1
|
Kamiya K, Hanashiro S, Kano O, Uchida W, Kamagata K, Aoki S, Hori M. Surface-based Analyses of Diffusional Kurtosis Imaging in Amyotrophic Lateral Sclerosis: Relationship with Onset Subtypes. Magn Reson Med Sci 2025; 24:122-132. [PMID: 38296522 DOI: 10.2463/mrms.mp.2023-0138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
PURPOSE Here, we aimed to characterize the cortical and subcortical microstructural alterations in the brains of patients with amyotrophic lateral sclerosis (ALS). In particular, we compared these features between bulbar-onset ALS (b-ALS) and limb-onset ALS (l-ALS). METHODS Diffusion MRI data (b = 0, 700, 2000 ms/mm2, 1.7-mm isotropic voxel) from 28 patients with ALS (9 b-ALS and 19 l-ALS) and 17 healthy control subjects (HCs) were analyzed. Diffusional kurtosis imaging (DKI) metrics were sampled at the mid-cortical and subcortical surfaces. We used permutation testing with a nonparametric combination of mean diffusivity (MD), fractional anisotropy (FA), and mean kurtosis (MK) to assess intergroup differences over the cerebrum. We also carried out an atlas-based analysis focusing on Brodmann Area 4 and 6 (primary motor and premotor areas) and investigated the correlation between MRI metrics and clinical parameters. RESULTS At both the mid-cortical and subcortical surfaces, b-ALS was associated with significantly greater MD, smaller FA, and smaller MK in the motor and premotor areas than HC. In contrast, the patients with l-ALS showed relatively moderate differences relative to HCs. The ALS Functional Rating Scale-Revised bulbar subscore was significantly correlated with the diffusion metrics in Brodmann Area 4. CONCLUSION The distribution of abnormalities over the cerebral hemispheres and the more severe microstructural alteration in b-ALS compared to l-ALS were in good agreement with findings from postmortem histology. Our results suggest the feasibility of surface-based DKI analyses for exploring brain microstructural pathologies in ALS. The observed differences between b-ALS and l-ALS and their correlations with functional bulbar impairment support the clinical relevance of DKI measurement in the cortical and juxtacortical regions of patients with ALS.
Collapse
Affiliation(s)
- Kouhei Kamiya
- Department of Radiology, Faculty of Medicine, Toho University, Tokyo, Japan
- Department of Radiology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Sayori Hanashiro
- Department of Neurology, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Osamu Kano
- Department of Neurology, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Wataru Uchida
- Department of Radiology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Faculty of Medicine, Toho University, Tokyo, Japan
- Department of Radiology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
2
|
Chen H, Hu Z, Ke Z, Xu Y, Bai F, Liu Z. Aberrant Multimodal Connectivity Pattern Involved in Default Mode Network and Limbic Network in Amyotrophic Lateral Sclerosis. Brain Sci 2023; 13:brainsci13050803. [PMID: 37239275 DOI: 10.3390/brainsci13050803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that progressively affects bulbar and limb function. Despite increasing recognition of the disease as a multinetwork disorder characterized by aberrant structural and functional connectivity, its integrity agreement and its predictive value for disease diagnosis remain to be fully elucidated. In this study, we recruited 37 ALS patients and 25 healthy controls (HCs). High-resolution 3D T1-weighted imaging and resting-state functional magnetic resonance imaging were, respectively, applied to construct multimodal connectomes. Following strict neuroimaging selection criteria, 18 ALS and 25 HC patients were included. Network-based statistic (NBS) and the coupling of grey matter structural-functional connectivity (SC-FC coupling) were performed. Finally, the support vector machine (SVM) method was used to distinguish the ALS patients from HCs. Results showed that, compared with HCs, ALS individuals exhibited a significantly increased functional network, predominantly encompassing the connections between the default mode network (DMN) and the frontoparietal network (FPN). The increased structural connections predominantly involved the inter-regional connections between the limbic network (LN) and the DMN, the salience/ventral attention network (SVAN) and FPN, while the decreased structural connections mainly involved connections between the LN and the subcortical network (SN). We also found increased SC-FC coupling in DMN-related brain regions and decoupling in LN-related brain regions in ALS, which could differentiate ALS from HCs with promising capacity based on SVM. Our findings highlight that DMN and LN may play a vital role in the pathophysiological mechanism of ALS. Additionally, SC-FC coupling could be regarded as a promising neuroimaging biomarker for ALS and shows important clinical potential for early recognition of ALS individuals.
Collapse
Affiliation(s)
- Haifeng Chen
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Zheqi Hu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
- Medical School of Nanjing University, Nanjing University, Nanjing 210093, China
| | - Zhihong Ke
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
- Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 211166, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Zhuo Liu
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| |
Collapse
|
3
|
Hippocampal Metabolic Alterations in Amyotrophic Lateral Sclerosis: A Magnetic Resonance Spectroscopy Study. Life (Basel) 2023; 13:life13020571. [PMID: 36836928 PMCID: PMC9965919 DOI: 10.3390/life13020571] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Magnetic resonance spectroscopy (MRS) in amyotrophic lateral sclerosis (ALS) has been overwhelmingly applied to motor regions to date and our understanding of frontotemporal metabolic signatures is relatively limited. The association between metabolic alterations and cognitive performance in also poorly characterised. MATERIAL AND METHODS In a multimodal, prospective pilot study, the structural, metabolic, and diffusivity profile of the hippocampus was systematically evaluated in patients with ALS. Patients underwent careful clinical and neurocognitive assessments. All patients were non-demented and exhibited normal memory performance. 1H-MRS spectra of the right and left hippocampi were acquired at 3.0T to determine the concentration of a panel of metabolites. The imaging protocol also included high-resolution T1-weighted structural imaging for subsequent hippocampal grey matter (GM) analyses and diffusion tensor imaging (DTI) for the tractographic evaluation of the integrity of the hippocampal perforant pathway zone (PPZ). RESULTS ALS patients exhibited higher hippocampal tNAA, tNAA/tCr and tCho bilaterally, despite the absence of volumetric and PPZ diffusivity differences between the two groups. Furthermore, superior memory performance was associated with higher hippocampal tNAA/tCr bilaterally. Both longer symptom duration and greater functional disability correlated with higher tCho levels. CONCLUSION Hippocampal 1H-MRS may not only contribute to a better academic understanding of extra-motor disease burden in ALS, but given its sensitive correlations with validated clinical metrics, it may serve as practical biomarker for future clinical and clinical trial applications. Neuroimaging protocols in ALS should incorporate MRS in addition to standard structural, functional, and diffusion sequences.
Collapse
|
4
|
Analysis of SOD1 and C9orf72 mutations in patients with amyotrophic lateral sclerosis in Antioquia, Colombia. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2022; 42:623-632. [PMID: 36511680 DOI: 10.7705/biomedica.6060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis is a neurodegenerative disease with a possible multifactorial origin characterized by the progressive degeneration of motor neurons. There is a relatively high prevalence of this disease in Antioquia; however, there is no published genetic study to date in Colombia. Despite its unknown etiopathogenesis, more genetic risk factors possibly involved in the development of this disease are constantly found. OBJETIVES To evaluate G93A and D90A mutations in SOD1 gene and a short tandem repeat in C9orf72 within a cohort of amyotrophic lateral sclerosis patients from Antioquia, Colombia. Materials y methods: Thirty-four patients previously diagnosed with amyotrophic lateral sclerosis were included in the study. Peripheral blood samples were used for DNA extraction and genotyping. RESULTS No mutations were found in SOD1 (G93A and D90A) in any of the patients, while C9orf72 exhibited an allele with a statistically significant high prevalence in the study sample (8 hexanucleotide repeats of CAGCAG). CONCLUSIONS These results suggest an association between this short tandem repeat (STR) in C9orf72 and the presence of amyotrophic lateral sclerosis in the studied population. However, this association should be established in a larger sample size and with controls from the same population. In addition, there also seems to be a genetic anticipation effect for the disease regarding this locus, since patients with this genotype present an earlier onset.
Collapse
|
5
|
Cortical and subcortical grey matter atrophy in Amyotrophic Lateral Sclerosis correlates with measures of disease accumulation independent of disease aggressiveness. Neuroimage Clin 2022; 36:103162. [PMID: 36067613 PMCID: PMC9460837 DOI: 10.1016/j.nicl.2022.103162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/11/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
There is a growing demand for reliable biomarkers to monitor disease progression in Amyotrophic Lateral Sclerosis (ALS) that also take the heterogeneity of ALS into account. In this study, we explored the association between Magnetic Resonance Imaging (MRI)-derived measures of cortical thickness (CT) and subcortical grey matter (GM) volume with D50 model parameters. T1-weighted MRI images of 72 Healthy Controls (HC) and 100 patients with ALS were analyzed using Surface-based Morphometry for cortical structures and Voxel-based Morphometry for subcortical Region-Of-Interest analyses using the Computational Anatomy Toolbox (CAT12). In Inter-group contrasts, these parameters were compared between patients and HC. Further, the D50 model was used to conduct subgroup-analyses, dividing patients by a) Phase of disease covered at the time of MRI-scan and b) individual overall disease aggressiveness. Finally, correlations between GM and D50 model-derived parameters were examined. Inter-group analyses revealed ALS-related cortical thinning compared to HC located mainly in frontotemporal regions and a decrease in GM volume in the left hippocampus and amygdala. A comparison of patients in different phases showed further cortical and subcortical GM atrophy along with disease progression. Correspondingly, regression analyses identified negative correlations between cortical thickness and individual disease covered. However, there were no differences in CT and subcortical GM between patients with low and high disease aggressiveness. By application of the D50 model, we identified correlations between cortical and subcortical GM atrophy and ALS-related functional disability, but not with disease aggressiveness. This qualifies CT and subcortical GM volume as biomarkers representing individual disease covered to monitor therapeutic interventions in ALS.
Collapse
|
6
|
Münch M, Müller HP, Behler A, Ludolph AC, Kassubek J. Segmental alterations of the corpus callosum in motor neuron disease: A DTI and texture analysis in 575 patients. Neuroimage Clin 2022; 35:103061. [PMID: 35653913 PMCID: PMC9163839 DOI: 10.1016/j.nicl.2022.103061] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/15/2022] [Accepted: 05/26/2022] [Indexed: 10/29/2022]
Abstract
INTRODUCTION Within the core neuroimaging signature of amyotrophic lateral sclerosis (ALS), the corpus callosum (CC) is increasingly recognized as a consistent feature. The aim of this study was to investigate the sensitivity and specificity of the microstructural segmental CC morphology, assessed by diffusion tensor imaging (DTI) and high-resolution T1-weighted (T1w) imaging, in a large cohort of ALS patients including different clinical phenotypes. METHODS In a single-centre study, 575 patients with ALS (classical phenotype, N = 432; restricted phenotypes primary lateral sclerosis (PLS) N = 55, flail arm syndrome (FAS) N = 45, progressive bulbar palsy (PBP) N = 22, lower motor neuron disease (LMND) N = 21) and 112 healthy controls underwent multiparametric MRI, i.e. volume-rendering T1w scans and DTI. Tract-based fractional anisotropy statistics (TFAS) was applied to callosal tracts of CC areas I-V, identified from DTI data (tract-of-interest (TOI) analysis), and texture analysis was applied to T1w data. In order to further specify the callosal alterations, a support vector machine (SVM) algorithm was used to discriminate between motor neuron disease patients and controls. RESULTS The analysis of white matter integrity revealed predominantly FA reductions for tracts of the callosal areas I, II, and III (with highest reductions in callosal area III) for all ALS patients and separately for each phenotype when compared to controls; texture analysis demonstrated significant alterations of the parameters entropy and homogeneity for ALS patients and all phenotypes for the CC areas I, II, and III (with again highest reductions in callosal area III) compared to controls. With SVM applied on multiparametric callosal parameters of area III, a separation of all ALS patients including phenotypes from controls with 72% sensitivity and 73% specificity was achieved. These results for callosal area III parameters could be improved by an SVM of six multiparametric callosal parameters of areas I, II, and III, achieving a separation of all ALS patients including phenotypes from controls with 84% sensitivity and 85% specificity. DISCUSSION The multiparametric MRI texture and DTI analysis demonstrated substantial alterations of the frontal and central CC with most significant alterations in callosal area III (motor segment) in ALS and separately in all investigated phenotypes (PLS, FAS, PBP, LMND) in comparison to controls, while no significant differences were observed between ALS and its phenotypes. The combination of the texture and the DTI parameters in an unbiased SVM-based approach might contribute as a neuroimaging marker for the assessment of the CC in ALS, including subtypes.
