert tumor-specific killing effects because of downregulation of some DNA repair activities in cancer cells. Agents exhibiting methylating properties (temozolomide, procarbazine, dacarbazine, streptozotocine) induce at least 12 different DNA lesions. These are repaired by damage reversal mechanisms involving the alkyltransferase MGMT and the alkB homologous protein ALKBH2, and through base excision repair (BER). There is a strong correlation between the MGMT expression level and therapeutic response in high-grade malignant glioma, supporting the notion that O6-methylguanine and, for nitrosoureas, O6-chloroethylguanine are the most relevant toxic damages at therapeutically relevant doses. Since MGMT has a significant impact on the outcome of anti-cancer therapy, it is a predictive marker of the effectiveness of methylating anticancer drugs, and clinical trials are underway aimed at assessing the influence of MGMT inhibition on the therapeutic success. Other DNA repair factors involved in methylating drug resistance are mismatch repair, DNA double-strand break (DSB) repair by homologous recombination (HR) and DSB signaling. Base excision repair and ALKBH2 might also contribute to alkylating drug resistance and their downregulation may have an impact on drug sensitivity notably in cells expressing a high amount of MGMT and at high doses of temozolomide, but the importance in a therapeutic setting remains to be shown. MGMT is frequently downregulated in cancer cells (up to 40% in glioblastomas), which is due to CpG promoter methylation. Astrocytoma (grade III) are frequently mutated in isocitrate dehydrogenase (IDH1). These tumors show a surprisingly good therapeutic response. IDH1 mutation has an impact on ALKBH2 activity thus influencing DNA repair. A master switch between survival and death is p53, which often retains transactivation activity (wildtype) in malignant glioma. The role of p53 in regulating survival via DNA repair and the routes of death are discussed and conclusions as to cancer therapeutic options were drawn.
Collapse
Affiliation(s)
- Bernd Kaina
- Institute of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | - Markus Christmann
- Institute of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| |
Collapse
|
11
|
He Y, Kaina B. Are There Thresholds in Glioblastoma Cell Death Responses Triggered by Temozolomide? Int J Mol Sci 2019; 20:ijms20071562. [PMID: 30925722 PMCID: PMC6480213 DOI: 10.3390/ijms20071562] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 01/13/2023] Open
Abstract
Temozolomide (TMZ) is an alkylating agent used in the treatment of high-grade malignant glioma, notably glioblastoma multiforme, the most aggressive form of brain cancer. The drug induces a dozen DNA methylation adducts, including O6-methylguanine (O6MeG), which is the most toxic primary DNA lesion as it causes the formation of DNA double-strand breaks (DSBs) that trigger apoptosis. In p53 wild-type cells, TMZ activates p-p53ser15 and p-p53ser46, which have opposing dual functions regulating survival and death, respectively. Since the use of TMZ in a therapeutic setting is limited because of its side effects, the question arises as to the existence of threshold doses that activate the death pathway and start apoptosis. To determine whether there is a threshold for the TMZ-induced DNA damage response and exploring the factors regulating the switch between p53 dependent survival and death, the glioblastoma lines LN-229 (deficient in MGMT) and LN-229MGMT (stably transfected with MGMT) were exposed to different doses of TMZ. p53 protein expression and phosphorylation levels of p-p53ser15 and p-p53ser46 were determined by Western blotting. Also, apoptosis, senescence and autophagy levels were checked after different doses of TMZ. The results show that pro-survival p-p53ser15 and pro-death p-p53ser46 were induced by O6MeG in a specific dose- and time-dependent manner. p-p53ser15 was an early response while p-p53ser46 was activated at later times following treatment. Unexpectedly, the dose-response curves for total p53, p-p53ser15 and p-p53ser46 were linear, without an obvious threshold. O6MeG induces apoptosis late after treatment as a linear function of TMZ dose. This was observed for both p53 proficient LN-229 and p53 lacking LN-308 cells. A linear dose-response after TMZ was also observed for senescence and autophagy as well as γH2AX, an indicator of DSBs that are considered to be the downstream trigger of apoptosis, senescence and autophagy. LN-229MGMT cells were highly resistant to all measured endpoints because of repair of the critical primary lesion. Although LN-308 were less responsive than LN-229 to TMZ, they displayed the same TMZ-induced DSB level. The observed linear dose-responses are not compatible with the view that low DNA damage level evokes survival while high damage level activates death functions. The data bear important therapeutic implications as they indicate that even low doses of TMZ may elicit a cytotoxic response. However, since O6MeG triggers apoptosis, senescence and autophagy in the same dose range, it is likely that the accumulation of senescent cells in the population counteracts the killing effect of the anticancer drug.