Collapse
Affiliation(s)
| | | | - Anna Behler
- Department of Neurology, University of Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, University of Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany.
| |
Collapse
|
7
|
Vucic S, Pavey N, Haidar M, Turner BJ, Kiernan MC. Cortical hyperexcitability: Diagnostic and pathogenic biomarker of ALS. Neurosci Lett 2021; 759:136039. [PMID: 34118310 DOI: 10.1016/j.neulet.2021.136039] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/04/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
Cortical hyperexcitability is an early and intrinsic feature of both sporadic and familial forms of amyotrophic lateral sclerosis (ALS).. Importantly, cortical hyperexcitability appears to be associated with motor neuron degeneration, possibly via an anterograde glutamate-mediated excitotoxic process, thereby forming a pathogenic basis for ALS. The presence of cortical hyperexcitability in ALS patients may be readily determined by transcranial magnetic stimulation (TMS), a neurophysiological tool that provides a non-invasive and painless method for assessing cortical function. Utilising the threshold tracking TMS technique, cortical hyperexcitability has been established as a robust diagnostic biomarker that distinguished ALS from mimicking disorders at early stages of the disease process. The present review discusses the pathophysiological and diagnostic utility of cortical hyperexcitability in ALS.
Collapse
Affiliation(s)
- Steve Vucic
- Western Clinical School, University of Sydney, Sydney, Australia.
| | - Nathan Pavey
- Western Clinical School, University of Sydney, Sydney, Australia
| | - Mouna Haidar
- Florey Institute of Neuroscieace and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscieace and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
8
|
Eisen A. The Dying Forward Hypothesis of ALS: Tracing Its History. Brain Sci 2021; 11:brainsci11030300. [PMID: 33673524 PMCID: PMC7997258 DOI: 10.3390/brainsci11030300] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/25/2021] [Indexed: 01/15/2023] Open
Abstract
The site of origin of amyotrophic lateral sclerosis (ALS), although unsettled, is increasingly recognized as being cortico-fugal, which is a dying-forward process primarily starting in the corticomotoneuronal system. A variety of iterations of this concept date back to over 150 years. Recently, the hallmark TAR DNA-binding protein 43 (TDP-43) pathology, seen in >95% of patients with ALS, has been shown to be largely restricted to corticofugal projecting neurons (“dying forward”). Possibly, soluble but toxic cytoplasmic TDP-43 could enter the axoplasm of Betz cells, subsequently causing dysregulation of nuclear protein in the lower brainstem and spinal cord anterior horn cells. As the disease progresses, cortical involvement in ALS becomes widespread, including or starting with frontotemporal dementia, implying a broader view of ALS as a brain disease. The onset at the motor and premotor cortices should be considered a nidus at the edge of multiple cortical networks which eventually become disrupted, causing failure of a widespread cortical connectome.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
9
|
Cheng L, Tang X, Luo C, Liu D, Zhang Y, Zhang J. Fiber-specific white matter reductions in amyotrophic lateral sclerosis. Neuroimage Clin 2020; 28:102516. [PMID: 33396003 PMCID: PMC7724379 DOI: 10.1016/j.nicl.2020.102516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the loss of both upper and lower motor neurons. Studies using metrics derived from the diffusion tensor model have documented decreased fractional anisotropy (FA) and increased mean diffusivity in the corticospinal tract (CST) and the corpus callosum (CC) in ALS. These studies, however, only focused on microstructural white matter (WM) changes, while the macrostructural alterations of WM tracts in ALS remain unknown. Moreover, studies conducted based on the diffusion tensor model cannot provide information related to specific fiber bundles and fail to clarify which biological characteristics are changing. Using a novel fixel-based analytical method that can characterize the fiber density (FD) and the fiber-bundle cross-section (FC), this study investigated both microstructural and macrostructural changes in the WM in a large cohort of patients with ALS (N = 60) compared with demographically matched healthy controls (N = 60). Compared with healthy controls, we found decreased FD, FC and fiber density and cross-section (FDC, a combined measure of the FD and FC) values in the bilateral CST and the middle posterior body of the CC in patients with ALS, suggesting not only microstructural but also macrostructural abnormalities in these fiber bundles. Additionally, we found that the mean FD and FDC values in the bilateral CST were positively correlated with the revised ALS Functional Rating Scale, indicating that these two indices may serve as potential markers for assessing the clinical severity of ALS. Thus, these findings provide initial evidence for the existence of microstructural and macrostructural abnormalities of the fiber bundles in ALS.
Collapse
Affiliation(s)
- Luqi Cheng
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xie Tang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Chunxia Luo
- Department of Neurology, The First Affiliated Hospital, Third Military Medical University, Chongqing 400308, PR China
| | - Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, PR China
| | - Yuanchao Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
10
|
Pioro EP, Turner MR, Bede P. Neuroimaging in primary lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:18-27. [PMID: 33602015 DOI: 10.1080/21678421.2020.1837176] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Increased interest in the underlying pathogenesis of primary lateral sclerosis (PLS) and its relationship to amyotrophic lateral sclerosis (ALS) has corresponded to a growing number of CNS imaging studies, especially in the past decade. Both its rarity and uncertainty of definite diagnosis prior to 4 years from symptom onset have resulted in PLS being less studied than ALS. In this review, we highlight most relevant papers applying magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET) to analyzing CNS changes in PLS, often in relation to ALS. In patients with PLS, mostly brain, but also spinal cord has been evaluated since significant neurodegeneration is essentially restricted to upper motor neuron (UMN) structures and related pathways. Abnormalities of cortex and subcortical white matter tracts have been identified by structural and functional MRI and MRS studies, while metabolic and cell-specific changes in PLS brain have been revealed using various PET radiotracers. Future neuroimaging studies will continue to explore the interface between the PLS-ALS continuum, identify more changes unique to PLS, apply novel MRI and MRS sequences showing greater structural and neurochemical detail, as well as expand the repertoire of PET radiotracers that reveal various cellular pathologies. Neuroimaging has the potential to play an important role in the evaluation of novel therapies for patients with PLS.
Collapse
Affiliation(s)
- Erik P Pioro
- Section of ALS & Related Disorders, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Tu S, Wang C, Menke RAL, Talbot K, Barnett M, Kiernan MC, Turner MR. Regional callosal integrity and bilaterality of limb weakness in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:396-402. [PMID: 32106716 DOI: 10.1080/21678421.2020.1733020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background and Objectives: The corpus callosum is a site of pathological involvement in the neurodegenerative disorder amyotrophic lateral sclerosis (ALS). The corpus callosum shows widespread cortical connectivity topographically distributed along its length. Initial limb weakness in ALS is typically unilateral, becoming bilateral with disease progression. The precise anatomical substrate for this spread is uncertain. The present study investigated sub-regional variations in corpus callosum integrity in ALS, and whether these reflect a relationship with the development of unilateral or bilateral limb weakness. Methods: Sporadic ALS patients were categorized into unilateral (n = 14) or bilateral (n = 25) limb weakness at the time of assessment and underwent diffusion tensor imaging. Probabilistic bundle-specific tracking was carried out using MRtrix and TractSeg to parcellate the corpus callosum into seven anatomical segments (rostrum; genu; rostral body; anterior midbody; posterior midbody; isthmus; splenium). White matter tract integrity was assessed in all segments and compared with MRI data acquired from 25 healthy controls. Results: In the combined patient group, the most prominent differences in diffusivity metrics were in the rostral body, posterior midbody and isthmus of the corpus callosum (p < 0.04). Loss of corpus callosum integrity was most prominent in the sub-group with unilateral limb weakness at the time of scanning (p < 0.05). Conclusions: Corpus callosum involvement in ALS is detectable across multiple segments, in keeping with a widespread cortical distribution of pathology. The association of unilateral limb weakness with greater loss of corpus callosum integrity informs connectivity-based hypotheses of symptom propagation in ALS.
Collapse
Affiliation(s)
- Sicong Tu
- Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Chenyu Wang
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Ricarda A L Menke
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Michael Barnett
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | | | - Martin R Turner
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Edmond EC, Stagg CJ, Turner MR. Therapeutic non-invasive brain stimulation in amyotrophic lateral sclerosis: rationale, methods and experience. J Neurol Neurosurg Psychiatry 2019; 90:1131-1138. [PMID: 31072957 DOI: 10.1136/jnnp-2018-320213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 01/24/2023]
Abstract
The neurodegenerative syndrome amyotrophic lateral sclerosis (ALS) is characterised by increased cortical excitability, thought to reflect pathological changes in the balance of local excitatory and inhibitory neuronal influences. Non-invasive brain stimulation (NIBS) has been shown to modulate cortical activity, with some protocols showing effects that outlast the stimulation by months. NIBS has been suggested as a potential therapeutic approach for disorders associated with changes in cortical neurophysiology, including ALS. This article reviews NIBS methodology, rationale for its application to ALS and progress to date.
Collapse
Affiliation(s)
- Evan C Edmond
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK.,Wellcome Centre for Integrative Neuroimaging, Oxford University, Oxford, UK.,Oxford Centre for Human Brain Activity (OHBA), Oxford University, Oxford, UK.,Oxford Centre for Functional MRI of the Brain (FMRIB), Oxford University, Oxford, UK
| | - Charlotte J Stagg
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK.,Wellcome Centre for Integrative Neuroimaging, Oxford University, Oxford, UK.,Oxford Centre for Human Brain Activity (OHBA), Oxford University, Oxford, UK.,Oxford Centre for Functional MRI of the Brain (FMRIB), Oxford University, Oxford, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK .,Wellcome Centre for Integrative Neuroimaging, Oxford University, Oxford, UK.,Oxford Centre for Human Brain Activity (OHBA), Oxford University, Oxford, UK.,Oxford Centre for Functional MRI of the Brain (FMRIB), Oxford University, Oxford, UK
| |
Collapse
|
13
|
Turner MR. MND plus. Pract Neurol 2019; 19:376-377. [DOI: 10.1136/practneurol-2019-002213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2019] [Indexed: 11/04/2022]
|
14
|
Christidi F, Karavasilis E, Velonakis G, Rentzos M, Zambelis T, Zouvelou V, Xirou S, Ferentinos P, Efstathopoulos E, Kelekis N, Evdokimidis I, Karandreas N. Motor and extra-motor gray matter integrity may underlie neurophysiologic parameters of motor function in amyotrophic lateral sclerosis: a combined voxel-based morphometry and transcranial stimulation study. Brain Imaging Behav 2019; 12:1730-1741. [PMID: 29417490 DOI: 10.1007/s11682-018-9841-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The association between gray matter (GM) density and neurophysiologic changes is still unclear in amyotrophic lateral sclerosis (ALS). We evaluated the relationship between GM density and motor system integrity combining voxel-based morphometry (VBM) and transcranial magnetic stimulation (TMS) in ALS. We included 17 ALS patients and 22 healthy controls (HC) who underwent 3D-T1-weighted imaging. Among the ALS group, we applied left motor cortex single-pulse TMS. We used whole-brain VBM comparing ALS and HC in GM density. We also conducted regression analysis to examine correlations between GM density and the following TMS parameters: motor evoked potential (MEP)/M ratio and central motor conduction time (CMCT). We found significantly decreased GM density in ALS patients in several frontal, temporal, parietal/occipital and cerebellar regions (p < 0.001 uncorrected; cluster-extent threshold k = 100 voxels per cluster). With regards to TMS parameters, ALS patients showed mostly increased MEP/M ratio and modest prolongation of CMCT. MEP/M ratio was associated with GM density in (a) rolandic operculum/inferior frontal gyrus/precentral gyrus; anterior cingulate gyrus; inferior temporal gyrus; superior parietal lobule; cuneus; superior occipital gyrus and cerebellum (positive association) and (b) paracentral lobule/supplementary motor area (negative association). CMCT was associated with GM density in (a) inferior frontal gyrus and middle cingulated gyrus (positive association) and (b) superior parietal lobule; cuneus and cerebellum (negative association). Our findings support a significant interaction between motor and extra-motor structural and functional changes and highlight that motor and extra-motor GM integrity may underlie TMS parameters of motor function in ALS patients.
Collapse
Affiliation(s)
- Foteini Christidi
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece.
| | - Efstratios Karavasilis
- Radiology and Medical Imaging Research Unit, Second Department of Radiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Georgios Velonakis
- Radiology and Medical Imaging Research Unit, Second Department of Radiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Michail Rentzos
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece
| | - Thomas Zambelis
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece
| | - Vasiliki Zouvelou
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece
| | - Sophia Xirou
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece
| | - Panagiotis Ferentinos
- Second Department of Psychiatry, Attikon University Hospital, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Efstathopoulos
- Radiology and Medical Imaging Research Unit, Second Department of Radiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kelekis
- Radiology and Medical Imaging Research Unit, Second Department of Radiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Evdokimidis
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece
| | - Nikolaos Karandreas
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece
| |
Collapse
|
15
|
Serra A, Galdi P, Pesce E, Fratello M, Trojsi F, Tedeschi G, Tagliaferri R, Esposito F. Strong-Weak Pruning for Brain Network Identification in Connectome-Wide Neuroimaging: Application to Amyotrophic Lateral Sclerosis Disease Stage Characterization. Int J Neural Syst 2019; 29:1950007. [PMID: 30929575 DOI: 10.1142/s0129065719500072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Magnetic resonance imaging allows acquiring functional and structural connectivity data from which high-density whole-brain networks can be derived to carry out connectome-wide analyses in normal and clinical populations. Graph theory has been widely applied to investigate the modular structure of brain connections by using centrality measures to identify the "hub" of human connectomes, and community detection methods to delineate subnetworks associated with diverse cognitive and sensorimotor functions. These analyses typically rely on a preprocessing step (pruning) to reduce computational complexity and remove the weakest edges that are most likely affected by experimental noise. However, weak links may contain relevant information about brain connectivity, therefore, the identification of the optimal trade-off between retained and discarded edges is a subject of active research. We introduce a pruning algorithm to identify edges that carry the highest information content. The algorithm selects both strong edges (i.e. edges belonging to shortest paths) and weak edges that are topologically relevant in weakly connected subnetworks. The newly developed "strong-weak" pruning (SWP) algorithm was validated on simulated networks that mimic the structure of human brain networks. It was then applied for the analysis of a real dataset of subjects affected by amyotrophic lateral sclerosis (ALS), both at the early (ALS2) and late (ALS3) stage of the disease, and of healthy control subjects. SWP preprocessing allowed identifying statistically significant differences in the path length of networks between patients and healthy subjects. ALS patients showed a decrease of connectivity between frontal cortex to temporal cortex and parietal cortex and between temporal and occipital cortex. Moreover, degree of centrality measures revealed significantly different hub and centrality scores between patient subgroups. These findings suggest a widespread alteration of network topology in ALS associated with disease progression.
Collapse
Affiliation(s)
- Angela Serra
- *NeuRoNeLab, Department of Management and Innovation Systems, University of Salerno, Fisciano (Sa), 84084, Italy.,†Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Paola Galdi
- *NeuRoNeLab, Department of Management and Innovation Systems, University of Salerno, Fisciano (Sa), 84084, Italy.,‡MRC Centre for Reproductive Health, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Emanuele Pesce
- *NeuRoNeLab, Department of Management and Innovation Systems, University of Salerno, Fisciano (Sa), 84084, Italy.,§International Digital Laboratory, WMG, University of Coventry, CV4 7AL, UK
| | - Michele Fratello
- ¶Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, 80138, Italy
| | - Francesca Trojsi
- ¶Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, 80138, Italy
| | - Gioacchino Tedeschi
- ¶Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, 80138, Italy
| | - Roberto Tagliaferri
- *NeuRoNeLab, Department of Management and Innovation Systems, University of Salerno, Fisciano (Sa), 84084, Italy
| | - Fabrizio Esposito
- ∥Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi (Sa), 84081, Italy
| |
Collapse
|
16
|
Christidi F, Karavasilis E, Riederer F, Zalonis I, Ferentinos P, Velonakis G, Xirou S, Rentzos M, Argiropoulos G, Zouvelou V, Zambelis T, Athanasakos A, Toulas P, Vadikolias K, Efstathopoulos E, Kollias S, Karandreas N, Kelekis N, Evdokimidis I. Gray matter and white matter changes in non-demented amyotrophic lateral sclerosis patients with or without cognitive impairment: A combined voxel-based morphometry and tract-based spatial statistics whole-brain analysis. Brain Imaging Behav 2019; 12:547-563. [PMID: 28425061 DOI: 10.1007/s11682-017-9722-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The phenotypic heterogeneity in amyotrophic lateral sclerosis (ALS) implies that patients show structural changes within but also beyond the motor cortex and corticospinal tract and furthermore outside the frontal lobes, even if frank dementia is not detected. The aim of the present study was to investigate both gray matter (GM) and white matter (WM) changes in non-demented amyotrophic lateral sclerosis (ALS) patients with or without cognitive impairment (ALS-motor and ALS-plus, respectively). Nineteen ALS-motor, 31 ALS-plus and 25 healthy controls (HC) underwent 3D-T1-weighted and 30-directional diffusion-weighted imaging on a 3 T MRI scanner. Voxel-based morphometry and tract-based spatial-statistics analysis were performed to examine GM volume (GMV) changes and WM differences in fractional anisotropy (FA), axial and radial diffusivity (AD, RD, respectively). Compared to HC, ALS-motor patients showed decreased GMV in frontal and cerebellar areas and increased GMV in right supplementary motor area, while ALS-plus patients showed diffuse GMV reduction in primary motor cortex bilaterally, frontotemporal areas, cerebellum and basal ganglia. ALS-motor patients had increased GMV in left precuneus compared to ALS-plus patients. We also found decreased FA and increased RD in the corticospinal tract bilaterally, the corpus callosum and extra-motor tracts in ALS-motor patients, and decreased FA and increased AD and RD in motor and several WM tracts in ALS-plus patients, compared to HC. Multimodal neuroimaging confirms motor and extra-motor GM and WM abnormalities in non-demented cognitively-impaired ALS patients (ALS-plus) and identifies early extra-motor brain pathology in ALS patients without cognitive impairment (ALS-motor).
Collapse
Affiliation(s)
- Foteini Christidi
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University, Athens, Greece.
| | - Efstratios Karavasilis
- Second Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University, Athens, Greece
| | - Franz Riederer
- Neurological Center Rosenhuegel and Karl Landsteiner Institute for Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Ioannis Zalonis
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University, Athens, Greece
| | - Panagiotis Ferentinos
- Second Department of Psychiatry, Attikon University Hospital, Medical School, National & Kapodistrian University, Athens, Greece
| | - Georgios Velonakis
- Second Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University, Athens, Greece
| | - Sophia Xirou
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University, Athens, Greece
| | - Michalis Rentzos
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University, Athens, Greece
| | - Georgios Argiropoulos
- Second Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University, Athens, Greece
| | - Vasiliki Zouvelou
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University, Athens, Greece
| | - Thomas Zambelis
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University, Athens, Greece
| | - Athanasios Athanasakos
- Second Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University, Athens, Greece
| | - Panagiotis Toulas
- Second Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University, Athens, Greece
| | | | - Efstathios Efstathopoulos
- Second Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University, Athens, Greece
| | - Spyros Kollias
- Clinic of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Nikolaos Karandreas
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University, Athens, Greece
| | - Nikolaos Kelekis
- Second Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University, Athens, Greece
| | - Ioannis Evdokimidis
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University, Athens, Greece
| |
Collapse
|
17
|
Cieślak M, Roszek K, Wujak M. Purinergic implication in amyotrophic lateral sclerosis-from pathological mechanisms to therapeutic perspectives. Purinergic Signal 2019; 15:1-15. [PMID: 30430356 PMCID: PMC6439052 DOI: 10.1007/s11302-018-9633-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/01/2018] [Indexed: 12/22/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a clinically heterogeneous disorder characterized by degeneration of upper motor neurons in the brainstem and lower motor neurons in the spinal cord. Multiple mechanisms of motor neuron injury have been implicated, including more than 20 different genetic factors. The pathogenesis of ALS consists of two stages: an early neuroprotective stage and a later neurotoxic. During early phases of disease progression, the immune system through glial and T cell activities provides anti-inflammatory factors that sustain motor neuron viability. As the disease progresses and motor neuron injury accelerates, a rapidly succeeding neurotoxic phase develops. A well-orchestrated purine-mediated dialog among motor neurons, surrounding glia and immune cells control the beneficial and detrimental activities occurring in the nervous system. In general, low adenosine triphosphate (ATP) concentrations protect cells against excitotoxic stimuli through purinergic P2X4 receptor, whereas high concentrations of ATP trigger toxic P2X7 receptor activation. Finally, adenosine is also involved in ALS progression since A2A receptor antagonists prevent motor neuron death. Given the complex cellular cross-talk occurring in ALS and the recognized function of extracellular nucleotides and adenosine in neuroglia communication, the comprehensive understanding of purinome dynamics might provide new research perspectives to decipher ALS and help to design more efficient and targeted drugs. This review will focus on the purinergic players involved in ALS etiology and disease progression and current therapeutic strategies to enhance neuroprotection and suppress neurotoxicity.