Collapse
Affiliation(s)
- Yang He
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| |
Collapse
|
12
|
Heylmann D, Badura J, Becker H, Fahrer J, Kaina B. Sensitivity of CD3/CD28-stimulated versus non-stimulated lymphocytes to ionizing radiation and genotoxic anticancer drugs: key role of ATM in the differential radiation response. Cell Death Dis 2018; 9:1053. [PMID: 30323167 PMCID: PMC6189042 DOI: 10.1038/s41419-018-1095-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/13/2018] [Accepted: 09/21/2018] [Indexed: 12/26/2022]
Abstract
Activation of T cells, a major fraction of peripheral blood lymphocytes (PBLCS), is essential for the immune response. Genotoxic stress resulting from ionizing radiation (IR) and chemical agents, including anticancer drugs, has serious impact on T cells and, therefore, on the immune status. Here we compared the sensitivity of non-stimulated (non-proliferating) vs. CD3/CD28-stimulated (proliferating) PBLC to IR. PBLCs were highly sensitive to IR and, surprisingly, stimulation to proliferation resulted in resistance to IR. Radioprotection following CD3/CD28 activation was observed in different T-cell subsets, whereas stimulated CD34+ progenitor cells did not become resistant to IR. Following stimulation, PBLCs showed no significant differences in the repair of IR-induced DNA damage compared with unstimulated cells. Interestingly, ATM is expressed at high level in resting PBLCs and CD3/CD28 stimulation leads to transcriptional downregulation and reduced ATM phosphorylation following IR, indicating ATM to be key regulator of the high radiosensitivity of resting PBLCs. In line with this, pharmacological inhibition of ATM caused radioresistance of unstimulated, but not stimulated, PBLCs. Radioprotection was also achieved by inhibition of MRE11 and CHK1/CHK2, supporting the notion that downregulation of the MRN-ATM-CHK pathway following CD3/CD28 activation results in radioprotection of proliferating PBLCs. Interestingly, the crosslinking anticancer drug mafosfamide induced, like IR, more death in unstimulated than in stimulated PBLCs. In contrast, the bacterial toxin CDT, damaging DNA through inherent DNase activity, and the DNA methylating anticancer drug temozolomide induced more death in CD3/CD28-stimulated than in unstimulated PBLCs. Thus, the sensitivity of stimulated vs. non-stimulated lymphocytes to genotoxins strongly depends on the kind of DNA damage induced. This is the first study in which the killing response of non-proliferating vs. proliferating T cells was comparatively determined. The data provide insights on how immunotherapeutic strategies resting on T-cell activation can be impacted by differential cytotoxic effects resulting from radiation and chemotherapy.
Collapse
Affiliation(s)
- Daniel Heylmann
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany.,Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Schubertstraße 81, 35392, Giessen, Germany
| | - Jennifer Badura
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Huong Becker
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Jörg Fahrer
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany.,Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Schubertstraße 81, 35392, Giessen, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany.
| |
Collapse
|
13
|
Pawlowska E, Szczepanska J, Szatkowska M, Blasiak J. An Interplay between Senescence, Apoptosis and Autophagy in Glioblastoma Multiforme-Role in Pathogenesis and Therapeutic Perspective. Int J Mol Sci 2018; 19:ijms19030889. [PMID: 29562589 PMCID: PMC5877750 DOI: 10.3390/ijms19030889] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/12/2022] Open
Abstract
Autophagy, cellular senescence, programmed cell death and necrosis are key responses of a cell facing a stress. These effects are partly interconnected, but regulation of their mutual interactions is not completely clear. That regulation seems to be especially important in cancer cells, which have their own program of development and demand more nutrition and energy than normal cells. Glioblastoma multiforme (GBM) belongs to the most aggressive and most difficult to cure cancers, so studies on its pathogenesis and new therapeutic strategies are justified. Using an animal model, it was shown that autophagy is required for GBM development. Temozolomide (TMZ) is the key drug in GBM chemotherapy and it was reported to induce senescence, autophagy and apoptosis in GBM. In some GBM cells, TMZ induces small toxicity despite its significant concentration and GBM cells can be intrinsically resistant to apoptosis. Resveratrol, a natural compound, was shown to potentiate anticancer effect of TMZ in GBM cells through the abrogation G2-arrest and mitotic catastrophe resulting in senescence of GBM cells. Autophagy is the key player in TMZ resistance in GBM. TMZ can induce apoptosis due to selective inhibition of autophagy, in which autophagic vehicles accumulate as their fusion with lysosomes is blocked. Modulation of autophagic action of TMZ with autophagy inhibitors can result in opposite outcomes, depending on the step targeted in autophagic flux. Studies on relationships between senescence, autophagy and apoptosis can open new therapeutic perspectives in GBM.
Collapse
Affiliation(s)
- Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Magdalena Szatkowska
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| |
Collapse
|
14
|
Artesunate enhances the therapeutic response of glioma cells to temozolomide by inhibition of homologous recombination and senescence. Oncotarget 2018; 7:67235-67250. [PMID: 27626497 PMCID: PMC5341871 DOI: 10.18632/oncotarget.11972] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/04/2016] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma multiforme (GBM), a malignant brain tumor with a dismal prognosis, shows a high level of chemo- and radioresistance and, therefore, attempts to sensitize glioma cells are highly desired. Here, we addressed the question of whether artesunate (ART), a drug currently used in the treatment of malaria, enhances the killing response of glioblastoma cells to temozolomide (TMZ), which is the first-line therapeutic for GBM. We measured apoptosis, necrosis, autophagy and senescence, and the extent of DNA damage in glioblastoma cells. Further, we determined the tumor growth in nude mice. We show that ART enhances the killing effect of TMZ in glioblastoma cell lines and in glioblastoma stem-like cells. The DNA double-strand break level induced by TMZ was not clearly enhanced in the combined treatment regime. Also, we did not observe an attenuation of TMZ-induced autophagy, which is considered a survival mechanism. However, we observed a significant effect of ART on homologous recombination (HR) with downregulation of RAD51 protein expression and HR activity. Further, we found that ART is able to inhibit senescence induced by TMZ. Since HR and senescence are pro-survival mechanisms, its inhibition by ART appears to be a key node in enhancing the TMZ-induced killing response. Enhancement of the antitumor effect of TMZ by co-administration of ART was also observed in a mouse tumor model. In conclusion, the amelioration of TMZ-induced cell death upon ART co-treatment provides a rational basis for a combination regime of TMZ and ART in glioblastoma therapy.
Collapse
|
15
|
Low Dose of Doxorubicin Potentiates the Effect of Temozolomide in Glioblastoma Cells. Mol Neurobiol 2017; 55:4185-4194. [PMID: 28612256 DOI: 10.1007/s12035-017-0611-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
Glioblastoma (GBM) is an aggressive brain tumor with temozolomide (TMZ)-based chemotherapy as the main therapeutic strategy. Doxorubicin (DOX) is not used in gliomas due to its low bioavailability in the brain; however, new delivery strategies and low doses may be effective in the long term, especially as part of a drug cocktail. Our aim was to evaluate the chronic effects of low doses of DOX and TMZ in GBM. Human U87-ATCC cells and a primary GBM culture were chronically treated with TMZ (5 μM) and DOX (1 and 10 nM) alone or combined. DOX resulted in a reduction in the number of cells over a period of 35 days and delayed the cell regrowth. In addition, DOX induced cell senescence and reduced tumor sphere formation and the proportion of NANOG- and OCT4-positive cells after 7 days. Low doses of TMZ potentiated the effects of DOX on senescence and sphere formation. This combined response using low doses of DOX may pave the way for its use in glioma therapy, with new technologies to overcome its low blood-brain barrier permeability.
Collapse
|
16
|
Nikolova T, Roos WP, Krämer OH, Strik HM, Kaina B. Chloroethylating nitrosoureas in cancer therapy: DNA damage, repair and cell death signaling. Biochim Biophys Acta Rev Cancer 2017; 1868:29-39. [PMID: 28143714 DOI: 10.1016/j.bbcan.2017.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 01/20/2023]
Abstract
Chloroethylating nitrosoureas (CNU), such as lomustine, nimustine, semustine, carmustine and fotemustine are used for the treatment of malignant gliomas, brain metastases of different origin, melanomas and Hodgkin disease. They alkylate the DNA bases and give rise to the formation of monoadducts and subsequently interstrand crosslinks (ICL). ICL are critical cytotoxic DNA lesions that link the DNA strands covalently and block DNA replication and transcription. As a result, S phase progression is inhibited and cells are triggered to undergo apoptosis and necrosis, which both contribute to the effectiveness of CNU-based cancer therapy. However, tumor cells resist chemotherapy through the repair of CNU-induced DNA damage. The suicide enzyme O6-methylguanine-DNA methyltransferase (MGMT) removes the precursor DNA lesion O6-chloroethylguanine prior to its conversion into ICL. In cells lacking MGMT, the formed ICL evoke complex enzymatic networks to accomplish their removal. Here we discuss the mechanism of ICL repair as a survival strategy of healthy and cancer cells and DNA damage signaling as a mechanism contributing to CNU-induced cell death. We also discuss therapeutic implications and strategies based on sequential and simultaneous treatment with CNU and the methylating drug temozolomide.