Collapse
Affiliation(s)
- M Cieślak
- Neurology Clinic, Marek Cieślak, Toruń, Poland
| | - K Roszek
- Department of Biochemistry, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, 1 Lwowska St, 87-100, Toruń, Poland
| | - M Wujak
- Department of Biochemistry, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, 1 Lwowska St, 87-100, Toruń, Poland.
| |
Collapse
|
18
|
Proudfoot M, Bede P, Turner MR. Imaging Cerebral Activity in Amyotrophic Lateral Sclerosis. Front Neurol 2019; 9:1148. [PMID: 30671016 PMCID: PMC6332509 DOI: 10.3389/fneur.2018.01148] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/11/2018] [Indexed: 01/30/2023] Open
Abstract
Advances in neuroimaging, complementing histopathological insights, have established a multi-system involvement of cerebral networks beyond the traditional neuromuscular pathological view of amyotrophic lateral sclerosis (ALS). The development of effective disease-modifying therapy remains a priority and this will be facilitated by improved biomarkers of motor system integrity against which to assess the efficacy of candidate drugs. Functional MRI (FMRI) is an established measure of both cerebral activity and connectivity, but there is an increasing recognition of neuronal oscillations in facilitating long-distance communication across the cortical surface. Such dynamic synchronization vastly expands the connectivity foundations defined by traditional neuronal architecture. This review considers the unique pathogenic insights afforded by the capture of cerebral disease activity in ALS using FMRI and encephalography.
Collapse
Affiliation(s)
- Malcolm Proudfoot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Peter Bede
- Computational Neuroimaging Group, Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Barritt AW, Gabel MC, Cercignani M, Leigh PN. Emerging Magnetic Resonance Imaging Techniques and Analysis Methods in Amyotrophic Lateral Sclerosis. Front Neurol 2018; 9:1065. [PMID: 30564192 PMCID: PMC6288229 DOI: 10.3389/fneur.2018.01065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/22/2018] [Indexed: 12/17/2022] Open
Abstract
Objective markers of disease sensitive to the clinical activity, symptomatic progression, and underlying substrates of neurodegeneration are highly coveted in amyotrophic lateral sclerosis in order to more eloquently stratify the highly heterogeneous phenotype and facilitate the discovery of effective disease modifying treatments for patients. Magnetic resonance imaging (MRI) is a promising, non-invasive biomarker candidate whose acquisition techniques and analysis methods are undergoing constant evolution in the pursuit of parameters which more closely represent biologically-applicable tissue changes. Neurite Orientation Dispersion and Density Imaging (NODDI; a form of diffusion imaging), and quantitative Magnetization Transfer Imaging (qMTi) are two such emerging modalities which have each broadened the understanding of other neurological disorders and have the potential to provide new insights into structural alterations initiated by the disease process in ALS. Furthermore, novel neuroimaging data analysis approaches such as Event-Based Modeling (EBM) may be able to circumvent the requirement for longitudinal scanning as a means to comprehend the dynamic stages of neurodegeneration in vivo. Combining these and other innovative imaging protocols with more sophisticated techniques to analyse ever-increasing datasets holds the exciting prospect of transforming understanding of the biological processes and temporal evolution of the ALS syndrome, and can only benefit from multicentre collaboration across the entire ALS research community.
Collapse
Affiliation(s)
- Andrew W Barritt
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Falmer, United Kingdom.,Hurstwood Park Neurological Centre Haywards Heath, West Sussex, United Kingdom
| | - Matt C Gabel
- Department of Neuroscience, Trafford Centre for Biomedical Research Brighton and Sussex Medical School, Falmer, United Kingdom
| | - Mara Cercignani
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Falmer, United Kingdom
| | - P Nigel Leigh
- Hurstwood Park Neurological Centre Haywards Heath, West Sussex, United Kingdom.,Department of Neuroscience, Trafford Centre for Biomedical Research Brighton and Sussex Medical School, Falmer, United Kingdom
| |
Collapse
|
20
|
Theme 8 Clinical imaging and electrophysiology. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:240-263. [DOI: 10.1080/21678421.2018.1510575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Abstract
ALS is a neurodegenerative disease in which the primary symptoms result in progressive neuromuscular weakness. Recent studies have highlighted that there is significant heterogeneity with regard to anatomical and temporal disease progression. Importantly, more recent advances in genetics have revealed new causative genes to the disease. New efforts have focused on the development of biomarkers that could aid in diagnosis, prognosis, and serve as pharmacodynamics markers. Although traditional pharmaceuticals continue to undergo trials for ALS, new therapeutic strategies including stem cell transplantation studies, gene therapies, and antisense therapies targeting some of the familial forms of ALS are gaining momentum.
Collapse
|
22
|
Wirth AM, Khomenko A, Baldaranov D, Kobor I, Hsam O, Grimm T, Johannesen S, Bruun TH, Schulte-Mattler W, Greenlee MW, Bogdahn U. Combinatory Biomarker Use of Cortical Thickness, MUNIX, and ALSFRS-R at Baseline and in Longitudinal Courses of Individual Patients With Amyotrophic Lateral Sclerosis. Front Neurol 2018; 9:614. [PMID: 30104996 PMCID: PMC6077217 DOI: 10.3389/fneur.2018.00614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/09/2018] [Indexed: 11/13/2022] Open
Abstract
Objective: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative process affecting upper and lower motor neurons as well as non-motor systems. In this study, precentral and postcentral cortical thinning detected by structural magnetic resonance imaging (MRI) were combined with clinical (ALS-specific functional rating scale revised, ALSFRS-R) and neurophysiological (motor unit number index, MUNIX) biomarkers in both cross-sectional and longitudinal analyses. Methods: The unicenter sample included 20 limb-onset classical ALS patients compared to 30 age-related healthy controls. ALS patients were treated with standard Riluzole and additional long-term G-CSF (Filgrastim) on a named patient basis after written informed consent. Combinatory biomarker use included cortical thickness of atlas-based dorsal and ventral subdivisions of the precentral and postcentral cortex, ALSFRS-R, and MUNIX for the musculus abductor digiti minimi (ADM) bilaterally. Individual cross-sectional analysis investigated individual cortical thinning in ALS patients compared to age-related healthy controls in the context of state of disease at initial MRI scan. Beyond correlation analysis of biomarkers at cross-sectional group level (n = 20), longitudinal monitoring in a subset of slow progressive ALS patients (n = 4) explored within-subject temporal dynamics of repeatedly assessed biomarkers in time courses over at least 18 months. Results: Cross-sectional analysis demonstrated individually variable states of cortical thinning, which was most pronounced in the ventral section of the precentral cortex. Correlations of ALSFRS-R with cortical thickness and MUNIX were detected. Individual longitudinal biomarker monitoring in four slow progressive ALS patients revealed evident differences in individual disease courses and temporal dynamics of the biomarkers. Conclusion: A combinatory use of structural MRI, neurophysiological and clinical biomarkers allows for an appropriate and detailed assessment of clinical state and course of disease of ALS.
Collapse
Affiliation(s)
- Anna M Wirth
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany.,Department of Experimental Psychology, University of Regensburg, Regensburg, Germany
| | - Andrei Khomenko
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| | - Dobri Baldaranov
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| | - Ines Kobor
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| | - Ohnmar Hsam
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| | - Thomas Grimm
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| | - Siw Johannesen
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| | - Tim-Henrik Bruun
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| | | | - Mark W Greenlee
- Department of Experimental Psychology, University of Regensburg, Regensburg, Germany
| | - Ulrich Bogdahn
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| |
Collapse
|
23
|
Li W, Zhang J, Zhou C, Hou W, Hu J, Feng H, Zheng X. Abnormal Functional Connectivity Density in Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2018; 10:215. [PMID: 30065647 PMCID: PMC6056617 DOI: 10.3389/fnagi.2018.00215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 06/25/2018] [Indexed: 01/13/2023] Open
Abstract
Purpose: Amyotrophic lateral sclerosis (ALS) is a motor neuro-degenerative disorder that also damages extra-motor neural pathways. A significant proportion of existing evidence describe alterations in the strengths of functional connectivity, whereas the changes in the density of these functional connections have not been explored. Therefore, our study seeks to identify ALS-induced alternations in the resting-state functional connectivity density (FCD). Methods: Two groups comprising of 38 ALS patients and 35 healthy participants (age and gender matched) were subjected to the resting-state functional magnetic resonance imaging (MRI) scanning. An ultra-fast graph theory method known as FCD mapping was utilized to calculate the voxel-wise short- and long-range FCD values of the brain for each participant. FCD values of patients and controls were compared based on voxels in order to discern cerebral regions that possessed significant FCD alterations. For areas demonstrating a group effect of atypical FCD in ALS, seed-based functional connectivity analysis was then investigated. Partial correlation analyses were carried out between aberrant FCDs and several clinical variables, controlling for age, gender, and total intracranial volume. Results: Patients with ALS were found to have decreased short-range FCD in the primary motor cortex and increased long-range FCD in the premotor cortex. Extra-motor areas that also displayed extensive FCD alterations encompassed the temporal cortex, insula, cingulate gyrus, occipital cortex, and inferior parietal lobule. Seed-based correlation analysis further demonstrated that these regions also possessed disrupted functional connectivity. However, no significant correlations were identified between aberrant FCDs and clinical variables. Conclusion: FCD changes in the regions identified represent communication deficits and impaired functional brain dynamics, which might underlie the motor, motor control, language, visuoperceptual and high-order cognitive deficits in ALS. These findings support the fact that ALS is a disorder affecting multiple systems. We gain a deeper insight of the neural mechanisms underlying ALS.
Collapse
Affiliation(s)
- Weina Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China.,Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China.,Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, China
| | - Chaoyang Zhou
- Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China.,Department of Radiology, Chongqing University Cancer Hospital, Chongqing, China
| | - Wensheng Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China.,Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China
| | - Jun Hu
- Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China.,Department of Neurology, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China.,Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China
| | - Xiaolin Zheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China.,Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China
| |
Collapse
|
24
|
Christidi F, Karavasilis E, Velonakis G, Ferentinos P, Rentzos M, Kelekis N, Evdokimidis I, Bede P. The Clinical and Radiological Spectrum of Hippocampal Pathology in Amyotrophic Lateral Sclerosis. Front Neurol 2018; 9:523. [PMID: 30018591 PMCID: PMC6037820 DOI: 10.3389/fneur.2018.00523] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/13/2018] [Indexed: 12/29/2022] Open
Abstract
Hippocampal pathology in Amyotrophic Lateral Sclerosis (ALS) remains surprisingly under recognized despite compelling evidence from neuropsychology, neuroimaging and neuropathology studies. Hippocampal dysfunction contributes significantly to the clinical heterogeneity of ALS and requires structure-specific cognitive and neuroimaging tools for accurate in vivo evaluation. Recent imaging studies have generated unprecedented insights into the presymptomatic and longitudinal processes affecting this structure and have contributed to the characterisation of both focal and network-level changes. Emerging neuropsychology data suggest that memory deficits in ALS may be independent from executive dysfunction. In the era of precision medicine, where the development of individualized care strategies and patient stratification for clinical trials are key priorities, the comprehensive review of hippocampal dysfunction in ALS is particularly timely.