Collapse
Affiliation(s)
- Teodora Nikolova
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | - Wynand P Roos
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Herwig M Strik
- Department of Neurology, University Medical Center, Baldinger Strasse, 35033 Marburg, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| |
Collapse
|
17
|
Silva AO, Dalsin E, Onzi GR, Filippi-Chiela EC, Lenz G. The regrowth kinetic of the surviving population is independent of acute and chronic responses to temozolomide in glioblastoma cell lines. Exp Cell Res 2016; 348:177-183. [PMID: 27669643 DOI: 10.1016/j.yexcr.2016.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/31/2016] [Accepted: 09/22/2016] [Indexed: 10/21/2022]
Abstract
Chemotherapy acts on cancer cells by producing multiple effects on a cell population including cell cycle arrest, necrosis, apoptosis and senescence. However, often a subpopulation of cells survives and the behavior of this subpopulation, which is responsible for cancer recurrence, remains obscure. Here we investigated the in vitro short- and long-term responses of six glioblastoma cell lines to clinically relevant doses of temozolomide for 5 days followed by 23 days of recovery, mimicking the standard schedule used in glioblastoma patient for this drug. These cells presented different profiles of sensitivity to temozolomide with varying levels of cell cycle arrest, autophagy and senescence, followed by a regrowth of the surviving cells. The initial reduction in cell number and the subsequent regrowth was analyzed with four new parameters applied to Cumulative Population Doubling (CPD) curves that describe the overall sensitivity of the population and the characteristic of the regrowth: the relative end point CPD (RendCPD); the relative Area Under Curve (rAUC); the Relative Time to Cross a Threshold (RTCT); and the Relative Proliferation Rate (RPR). Surprisingly, the kinetics of regrowth were not predicted by the mechanisms activated after treatment nor by the acute or overall sensitivity. With this study we added new parameters that describe key responses of glioblastoma cell populations to temozolomide treatment. These parameters can also be applied to other cell types and treatments and will help to understand the behavior of the surviving cancer cells after treatment and shed light on studies of cancer resistance and recurrence.
Collapse
Affiliation(s)
- Andrew Oliveira Silva
- Department of Biophysics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Eloisa Dalsin
- Department of Biophysics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Giovana Ravizzoni Onzi
- Department of Biophysics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | | | - Guido Lenz
- Department of Biophysics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
18
|
Silva AO, Felipe KB, Villodre ES, Lopez PLC, Lenz G. A guide for the analysis of long-term population growth in cancer. Tumour Biol 2016; 37:13743-13749. [DOI: 10.1007/s13277-016-5255-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/15/2016] [Indexed: 11/30/2022] Open
|
19
|
Jungk C, Chatziaslanidou D, Ahmadi R, Capper D, Bermejo JL, Exner J, von Deimling A, Herold-Mende C, Unterberg A. Chemotherapy with BCNU in recurrent glioma: Analysis of clinical outcome and side effects in chemotherapy-naïve patients. BMC Cancer 2016; 16:81. [PMID: 26865253 PMCID: PMC4748520 DOI: 10.1186/s12885-016-2131-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/07/2016] [Indexed: 12/03/2022] Open
Abstract
Background To date, standardized strategies for the treatment of recurrent glioma are lacking. Chemotherapy with the alkylating agent BCNU (1,3-bis (2-chloroethyl)-1-nitroso-urea) is a therapeutic option even though its efficacy and safety, particularly the risk of pulmonary fibrosis, remains controversial. To address these issues, we performed a retrospective analysis on clinical outcome and side effects of BCNU-based chemotherapy in recurrent glioma. Methods Survival data of 34 mostly chemotherapy-naïve glioblastoma patients treated with BCNU at 1st relapse were compared to 29 untreated control patients, employing a multiple Cox regression model which considered known prognostic factors including MGMT promoter hypermethylation. Additionally, medical records of 163 patients treated with BCNU for recurrent glioma WHO grade II to IV were retrospectively evaluated for BCNU-related side effects classified according to the National Cancer Institute Common Toxicity Criteria for Adverse Events (CTCAE) version 2.0. Results In recurrent glioblastoma, multiple regression survival analysis revealed a significant benefit of BCNU-based chemotherapy on survival after relapse (p = 0.02; HR = 0.48; 95 % CI = 0.26–0.89) independent of known clinical and molecular prognostic factors. Exploratory analyses suggested that survival benefit was most pronounced in MGMT-hypermethylated, BCNU-treated patients. Moreover, BCNU was well tolerated by 46 % of the 163 patients analyzed for side effects; otherwise, predominantly mild side effects occurred (CTCAE I/II; 45 %). Severe side effects CTCAE III/IV were observed in 9 % of patients including severe hematotoxicity, thromboembolism, intracranial hemorrhage and injection site reaction requiring surgical intervention. One patient presented with a clinically apparent pulmonary fibrosis CTCAE IV requiring temporary mechanical ventilation. Conclusion In this study, BCNU was rarely associated with severe side effects, particularly pulmonary toxicity, and, in case of recurrent glioblastoma, even conferred a favorable outcome. Therefore BCNU appears to be an appropriate alternative to other nitrosoureas although the efficacy against newer drugs needs further evaluation.
Collapse
Affiliation(s)
- Christine Jungk
- Department of Neurosurgery, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany.
| | - Despina Chatziaslanidou
- Department of Neurosurgery, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
| | - Rezvan Ahmadi
- Department of Neurosurgery, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
| | - David Capper
- Institute of Neuropathology, University of Heidelberg, INF 224, 69120, Heidelberg, Germany
| | - Justo Lorenzo Bermejo
- Institute of Medical Biometry & Informatics, University of Heidelberg, INF 305, 69120, Heidelberg, Germany
| | - Janina Exner
- Department of Neurosurgery, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
| | - Andreas von Deimling
- Institute of Neuropathology, University of Heidelberg, INF 224, 69120, Heidelberg, Germany
| | - Christel Herold-Mende
- Department of Neurosurgery, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
| |
Collapse
|
20
|
Bertucci A, Prasetyanto EA, Septiadi D, Manicardi A, Brognara E, Gambari R, Corradini R, De Cola L. Combined Delivery of Temozolomide and Anti-miR221 PNA Using Mesoporous Silica Nanoparticles Induces Apoptosis in Resistant Glioma Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5687-95. [PMID: 26395266 DOI: 10.1002/smll.201500540] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/22/2015] [Indexed: 05/14/2023]
Abstract
Mesoporous silica nanoparticles (MSNPs), 100 nm in size, incorporating a Cy5 fluorophore within the silica framework, are synthesized and loaded with the anti-cancer drug temozolomide (TMZ), used in the treatment of gliomas. The surface of the particles is then decorated, using electrostatic interactions, with a polyarginine-peptide nucleic acid (R8-PNA) conjugate targeting the miR221 microRNA. The multi-functional nanosystem thus obtained is rapidly internalized into glioma C6 or T98G cells. The anti-miR activity of the PNA is retained, as confirmed by reverse transcription polymerase chain reaction (RT-PCR) measurements and induction of apoptosis is observed in temozolomide-resistant cell lines. The TMZ-loaded MSNPs show an enhanced pro-apoptotic effect, and the combined effect of TMZ and R8-PNA in the MSNPs shows the most effective induction of apoptosis (70.9% of apoptotic cells) thus far achieved in the temozolomide-resistant T98G cell line.
Collapse
Affiliation(s)
- Alessandro Bertucci
- Institut de science et d'ingénierie supramoléculaire (ISIS) & icFRC, Université de Strasbourg & CNRS, 8 Rue Gaspard Monge, Strasbourg, 67000, France
- Dipartimento di Chimica, Università di Parma, Parco Area delle Scienze 17/A, Parma, 43124, Italy
| | - Eko Adi Prasetyanto
- Institut de science et d'ingénierie supramoléculaire (ISIS) & icFRC, Université de Strasbourg & CNRS, 8 Rue Gaspard Monge, Strasbourg, 67000, France
| | - Dedy Septiadi
- Institut de science et d'ingénierie supramoléculaire (ISIS) & icFRC, Université de Strasbourg & CNRS, 8 Rue Gaspard Monge, Strasbourg, 67000, France
| | - Alex Manicardi
- Dipartimento di Chimica, Università di Parma, Parco Area delle Scienze 17/A, Parma, 43124, Italy
| | - Eleonora Brognara
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy
| | - Roberto Gambari
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy
| | - Roberto Corradini
- Dipartimento di Chimica, Università di Parma, Parco Area delle Scienze 17/A, Parma, 43124, Italy
| | - Luisa De Cola
- Institut de science et d'ingénierie supramoléculaire (ISIS) & icFRC, Université de Strasbourg & CNRS, 8 Rue Gaspard Monge, Strasbourg, 67000, France
| |
Collapse
|
21
|
Dong F, Eibach M, Bartsch JW, Dolga AM, Schlomann U, Conrad C, Schieber S, Schilling O, Biniossek ML, Culmsee C, Strik H, Koller G, Carl B, Nimsky C. The metalloprotease-disintegrin ADAM8 contributes to temozolomide chemoresistance and enhanced invasiveness of human glioblastoma cells. Neuro Oncol 2015; 17:1474-85. [PMID: 25825051 PMCID: PMC4648299 DOI: 10.1093/neuonc/nov042] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/22/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Despite multimodal treatment, glioblastoma (GBM) therapy with temozolomide (TMZ) remains inefficient due to chemoresistance. Matrix metalloproteinase (MMP) and a disintegrin and metalloprotease (ADAM), increased in GBM, could contribute to chemoresistance and TMZ-induced recurrence of glioblastoma. METHODS TMZ inducibility of metalloproteases was determined in GBM cell lines, primary GBM cells, and