Collapse
Affiliation(s)
- Foteini Christidi
- First Department of Neurology, Aeginition Hospital National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Karavasilis
- Second Department of Radiology, General University Hospital “Attikon”, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Velonakis
- Second Department of Radiology, General University Hospital “Attikon”, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Ferentinos
- Second Department of Psychiatry, General University Hospital “Attikon”, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Rentzos
- First Department of Neurology, Aeginition Hospital National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kelekis
- Second Department of Radiology, General University Hospital “Attikon”, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Evdokimidis
- First Department of Neurology, Aeginition Hospital National and Kapodistrian University of Athens, Athens, Greece
| | - Peter Bede
- Computational Neuroimaging Group, Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
Turner MR, Eisen A, Kiernan MC, Ravits J, Swash M. Kinnier Wilson's puzzling features of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2018; 89:657-666. [PMID: 29122933 DOI: 10.1136/jnnp-2017-317217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 11/03/2022]
Affiliation(s)
- Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Andrew Eisen
- Department of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew C Kiernan
- Brain and Mind Centre, Sydney Medical School, The University of Sydney; Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - John Ravits
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | | |
Collapse
|
26
|
Turner MR. Progress and new frontiers in biomarkers for amyotrophic lateral sclerosis. Biomark Med 2018; 12:693-696. [PMID: 29856233 DOI: 10.2217/bmm-2018-0149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Moszczynski AJ, Hintermayer MA, Strong MJ. Phosphorylation of Threonine 175 Tau in the Induction of Tau Pathology in Amyotrophic Lateral Sclerosis-Frontotemporal Spectrum Disorder (ALS-FTSD). A Review. Front Neurosci 2018; 12:259. [PMID: 29731706 PMCID: PMC5919950 DOI: 10.3389/fnins.2018.00259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 04/04/2018] [Indexed: 11/17/2022] Open
Abstract
Approximately 50–60% of all patients with amyotrophic lateral sclerosis (ALS) will develop a deficit of frontotemporal function, ranging from frontotemporal dementia (FTD) to one or more deficits of neuropsychological, speech or language function which are collectively known as the frontotemporal spectrum disorders of ALS (ALS-FTSD). While the neuropathology underlying these disorders is most consistent with a widespread alteration in the metabolism of transactive response DNA-binding protein 43 (TDP-43), in both ALS with cognitive impairment (ALSci) and ALS with FTD (ALS-FTD; also known as MND-FTD) there is evidence for alterations in the metabolism of the microtubule associated protein tau. This alteration in tau metabolism is characterized by pathological phosphorylation at residue Thr175 (pThr175 tau) which in vitro is associated with activation of GSK3β (pTyr216GSK3β), phosphorylation of Thr231tau, and the formation of cytoplasmic inclusions with increased rates of cell death. This putative pathway of pThr175 induction of pThr231 and the formation of pathogenic tau inclusions has been recently shown to span a broad range of tauopathies, including chronic traumatic encephalopathy (CTE) and CTE in association with ALS (CTE-ALS). This pathway can be experimentally triggered through a moderate traumatic brain injury, suggesting that it is a primary neuropathological event and not secondary to a more widespread neuronal dysfunction. In this review, we discuss the neuropathological underpinnings of the postulate that ALS is associated with a tauopathy which manifests as a FTSD, and examine possible mechanisms by which phosphorylation at Thr175tau is induced. We hypothesize that this might lead to an unfolding of the hairpin structure of tau, activation of GSK3β and pathological tau fibril formation through the induction of cis-Thr231 tau conformers. A potential role of TDP-43 acting synergistically with pathological tau metabolism is proposed.
Collapse
Affiliation(s)
- Alexander J Moszczynski
- Molecular Medicine Research Group, Schulich School of Medicine & Dentistry, Robarts Research Institute, Western University, London, ON, Canada
| | - Matthew A Hintermayer
- Molecular Medicine Research Group, Schulich School of Medicine & Dentistry, Robarts Research Institute, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Research Group, Schulich School of Medicine & Dentistry, Robarts Research Institute, Western University, London, ON, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| |
Collapse
|
28
|
Dharmadasa T, Huynh W, Tsugawa J, Shimatani Y, Ma Y, Kiernan MC. Implications of structural and functional brain changes in amyotrophic lateral sclerosis. Expert Rev Neurother 2018; 18:407-419. [PMID: 29667443 DOI: 10.1080/14737175.2018.1464912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that causes progressive muscle weakness and disability, eventually leading to death. Heterogeneity of disease has become a major barrier to understanding key clinical questions such as prognosis and disease spread, and has disadvantaged clinical trials in search of therapeutic intervention. Patterns of disease have been explored through recent advances in neuroimaging, elucidating structural, molecular and functional changes. Unique brain signatures have emerged that have lent a greater understanding of critical disease mechanisms, offering opportunities to improve diagnosis, guide prognosis, and establish candidate biomarkers to direct future therapeutic strategies. Areas covered: This review explores patterns of cortical and subcortical change in ALS through advanced neuroimaging techniques and discusses the implications of these findings. Expert commentary: Cortical and subcortical signatures and patterns of atrophy are now consistently recognised, providing important pathophysiological insight into this heterogenous disease. The spread of cortical change, particularly involving frontotemporal networks, correlates with cognitive impairment and poorer prognosis. Cortical differences are also evident between ALS phenotypes and genotypes, which may partly explain the heterogeneity of prognosis. Ultimately, multimodal approaches with larger cohorts will be needed to provide sensitive biomarkers of disease spread at the level of the individual patient.
Collapse
Affiliation(s)
| | - William Huynh
- a Brain and Mind Centre , The University of Sydney , Sydney , Australia
| | - Jun Tsugawa
- c Department of Neurology , Fukuoka University Hospital , Fukuoka city , Japan
| | - Yoshimitsu Shimatani
- d Department of Neurology , Tokushima Prefectural Hospital , Tokushima city , Japan
| | - Yan Ma
- a Brain and Mind Centre , The University of Sydney , Sydney , Australia
| | - Matthew C Kiernan
- a Brain and Mind Centre , The University of Sydney , Sydney , Australia.,b Department of Neurology , Royal Prince Alfred Hospital , Sydney , Australia
| |
Collapse
|
29
|
Yamada H, Takeda T, Uchihara T, Sato S, Kirimura S, Hirota Y, Kodama M, Kitagawa M, Hirokawa K, Yokota T, Toru S. Macroscopic Localized Subicular Thinning as a Potential Indicator of Amyotrophic Lateral Sclerosis. Eur Neurol 2018; 79:200-205. [DOI: 10.1159/000487992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/22/2018] [Indexed: 11/19/2022]
Abstract
Subicular degeneration occurs in amyotrophic lateral sclerosis (ALS) patients. However, it was unknown whether microscopic subicular degeneration could be observed as macroscopic changes and whether these changes were associated with the transactive-response DNA binding protein 43 kDa (TDP-43) pathology. Topographic differences between subicular degeneration caused by ALS and Alzheimer disease (AD) had also not been characterized. Here we investigated the subiculum and related areas in autopsied brains from 3 ALS and 3 AD patients. Macroscopic subicular thinning and corresponding astrocytosis were pronounced in ALS compared to AD. This thinning was frequently accompanied by TDP-43 pathology in the transentorhinal cortex and nucleus accumbens. The preferential susceptibility of the perforant pathway to TDP-43 deposition may be an underlying cause of subicular thinning in ALS.
Collapse
|
30
|
Pallebage-Gamarallage M, Foxley S, Menke RAL, Huszar IN, Jenkinson M, Tendler BC, Wang C, Jbabdi S, Turner MR, Miller KL, Ansorge O. Dissecting the pathobiology of altered MRI signal in amyotrophic lateral sclerosis: A post mortem whole brain sampling strategy for the integration of ultra-high-field MRI and quantitative neuropathology. BMC Neurosci 2018; 19:11. [PMID: 29529995 PMCID: PMC5848544 DOI: 10.1186/s12868-018-0416-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/02/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a clinically and histopathologically heterogeneous neurodegenerative disorder, in which therapy is hindered by the rapid progression of disease and lack of biomarkers. Magnetic resonance imaging (MRI) has demonstrated its potential for detecting the pathological signature and tracking disease progression in ALS. However, the microstructural and molecular pathological substrate is poorly understood and generally defined histologically. One route to understanding and validating the pathophysiological correlates of MRI signal changes in ALS is to directly compare MRI to histology in post mortem human brains. RESULTS The article delineates a universal whole brain sampling strategy of pathologically relevant grey matter (cortical and subcortical) and white matter tracts of interest suitable for histological evaluation and direct correlation with MRI. A standardised systematic sampling strategy that was compatible with co-registration of images across modalities was established for regions representing phosphorylated 43-kDa TAR DNA-binding protein (pTDP-43) patterns that were topographically recognisable with defined neuroanatomical landmarks. Moreover, tractography-guided sampling facilitated accurate delineation of white matter tracts of interest. A digital photography pipeline at various stages of sampling and histological processing was established to account for structural deformations that might impact alignment and registration of histological images to MRI volumes. Combined with quantitative digital histology image analysis, the proposed sampling strategy is suitable for routine implementation in a high-throughput manner for acquisition of large-scale histology datasets. Proof of concept was determined in the spinal cord of an ALS patient where multiple MRI modalities (T1, T2, FA and MD) demonstrated sensitivity to axonal degeneration and associated heightened inflammatory changes in the lateral corticospinal tract. Furthermore, qualitative comparison of R2* and susceptibility maps in the motor cortex of 2 ALS patients demonstrated varying degrees of hyperintense signal changes compared to a control. Upon histological evaluation of the same region, intensity of signal changes in both modalities appeared to correspond primarily to the degree of microglial activation. CONCLUSION The proposed post mortem whole brain sampling methodology enables the accurate intraindividual study of pathological propagation and comparison with quantitative MRI data, to more fully understand the relationship of imaging signal changes with underlying pathophysiology in ALS.
Collapse
Affiliation(s)
| | - Sean Foxley
- 0000 0004 1936 8948grid.4991.5Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- 0000 0004 1936 8948grid.4991.5Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- 0000 0004 1936 7822grid.170205.1Department of Radiology, University of Chicago, Chicago, IL USA
| | - Ricarda A. L. Menke
- 0000 0004 1936 8948grid.4991.5Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- 0000 0004 1936 8948grid.4991.5Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Istvan N. Huszar
- 0000 0004 1936 8948grid.4991.5Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- 0000 0004 1936 8948grid.4991.5Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mark Jenkinson
- 0000 0004 1936 8948grid.4991.5Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- 0000 0004 1936 8948grid.4991.5Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Benjamin C. Tendler
- 0000 0004 1936 8948grid.4991.5Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- 0000 0004 1936 8948grid.4991.5Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Chaoyue Wang
- 0000 0004 1936 8948grid.4991.5Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- 0000 0004 1936 8948grid.4991.5Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Saad Jbabdi
- 0000 0004 1936 8948grid.4991.5Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- 0000 0004 1936 8948grid.4991.5Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Martin R. Turner
- 0000 0004 1936 8948grid.4991.5Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- 0000 0004 1936 8948grid.4991.5Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Karla L. Miller
- 0000 0004 1936 8948grid.4991.5Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- 0000 0004 1936 8948grid.4991.5Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Olaf Ansorge
- 0000 0004 1936 8948grid.4991.5Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Dervishi I, Ozdinler PH. Incorporating upper motor neuron health in ALS drug discovery. Drug Discov Today 2018; 23:696-703. [PMID: 29331501 PMCID: PMC5849515 DOI: 10.1016/j.drudis.2018.01.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/15/2017] [Accepted: 01/04/2018] [Indexed: 12/25/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex disease, that affects the motor neuron circuitry. After consecutive failures in clinical trials for the past 20 years, edaravone was recently approved as the second drug for ALS. This generated excitement in the field revealed the need to improve preclinical assays for continued success. Here, we focus on the importance and relevance of upper motor neuron (UMN) pathology in ALS, and discuss how incorporation of UMN survival in preclinical assays will improve inclusion criteria for clinical trials and expedite the drug discovery effort in ALS and related motor neuron diseases.