tissues from GBM and recurrent GBM. TMZ sensitivity and invasiveness of GBM cells were assessed in the presence of the metalloprotease inhibitors batimastat (BB-94) and marimastat (BB-2516). Metalloprotease-dependent effects of TMZ on mitochondria and pAkt/phosphatidylinositol-3 kinase (PI3K) and phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) pathways were analyzed by fluorescence activated cell sorting, morphometry, and immunoblotting. Invasiveness of GBM cells was determined by Matrigel invasion assays. Potential metalloprotease substrates were identified by proteomics and tested for invasion using blocking antibodies. RESULTS TMZ induces expression of MMP-1, -9, -14, and ADAM8 in GBM cells and in recurrent GBM tissues. BB-94, but not BB-2516 (ADAM8-sparing) increased TMZ sensitivity of TMZ-resistant and -nonresistant GBM cells with different O(6)-methylguanine-DNA methyltransferase states, suggesting that ADAM8 mediates chemoresistance, which was confirmed by ADAM8 knockdown, ADAM8 overexpression, or pharmacological inhibition of ADAM8. Levels of pAkt and pERK1/2 were increased in GBM cells and correlated with ADAM8 expression, cell survival, and invasiveness. Soluble hepatocyte growth factor (HGF) R/c-met and CD44 were identified as metalloprotease substrates in TMZ-treated GBM cells. Blocking of HGF R/c-met prevented TMZ-induced invasiveness. CONCLUSIONS ADAM8 causes TMZ resistance in GBM cells by enhancing pAkt/PI3K, pERK1/2, and cleavage of CD44 and HGF R/c-met. Specific ADAM8 inhibition can optimize TMZ chemotherapy of GBM in order to prevent formation of recurrent GBM in patients.
Collapse
Affiliation(s)
| | | | | | - Amalia M. Dolga
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Uwe Schlomann
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Catharina Conrad
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Susanne Schieber
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Oliver Schilling
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Martin L. Biniossek
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Carsten Culmsee
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Herwig Strik
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Garrit Koller
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Barbara Carl
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| |
Collapse
|
22
|
Yang WB, Xing BZ, Liang H. Comprehensive Analysis of Temozolomide Treatment for Patients with Glioma. Asian Pac J Cancer Prev 2014; 15:8405-8. [DOI: 10.7314/apjcp.2014.15.19.8405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
23
|
|
24
|
Conditioned media from human adipose tissue-derived mesenchymal stem cells and umbilical cord-derived mesenchymal stem cells efficiently induced the apoptosis and differentiation in human glioma cell lines in vitro. BIOMED RESEARCH INTERNATIONAL 2014; 2014:109389. [PMID: 24971310 PMCID: PMC4058294 DOI: 10.1155/2014/109389] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/25/2014] [Accepted: 04/19/2014] [Indexed: 12/12/2022]
Abstract
Human mesenchymal stem cells (MSCs) have an intrinsic property for homing towards tumor sites and can be used as tumor-tropic vectors for tumor therapy. But very limited studies investigated the antitumor properties of MSCs themselves. In this study we investigated the antiglioma properties of two easily accessible MSCs, namely, human adipose tissue-derived mesenchymal stem cells (ASCs) and umbilical cord-derived mesenchymal stem cells (UC-MSCs). We found (1) MSC conditioned media can significantly inhibit the growth of human U251 glioma cell line; (2) MSC conditioned media can significantly induce apoptosis in human U251 cell line; (3) real-time PCR experiments showed significant upregulation of apoptotic genes of both caspase-3 and caspase-9 and significant downregulation of antiapoptotic genes such as survivin and XIAP after MSC conditioned media induction in U 251 cells; (4) furthermore, MSCs conditioned media culture induced rapid and complete differentiation in U251 cells. These results indicate MSCs can efficiently induce both apoptosis and differentiation in U251 human glioma cell line. Whereas UC-MSCs are more efficient for apoptosis induction than ASCs, their capability of differentiation induction is not distinguishable from each other. Our findings suggest MSCs themselves have favorable antitumor characteristics and should be further explored in future glioma therapy.
Collapse
|
25
|
Grogan PT, Sarkaria JN, Timmermann BN, Cohen MS. Oxidative cytotoxic agent withaferin A resensitizes temozolomide-resistant glioblastomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway inhibitory modulation. Invest New Drugs 2014; 32:604-17. [PMID: 24718901 DOI: 10.1007/s10637-014-0084-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
Abstract
Temozolomide (TMZ) has remained the chemotherapy of choice in patients with glioblastoma multiforme (GBM) primarily due to the lack of more effective drugs. Tumors, however, quickly develop resistance to this line of treatment creating a critical need for alternative approaches and strategies to resensitize the cells. Withaferin A (WA), a steroidal lactone derived from several genera of the Solanaceae plant family has previously demonstrated potent anti-cancer activity in multiple tumor models. Here, we examine the effects of WA against TMZ-resistant GBM cells as a monotherapy and in combination with TMZ. WA prevented GBM cell proliferation by dose-dependent G2/M cell cycle arrest and cell death through both intrinsic and extrinsic apoptotic pathways. This effect correlated with depletion of principle proteins of the Akt/mTOR and MAPK survival and proliferation pathways with diminished phosphorylation of Akt, mTOR, and p70 S6K but compensatory activation of ERK1/2. Depletion of tyrosine kinase cell surface receptors c-Met, EGFR, and Her2 was also observed. WA demonstrated induction of N-acetyl-L-cysteine-repressible oxidative stress as measured directly and through a subsequent heat shock response with HSP32 and HSP70 upregulation and decreased HSF1. Finally, pretreatment of TMZ-resistant GBM cells with WA was associated with O6-methylguanine-DNA methyltransferase (MGMT) depletion which potentiated TMZ-mediated MGMT degradation. Combination treatment with both WA and TMZ resulted in resensitization of MGMT-mediated TMZ-resistance but not resistance through mismatch repair mutations. These studies suggest great clinical potential for the utilization of WA in TMZ-resistant GBM as both a monotherapy and a resensitizer in combination with the standard chemotherapeutic agent TMZ.
Collapse
Affiliation(s)
- Patrick T Grogan
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | | | | | | |
Collapse
|
26
|
Chang L, Su J, Jia X, Ren H. Treating malignant glioma in Chinese patients: update on temozolomide. Onco Targets Ther 2014; 7:235-44. [PMID: 24600235 PMCID: PMC3928058 DOI: 10.2147/ott.s41336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Malignant glioma, ie, anaplastic astrocytoma and glioblastoma, is the most common type of primary malignant brain tumor in the People’s Republic of China, and is particularly aggressive. The median survival of patients with newly diagnosed glioblastoma is only 12–14 months despite advanced therapeutic strategies. Treatment of malignant glioma consists mainly of surgical resection followed by adjuvant radiation and chemotherapy. Temozolomide (TMZ), a second-generation oral alkylating agent, is playing an increasingly important role in the treatment of malignant glioma in Chinese patients. Since the publication of a study by Stupp et al in 2005, which used a protocol of conventional fractionated irradiation with concomitant TMZ followed by standard TMZ for six cycles, many clinical studies in the People’s Republic of China have demonstrated that such a treatment strategy has significantly improved efficacy with limited side effects for newly diagnosed glioblastoma after surgery as compared with strategies that do not contain TMZ. However, as a relatively new agent, the history and development of TMZ for malignant glioma is not well documented in Chinese patients. Multicenter, randomized controlled trials including appropriately sized patient populations investigating multiple aspects of TMZ therapy and related combination therapies are warranted in patients with malignant glioma. This review provides an update on the efficacy, mechanism of action, adverse reactions, and clinical role of TMZ in the treatment of malignant glioma in Chinese patients.