Collapse
Affiliation(s)
- Ina Dervishi
- Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - P Hande Ozdinler
- Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA; Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
32
|
Crespi C, Dodich A, Cappa SF, Canessa N, Iannaccone S, Corbo M, Lunetta C, Falini A, Cerami C. Multimodal MRI quantification of the common neurostructural bases within the FTD-ALS continuum. Neurobiol Aging 2018; 62:95-104. [DOI: 10.1016/j.neurobiolaging.2017.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
|
33
|
Grolez G, Kyheng M, Lopes R, Moreau C, Timmerman K, Auger F, Kuchcinski G, Duhamel A, Jissendi-Tchofo P, Besson P, Laloux C, Petrault M, Devedjian JC, Pérez T, Pradat PF, Defebvre L, Bordet R, Danel-Brunaud V, Devos D. MRI of the cervical spinal cord predicts respiratory dysfunction in ALS. Sci Rep 2018; 8:1828. [PMID: 29379040 PMCID: PMC5789036 DOI: 10.1038/s41598-018-19938-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/10/2018] [Indexed: 01/07/2023] Open
Abstract
For patients with amyotrophic lateral sclerosis (ALS), the primary therapeutic goal is to minimize morbidity. Non-invasive ventilation improves survival. We aim to assess whether Magnetic Resonance Imaging (MRI) of the cervical spinal cord predicts the progression of respiratory disorders in ALS. Brain and spinal MRI was repeatedly performed in the SOD1G86R mouse model, in 40 patients and in healthy controls. Atrophy, iron overload, white matter diffusivity and neuronal loss were assessed. In Superoxide Dismutase-1 (SOD1) mice, iron accumulation appeared in the cervical spinal cord at symptom onset but disappeared with disease progression (after the onset of atrophy). In ALS patients, the volumes of the motor cortex and the medulla oblongata were already abnormally low at the time of diagnosis. Baseline diffusivity in the internal capsule was predictive of functional handicap. The decrease in cervical spinal cord volume from diagnosis to 3 months was predictive of the change in slow vital capacity at 12 months. MRI revealed marked abnormalities at the time of ALS diagnosis. Early atrophy of the cervical spinal cord may predict the progression of respiratory disorders, and so may be of value in patient care and as a primary endpoint in pilot neuroprotection studies.
Collapse
Affiliation(s)
- G Grolez
- Service de Neurologie, Université de Lille, CHU de Lille, INSERM UMRS_1171, LICEND COEN Center, Lille, France
| | - M Kyheng
- Département de Biostastistiques, Université de Lille, CHU de Lille, Lille, France
| | - R Lopes
- Service de Neuroradiologie, Université de Lille, CHU de Lille, INSERM UMRS_1171, LICEND COEN Center Lille, Lille, France
| | - C Moreau
- Service de Neurologie, Université de Lille, CHU de Lille, INSERM UMRS_1171, LICEND COEN Center, Lille, France
| | - K Timmerman
- Service de Pharmacologie, Médicale Université de Lille, CHU de Lille, INSERM UMRS_1171, LICEND COEN Center Lille, Lille, France
| | - F Auger
- Plateau d'imagerie préclinique, Université de Lille, CHU de Lille, Lille, France
| | - G Kuchcinski
- Service de Neuroradiologie, Université de Lille, CHU de Lille, INSERM UMRS_1171, LICEND COEN Center Lille, Lille, France
| | - A Duhamel
- Département de Biostastistiques, Université de Lille, CHU de Lille, Lille, France
| | - P Jissendi-Tchofo
- Service de Neuroradiologie, Université de Lille, CHU de Lille, INSERM UMRS_1171, LICEND COEN Center Lille, Lille, France.,Department of Radiology, Neuroradiology section, Free University of Brussels, CHU Saint-Pierre, Brussels, Belgium
| | - P Besson
- Service de Neuroradiologie, Université de Lille, CHU de Lille, INSERM UMRS_1171, LICEND COEN Center Lille, Lille, France
| | - C Laloux
- Service de Pharmacologie, Médicale Université de Lille, CHU de Lille, INSERM UMRS_1171, LICEND COEN Center Lille, Lille, France
| | - M Petrault
- Service de Pharmacologie, Médicale Université de Lille, CHU de Lille, INSERM UMRS_1171, LICEND COEN Center Lille, Lille, France
| | - J C Devedjian
- Service de Pharmacologie, Médicale Université de Lille, CHU de Lille, INSERM UMRS_1171, LICEND COEN Center Lille, Lille, France
| | - Thierry Pérez
- Service de Pneumologie, Université de Lille, CHU de Lille, Lille, France
| | - Pierre François Pradat
- Laboratoire d'Imagerie Biomédicale, CNRS, INSERM, Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Département de Neurologie, Centre référent SLA, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - L Defebvre
- Service de Neurologie, Université de Lille, CHU de Lille, INSERM UMRS_1171, LICEND COEN Center, Lille, France
| | - R Bordet
- Service de Pharmacologie, Médicale Université de Lille, CHU de Lille, INSERM UMRS_1171, LICEND COEN Center Lille, Lille, France
| | - V Danel-Brunaud
- Service de Neurologie, Université de Lille, CHU de Lille, INSERM UMRS_1171, LICEND COEN Center, Lille, France
| | - D Devos
- Service de Neurologie, Université de Lille, CHU de Lille, INSERM UMRS_1171, LICEND COEN Center, Lille, France. .,Service de Pharmacologie, Médicale Université de Lille, CHU de Lille, INSERM UMRS_1171, LICEND COEN Center Lille, Lille, France.
| |
Collapse
|
34
|
Menke RAL, Proudfoot M, Talbot K, Turner MR. The two-year progression of structural and functional cerebral MRI in amyotrophic lateral sclerosis. NEUROIMAGE-CLINICAL 2017; 17:953-961. [PMID: 29321969 PMCID: PMC5752097 DOI: 10.1016/j.nicl.2017.12.025] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 01/04/2023]
Abstract
MRI has emerged as one of several urgently needed candidate disease progression biomarkers for the neurodegenerative disorder amyotrophic lateral sclerosis (ALS), not least due to its unique ability to non-invasively assess structural and functional cerebral pathology. We sought to identify the extent of detectable change in cerebral MRI metrics over a more prolonged period. Analysis of multi-modal MRI data was performed in a cohort of sixteen patients (13 ALS and 3 with primary lateral sclerosis) in whom it was possible to acquire six-monthly images over two years. Structural brain changes were assessed using voxel-based morphometry of grey matter and shape analysis of sub-cortical grey matter structures, tract-based spatial statistics of diffusion tensor imaging (DTI) metrics optimized for longitudinal analysis in the white matter, as well as whole brain voxel-wise statistics of DTI metrics. Changes in resting state functional MRI (rs-fMRI) were investigated via independent component and dual regression analyses of functional connectivity (FC), controlled for confounding effects of grey matter decline. Both linear changes with time and brain changes correlated with revised ALS functional rating score (ALSFRS-R) decline were studied. Widespread and progressive reductions in grey matter were observed in the precentral gyri and posterior cingulate cortex, as well as progressive local atrophy of the thalamus, caudate, and pallidum bilaterally, and right putamen, hippocampus and amygdala. The most prominent DTI tract-based changes were in the superior longitudinal fasciculi and corpus callosum. More widespread areas of DTI changes included the thalami and caudate nuclei, hippocampi and parahippocampal gyri, insular cortices, anterior and posterior cingulate gyri, frontal operculum and cerebellum. FC decreases were noted between the sensorimotor resting state network and the frontal pole, between a network comprising both thalami and an area in the visual cortex, in relation to both time from baseline and ALSFRS-R decline. FC increases between the left primary motor cortex and left fronto-parietal network were seen for both statistical approaches. A longer period of follow-up, though necessarily involving more slowly-progressive cases, demonstrated widespread changes in both grey and white matter structural MRI measures. The mixed picture of regional decreases and increases in FC is compatible with compensatory change, in what should be viewed as a brain-based disease characterised by larger-scale disintegration of motor and frontal projection cerebral networks. Analysis of serial MRI data (6-monthly over 2 years) was performed in ALS patients. Widespread progressive structural and functional brain changes were observed. Changes during this unprecedented study period involved basal ganglia regions. The results revealed novel longitudinal functional connectivity insights.
Collapse
Affiliation(s)
- R A L Menke
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - M Proudfoot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - K Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - M R Turner
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
35
|
Paquin MÊ, El Mendili MM, Gros C, Dupont SM, Cohen-Adad J, Pradat PF. Spinal Cord Gray Matter Atrophy in Amyotrophic Lateral Sclerosis. AJNR Am J Neuroradiol 2017; 39:184-192. [PMID: 29122760 DOI: 10.3174/ajnr.a5427] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/17/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE There is an emerging need for biomarkers to better categorize clinical phenotypes and predict progression in amyotrophic lateral sclerosis. This study aimed to quantify cervical spinal gray matter atrophy in amyotrophic lateral sclerosis and investigate its association with clinical disability at baseline and after 1 year. MATERIALS AND METHODS Twenty-nine patients with amyotrophic lateral sclerosis and 22 healthy controls were scanned with 3T MR imaging. Standard functional scale was recorded at the time of MR imaging and after 1 year. MR imaging data were processed automatically to measure the spinal cord, gray matter, and white matter cross-sectional areas. A statistical analysis assessed the difference in cross-sectional areas between patients with amyotrophic lateral sclerosis and controls, correlations between spinal cord and gray matter atrophy to clinical disability at baseline and at 1 year, and prediction of clinical disability at 1 year. RESULTS Gray matter atrophy was more sensitive to discriminate patients with amyotrophic lateral sclerosis from controls (P = .004) compared with spinal cord atrophy (P = .02). Gray matter and spinal cord cross-sectional areas showed good correlations with clinical scores at baseline (R = 0.56 for gray matter and R = 0.55 for spinal cord; P < .01). Prediction at 1 year with clinical scores (R2 = 0.54) was improved when including a combination of gray matter and white matter cross-sectional areas (R2 = 0.74). CONCLUSIONS Although improvements over spinal cord cross-sectional areas were modest, this study suggests the potential use of gray matter cross-sectional areas as an MR imaging structural biomarker to monitor the evolution of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- M-Ê Paquin
- From the Faculté de Médecine (M.-Ê.P.).,NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal (M.-Ê.P., C.G., S.M.D., J.C.-A.), Montreal, Quebec, Canada
| | - M M El Mendili
- Sorbonne Universités (M.M.E.M., P.-F.P.) UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France.,Department of Neurology (M.M.E.M.), Icahn School of Medicine, Mount Sinai, New York, New York
| | - C Gros
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal (M.-Ê.P., C.G., S.M.D., J.C.-A.), Montreal, Quebec, Canada
| | - S M Dupont
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal (M.-Ê.P., C.G., S.M.D., J.C.-A.), Montreal, Quebec, Canada
| | - J Cohen-Adad
- Functional Neuroimaging Unit, CRIUGM (J.C.-A.), Université de Montréal, Montreal, Quebec, Canada .,NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal (M.-Ê.P., C.G., S.M.D., J.C.-A.), Montreal, Quebec, Canada
| | - P-F Pradat
- Sorbonne Universités (M.M.E.M., P.-F.P.) UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France.,Département des Maladies du Système Nerveux (P.-F.P.), Centre Référent Maladie Rare SLA, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
36
|
Geevasinga N, Korgaonkar MS, Menon P, Van den Bos M, Gomes L, Foster S, Kiernan MC, Vucic S. Brain functional connectome abnormalities in amyotrophic lateral sclerosis are associated with disability and cortical hyperexcitability. Eur J Neurol 2017; 24:1507-1517. [DOI: 10.1111/ene.13461] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/07/2017] [Indexed: 12/12/2022]
Affiliation(s)
- N. Geevasinga
- Westmead Clinical School; University of Sydney; Sydney NSW
| | - M. S. Korgaonkar
- Westmead Clinical School; University of Sydney; Sydney NSW
- The Brain Dynamics Centre Westmead Institute for Medical Research and University of Sydney; Westmead NSW
| | - P. Menon
- Westmead Clinical School; University of Sydney; Sydney NSW
| | - M. Van den Bos
- Westmead Clinical School; University of Sydney; Sydney NSW
| | - L. Gomes
- Department of Radiology Westmead Hospital; Westmead NSW
| | - S. Foster
- Department of Radiology Westmead Hospital; Westmead NSW
| | - M. C. Kiernan
- Brain and Mind Centre University of Sydney; Sydney NSW
- Department of Neurology Royal Prince Alfred Hospital Sydney; Sydney NSW Australia
| | - S. Vucic
- Westmead Clinical School; University of Sydney; Sydney NSW
| |
Collapse
|
37
|
Quantitative FLAIR MRI in Amyotrophic Lateral Sclerosis. Acad Radiol 2017; 24:1187-1194. [PMID: 28572001 PMCID: PMC5605225 DOI: 10.1016/j.acra.2017.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/14/2017] [Accepted: 04/24/2017] [Indexed: 12/28/2022]
Abstract
RATIONALE AND OBJECTIVES T2-weighted magnetic resonance imaging (MRI) hyperintensity assessed visually in the corticospinal tract (CST) lacks sensitivity for a diagnosis of amyotrophic lateral sclerosis (ALS). We sought to explore a quantitative approach to fluid-attenuated inversion recovery (FLAIR) MRI intensity across a range of ALS phenotypes. MATERIALS AND METHODS Thirty-three classical ALS patients, 10 with a flail arm presentation, and six with primary lateral sclerosis underwent MRI at 3 Tesla. Comparisons of quantitative FLAIR intensity in the CST and corpus callosum were made between 21 healthy controls and within patient phenotypic subgroups, some of whom were studied longitudinally. RESULTS Mean FLAIR intensity was greater in patient groups. The cerebral peduncle intensity provided the strongest subgroup classification. FLAIR intensity increased longitudinally. The rate of change of FLAIR within CST correlated with rate of decline in executive function and ALS functional rating score. CONCLUSIONS FLAIR MRI encodes quantifiable information of potential diagnostic, stratification, and monitoring value.
Collapse
|
38
|
Xu J, Li H, Li C, Yao JC, Hu J, Wang J, Hu Q, Zhang Y, Zhang J. Abnormal cortical-basal ganglia network in amyotrophic lateral sclerosis: A voxel-wise network efficiency analysis. Behav Brain Res 2017; 333:123-128. [DOI: 10.1016/j.bbr.2017.06.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 12/28/2022]
|
39
|
Strong MJ, Abrahams S, Goldstein LH, Woolley S, Mclaughlin P, Snowden J, Mioshi E, Roberts-South A, Benatar M, HortobáGyi T, Rosenfeld J, Silani V, Ince PG, Turner MR. Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria. Amyotroph Lateral Scler Frontotemporal Degener 2017; 18:153-174. [PMID: 28054827 DOI: 10.1080/21678421.2016.1267768.amyotrophic] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This article presents the revised consensus criteria for the diagnosis of frontotemporal dysfunction in amyotrophic lateral sclerosis (ALS) based on an international research workshop on frontotemporal dementia (FTD) and ALS held in London, Canada in June 2015. Since the publication of the Strong criteria, there have been considerable advances in the understanding of the neuropsychological profile of patients with ALS. Not only is the breadth and depth of neuropsychological findings broader than previously recognised - - including deficits in social cognition and language - but mixed deficits may also occur. Evidence now shows that the neuropsychological deficits in ALS are extremely heterogeneous, affecting over 50% of persons with ALS. When present, these deficits significantly and adversely impact patient survival. It is the recognition of this clinical heterogeneity in association with neuroimaging, genetic and neuropathological advances that has led to the current re-conceptualisation that neuropsychological deficits in ALS fall along a spectrum. These revised consensus criteria expand upon those of 2009 and embrace the concept of the frontotemporal spectrum disorder of ALS (ALS-FTSD).
Collapse
Affiliation(s)
- Michael J Strong
- a Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry , London , Ontario , Canada
| | - Sharon Abrahams
- b Department of Psychology, School of Philosophy, Psychology & Language Sciences , Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh , Edinburgh , UK
| | - Laura H Goldstein
- c King's College London, Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience , London , UK
| | - Susan Woolley
- d Forbes Norris MDA/ALS Research Centre, California Pacific Medical Centre , San Francisco , CA , USA
| | - Paula Mclaughlin
- e Western University , Schulich School of Medicine & Dentistry , London , ON , Canada
| | - Julie Snowden
- f Greater Manchester Neuroscience Centre , Salford Royal NHS Trust and University of Manchester , Manchester , UK
| | - Eneida Mioshi
- g Faculty of Medicine and Health Sciences , University of East Anglia , Norwich , UK
| | - Angie Roberts-South
- h Northwestern University , Roxelyn and Richard Pepper Department of Communication Sciences and Disorders , Evanston , IL , USA
| | - Michael Benatar
- i Department of Neurology , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Tibor HortobáGyi
- j Department of Neuropathology , Institute of Pathology, University of Debrecen , Debrecen , Hungary
| | - Jeffrey Rosenfeld
- k Department of Neurology , Loma Linda University School of Medicine , Loma Linda , CA , USA
| | - Vincenzo Silani
- l Department of Neurology and Laboratory Neuroscience - IRCCS Istituto Auxologico Italiano, Department of Pathophysiology and Transplantation , 'Dino Ferrari' Centre, Università degli Studi di Milano , Milan , Italy
| | - Paul G Ince
- m Sheffield Institute for Translational Neuroscience, Department of Neuroscience , The University of Sheffield , Sheffield , UK , and
| | - Martin R Turner
- n Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , UK
| |
Collapse
|
40
|
Strong MJ, Abrahams S, Goldstein LH, Woolley S, Mclaughlin P, Snowden J, Mioshi E, Roberts-South A, Benatar M, HortobáGyi T, Rosenfeld J, Silani V, Ince PG, Turner MR. Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria. Amyotroph Lateral Scler Frontotemporal Degener 2017; 18:153-174. [PMID: 28054827 PMCID: PMC7409990 DOI: 10.1080/21678421.2016.1267768] [Citation(s) in RCA: 594] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
Abstract
This article presents the revised consensus criteria for the diagnosis of frontotemporal dysfunction in amyotrophic lateral sclerosis (ALS) based on an international research workshop on frontotemporal dementia (FTD) and ALS held in London, Canada in June 2015. Since the publication of the Strong criteria, there have been considerable advances in the understanding of the neuropsychological profile of patients with ALS. Not only is the breadth and depth of neuropsychological findings broader than previously recognised - - including deficits in social cognition and language - but mixed deficits may also occur. Evidence now shows that the neuropsychological deficits in ALS are extremely heterogeneous, affecting over 50% of persons with ALS. When present, these deficits significantly and adversely impact patient survival. It is the recognition of this clinical heterogeneity in association with neuroimaging, genetic and neuropathological advances that has led to the current re-conceptualisation that neuropsychological deficits in ALS fall along a spectrum. These revised consensus criteria expand upon those of 2009 and embrace the concept of the frontotemporal spectrum disorder of ALS (ALS-FTSD).
Collapse
Affiliation(s)
- Michael J Strong
- a Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry , London , Ontario , Canada
| | - Sharon Abrahams
- b Department of Psychology, School of Philosophy, Psychology & Language Sciences , Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh , Edinburgh , UK
| | - Laura H Goldstein
- c King's College London, Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience , London , UK
| | - Susan Woolley
- d Forbes Norris MDA/ALS Research Centre, California Pacific Medical Centre , San Francisco , CA , USA
| | - Paula Mclaughlin
- e Western University , Schulich School of Medicine & Dentistry , London , ON , Canada
| | - Julie Snowden
- f Greater Manchester Neuroscience Centre , Salford Royal NHS Trust and University of Manchester , Manchester , UK
| | - Eneida Mioshi
- g Faculty of Medicine and Health Sciences , University of East Anglia , Norwich , UK
| | - Angie Roberts-South
- h Northwestern University , Roxelyn and Richard Pepper Department of Communication Sciences and Disorders , Evanston , IL , USA
| | - Michael Benatar
- i Department of Neurology , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Tibor HortobáGyi
- j Department of Neuropathology , Institute of Pathology, University of Debrecen , Debrecen , Hungary
| | - Jeffrey Rosenfeld
- k Department of Neurology , Loma Linda University School of Medicine , Loma Linda , CA , USA
| | - Vincenzo Silani
- l Department of Neurology and Laboratory Neuroscience - IRCCS Istituto Auxologico Italiano, Department of Pathophysiology and Transplantation , 'Dino Ferrari' Centre, Università degli Studi di Milano , Milan , Italy
| | - Paul G Ince
- m Sheffield Institute for Translational Neuroscience, Department of Neuroscience , The University of Sheffield , Sheffield , UK , and
| | - Martin R Turner
- n Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , UK
| |
Collapse
|
41
|
Ultra-High Field Proton MR Spectroscopy in Early-Stage Amyotrophic Lateral Sclerosis. Neurochem Res 2017; 42:1833-1844. [PMID: 28367604 DOI: 10.1007/s11064-017-2248-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/23/2017] [Accepted: 03/25/2017] [Indexed: 10/19/2022]
Abstract
A major hurdle in the development of effective treatments for amyotrophic lateral sclerosis (ALS) has been the lack of robust biomarkers for use as clinical trial endpoints. Neurochemical profiles obtained in vivo by high field proton magnetic resonance spectroscopy (1H-MRS) can potentially provide biomarkers of cerebral pathology in ALS. However, previous 1H-MRS studies in ALS have produced conflicting findings regarding alterations in the levels of neurochemical markers such as glutamate (Glu) and myo-inositol (mIns). Furthermore, very few studies have investigated the neurochemical abnormalities associated with ALS early in its course. In this study, we measured neurochemical profiles using single-voxel 1H-MRS at 7 T (T) and glutathione (GSH) levels using edited MRS at 3 T in 19 subjects with ALS who had relatively high functional status [ALS Functional Rating Scale-Revised (ALSFRS-R) mean ± SD = 39.8 ± 5.6] and 17 healthy controls. We observed significantly lower total N-acetylaspartate over mIns (tNAA/mIns) ratio in the motor cortex and pons of subjects with ALS versus healthy controls. No group differences were detected in GSH at 3 and 7 T. In subjects with ALS, the levels of tNAA, mIns, and Glu in the motor cortex were dependent on the extent of disease represented by El Escorial diagnostic subcategories. Specifically, combined probable/definite ALS had lower tNAA than possible ALS and controls (both p = 0.03), higher mIns than controls (p < 0.01), and lower Glu than possible ALS (p < 0.01). The effect of disease stage on MRS-measured metabolite levels may account for dissimilar findings among previous 1H-MRS studies in ALS.