Collapse
Affiliation(s)
- Liang Chang
- Department of Neurosurgery, The Tumor Hospital of Harbin Medical University, People's Republic of China
| | - Jun Su
- Department of Neurosurgery, The Tumor Hospital of Harbin Medical University, People's Republic of China
| | - Xiuzhi Jia
- Department of Immunology, Harbin Medical University, People's Republic of China ; Key Lab Infection and Immunity, Heilongjiang Province, Harbin, People's Republic of China
| | - Huan Ren
- Department of Immunology, Harbin Medical University, People's Republic of China ; Key Lab Infection and Immunity, Heilongjiang Province, Harbin, People's Republic of China
| |
Collapse
|
27
|
Flechl B, Hassler MR, Kopetzky G, Balcke P, Kurz C, Marosi C. Case Report: Pregnancy in a patient with recurrent glioblastoma. F1000Res 2013; 2:246. [PMID: 25075279 PMCID: PMC4103487 DOI: 10.12688/f1000research.2-246.v1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2013] [Indexed: 11/20/2022] Open
Abstract
We report the case of a woman with relapsed glioblastoma multiforme (GBM) who recently gave birth. She announced her pregnancy shortly after the sixth cycle of a dense regimen of temozolomide, prescribed for treating the first recurrence of glioblastoma. Three years ago, in April 2008, she had undergone gross total resection of a glioblastoma multiforme in the postcentral region of the right hemisphere and had subsequently received treatment according to the actual standard therapy consisting of radiotherapy up to 60 Gy with concomitant and adjuvant temozolomide. The complete amount of temozolomide given before this pregnancy was 20.9 mg/m
2. Nevertheless, she delivered a 1890 g child by caesarean section in the 32/6 week of pregnancy. The child showed no anomalies and is developing normally under close surveillance by paediatricians.
Collapse
Affiliation(s)
- Birgit Flechl
- Department of Internal Medicine I, Clinical Division of Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Marco Ronald Hassler
- Department of Internal Medicine I, Clinical Division of Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gerhard Kopetzky
- Department of Internal Medicine I, General Hospital of St. Pölten, 3100 St. Pölten, Austria
| | - Peter Balcke
- Department of Internal Medicine I, General Hospital of St. Pölten, 3100 St. Pölten, Austria
| | - Christine Kurz
- Department of Obstetrics and Gynaecology, Clinical Division of Endocrinology, Medical University of Vienna, 1090 Vienna, Austria
| | - Christine Marosi
- Department of Internal Medicine I, Clinical Division of Oncology, Medical University of Vienna, 1090 Vienna, Austria ; Comprehensive Cancer Center-Central Nervous System Tumours Unit (CCC-CNS), Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
28
|
Wang H, Cai S, Ernstberger A, Bailey BJ, Wang MZ, Cai W, Goebel WS, Czader MB, Crean C, Suvannasankha A, Shokolenkoc I, Wilson GL, Baluyut AR, Mayo LD, Pollok KE. Temozolomide-mediated DNA methylation in human myeloid precursor cells: differential involvement of intrinsic and extrinsic apoptotic pathways. Clin Cancer Res 2013; 19:2699-709. [PMID: 23536437 DOI: 10.1158/1078-0432.ccr-12-2671] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE An understanding of how hematopoietic cells respond to therapy that causes myelosuppression will help develop approaches to prevent this potentially life-threatening toxicity. The goal of this study was to determine how human myeloid precursor cells respond to temozolomide (TMZ)-induced DNA damage. EXPERIMENTAL DESIGN We developed an ex vivo primary human myeloid precursor cells model system to investigate the involvement of cell-death pathways using a known myelosuppressive regimen of O(6)-benzylguanine (6BG) and TMZ. RESULTS Exposure to 6BG/TMZ led to increases in p53, p21, γ-H2AX, and mitochondrial DNA damage. Increases in mitochondrial membrane depolarization correlated with increased caspase-9 and -3 activities following 6BG/TMZ treatment. These events correlated with decreases in activated AKT, downregulation of the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT), and increased cell death. During myeloid precursor cell expansion, FAS/CD95/APO1(FAS) expression increased over time and was present on approximately 100% of the cells following exposure to 6BG/TMZ. Although c-flipshort, an endogenous inhibitor of FAS-mediated signaling, was decreased in 6BG/TMZ-treated versus control, 6BG-, or TMZ alone-treated cells, there were no changes in caspase-8 activity. In addition, there were no changes in the extent of cell death in myeloid precursor cells exposed to 6BG/TMZ in the presence of neutralizing or agonistic anti-FAS antibodies, indicating that FAS-mediated signaling was not operative. CONCLUSIONS In human myeloid precursor cells, 6BG/TMZ-initiated apoptosis occurred by intrinsic, mitochondrial-mediated and not extrinsic, FAS-mediated apoptosis. Human myeloid precursor cells represent a clinically relevant model system for gaining insight into how hematopoietic cells respond to chemotherapeutics and offer an approach for selecting effective chemotherapeutic regimens with limited hematopoietic toxicity.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Pediatrics, Section of Pediatric Hematology/Oncology, Herman B Wells Center for Pediatric Research, Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|