Collapse
|
42
|
Bontempi P, Busato A, Bonafede R, Schiaffino L, Scambi I, Sbarbati A, Mariotti R, Marzola P. MRI reveals therapeutical efficacy of stem cells: An experimental study on the SOD1(G93A) animal model. Magn Reson Med 2017; 79:459-469. [PMID: 28370153 DOI: 10.1002/mrm.26685] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/25/2017] [Accepted: 03/03/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE The first part of the experiment identifies and validates MRI biomarkers distinctive of the disease progression in the transgenic superoxide dismutase gene (SOD1(G93A)) animal model. The second part assesses the efficacy of a mesenchymal stem cell-based therapy through the MRI biomarkers previously defined. METHODS The first part identifies MRI differences between SOD1(G93A) and healthy mice. The second part of the experiment follows the disease evolution of stem cell-treated and non-stem-cell treated SOD1(G93A) mice. The analysis focused on voxel-based morphometry and T2 mapping on the brain tissues, and T2-weighted imaging and diffusion tensor imaging (DTI) on the hind limbs. RESULTS Comparing diseased mice to healthy control revealed gray matter alterations in the brainstem area, accompanied by increased T2 relaxation time. Differences in muscle volume, muscle signal intensity, fractional anisotropy, axial diffusivity, and radial diffusivity were measured in the hind limbs. In the comparison between stem cell-treated mice and nontreated ones, differences in muscle volume, muscle signal intensity, and DTI-derived maps were found. CONCLUSION MRI-derived biomarkers can be used to identify differences between stem cell-treated and nontreated SOD1(G93A) mice. Magn Reson Med 79:459-469, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Pietro Bontempi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Alice Busato
- Department of Computer Science, University of Verona, Verona, Italy
| | - Roberta Bonafede
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Lorenzo Schiaffino
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Ilaria Scambi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Andrea Sbarbati
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Raffaella Mariotti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Pasquina Marzola
- Department of Computer Science, University of Verona, Verona, Italy
| |
Collapse
|
43
|
Cohen Y, Anaby D, Morozov D. Diffusion MRI of the spinal cord: from structural studies to pathology. NMR IN BIOMEDICINE 2017; 30:e3592. [PMID: 27598689 DOI: 10.1002/nbm.3592] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 06/01/2016] [Accepted: 07/05/2016] [Indexed: 05/27/2023]
Abstract
Diffusion MRI is extensively used to study brain microarchitecture and pathologies, and water diffusion appears highly anisotropic in the white matter (WM) of the spinal cord (SC). Despite these facts, the use of diffusion MRI to study the SC, which has increased in recent years, is much less common than that in the brain. In the present review, after a brief outline of early studies of diffusion MRI (DWI) and diffusion tensor MRI (DTI) of the SC, we provide a short survey on DTI and on diffusion MRI methods beyond the tensor that have been used to study SC microstructure and pathologies. After introducing the porous view of WM and describing the q-space approach and q-space diffusion MRI (QSI), we describe other methodologies that can be applied to study the SC. Selected applications of the use of DTI, QSI, and other more advanced diffusion MRI methods to study SC microstructure and pathologies are presented, with some emphasis on the use of less conventional diffusion methodologies. Because of length constraints, we concentrate on structural studies and on a few selected pathologies. Examples of the use of diffusion MRI to study dysmyelination, demyelination as in experimental autoimmune encephalomyelitis and multiple sclerosis, amyotrophic lateral sclerosis, and traumatic SC injury are presented. We conclude with a brief summary and a discussion of challenges and future directions for diffusion MRI of the SC. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yoram Cohen
- The Sackler School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Debbie Anaby
- The Sackler School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Darya Morozov
- The Sackler School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
44
|
Kim HJ, de Leon M, Wang X, Kim HY, Lee YJ, Kim YH, Kim SH. Relationship between Clinical Parameters and Brain Structure in Sporadic Amyotrophic Lateral Sclerosis Patients According to Onset Type: A Voxel-Based Morphometric Study. PLoS One 2017; 12:e0168424. [PMID: 28095425 PMCID: PMC5240978 DOI: 10.1371/journal.pone.0168424] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/30/2016] [Indexed: 12/31/2022] Open
Abstract
Background and purpose Amyotrophic lateral sclerosis (ALS) is a rapidly progressing, phenotypically heterogeneous neurodegenerative disease affecting mainly the motor neuron system. The present voxel-based morphometry (VBM) study investigated whether patterns of brain atrophy differ among sporadic ALS subtypes. Material and methods Sporadic ALS patients (n = 62) with normal cognition and age-matched healthy controls (n = 57) were included in the study. ALS patients were divided into limb- and bulbar-onset groups according to clinical manifestations at symptom onset (n = 48 and 14, respectively). Clinical measures were ALS Functional Rating Scale-Revised (ALSFRS-R) score, disease duration, and forced vital capacity (FVC). Patterns of brain atrophy between ALS subgroups were compared by VBM. Results In limb-onset ALS patients, atrophy was largely confined to the motor cortex and adjacent pre- and postcentral regions. However, in the bulbar-onset group, affected regions were more widespread and included these same areas but also extended to the bilateral frontotemporal and left superior temporal and supramarginal gyri, and multiple regression analysis revealed that their ALSFRS-R scores were associated with extensive loss of gray matter while FVC was related to atrophy in subcortical regions of the left superior temporal gyrus. In limb-onset ALS patients, disease duration was related to the degree of atrophy in the motor and adjacent areas. Conclusion Sporadic ALS subtypes show different patterns of brain atrophy. Neural networks related to limb and bulbar motor functions in each ALS subtype may underlie their distinct patterns of cerebral atrophy. That is, more extensive cortical and subcortical atrophy is correlated with greater ALSFRS-R severity and shorter disease duration in the bulbar-onset subtype and may explain the poor prognosis of these patients.
Collapse
Affiliation(s)
- Hee-Jin Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Korea
| | - Mony de Leon
- Center for Brain Health, Department of Psychiatry, NYU School of Medicine, New York, New York, United States of America
| | - Xiuyuan Wang
- Department of Neurology, NYU School of Medicine, New York, New York, United States of America
| | - Hyun Young Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Korea
| | - Young-Jun Lee
- Department of Radiology, College of Medicine, Hanyang University, Seoul, Korea
| | - Yeon-Ha Kim
- College of Nursing, Sungshin University, Seoul, Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Korea
- * E-mail:
| |
Collapse
|
45
|
Turner MR. Motor neuron disease: biomarker development for an expanding cerebral syndrome. Clin Med (Lond) 2016; 16. [PMID: 27956443 PMCID: PMC6329564 DOI: 10.7861/clinmedicine.16-6s-s60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Descriptions of motor neuron disease (MND) documented more than a century ago remain instantly recognisable to the physician. The muscle weakness, typically with signs of upper and lower motor neuron dysfunction, is uniquely relentless. Over the last 30 years, a wider cerebral pathology has emerged, despite the lack of overt cognitive impairment in the majority of patients. From the initial linkage of a small number of cases to mutations in SOD1, diverse cellular pathways have been implicated in pathogenesis. An increasingly complex clinical heterogeneity has emerged around a significant variability in survival. Defining a cellular signature of aggregated TDP-43 common to nearly all MND and a large proportion of frontotemporal dementia (FTD), has placed MND alongside more traditional cerebral neurodegeneration. With new genetic causes, most notably a hexanucleotide expansion in C9orf72 associated with both MND and FTD, the development of biomarkers against which to test therapeutic candidates is a priority.
Collapse
Affiliation(s)
- Martin R Turner
- AMedical Research Council senior clinical fellow, Nuffield Department of Clinical Neurosciences, University of Oxford, UK,Address for correspondence: Professor Martin Turner, West Wing Level 6, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
46
|
Abstract
Descriptions of motor neuron disease (MND) documented more than a century ago remain instantly recognisable to the physician. The muscle weakness, typically with signs of upper and lower motor neuron dysfunction, is uniquely relentless. Over the last 30 years, a wider cerebral pathology has emerged, despite the lack of overt cognitive impairment in the majority of patients. From the initial linkage of a small number of cases to mutations in SOD1, diverse cellular pathways have been implicated in pathogenesis. An increasingly complex clinical heterogeneity has emerged around a significant variability in survival. Defining a cellular signature of aggregated TDP-43 common to nearly all MND and a large proportion of frontotemporal dementia (FTD), has placed MND alongside more traditional cerebral neurodegeneration. With new genetic causes, most notably a hexanucleotide expansion in C9orf72 associated with both MND and FTD, the development of biomarkers against which to test therapeutic candidates is a priority.
Collapse
Affiliation(s)
- Martin R Turner
- Medical Research Council senior clinical fellow, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| |
Collapse
|
47
|
Kim HJ, Oh SI, de Leon M, Wang X, Oh KW, Park JS, Deshpande A, Buj M, Kim SH. Structural explanation of poor prognosis of amyotrophic lateral sclerosis in the non-demented state. Eur J Neurol 2016; 24:122-129. [PMID: 27753163 DOI: 10.1111/ene.13163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/09/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE Amyotrophic lateral sclerosis (ALS), a motor neuron disease, is associated with various cortical symptoms including mild cognitive decline with behavior changes, suggesting the involvement of extra-motor areas in ALS. Our aim was to investigate the specific patterns of brain atrophy in sporadic, impaired ALS patients without commonly known genetic mutations using voxel-based morphometry. MATERIALS AND METHODS Forty-seven patients with sporadic ALS and 28 age-matched healthy controls were recruited. ALS participants were divided into three groups according to comprehensive neuropsychological testing: pure (ALS-pure), cognitive impairment (ALSci) and behavioral impairment (ALSbi). Quantitative comparison of brain atrophy patterns was performed amongst these three groups using voxel-based analysis. All analyses were adjusted for total intracranial volume, age, sex, disease duration and functional disability score. RESULTS The ALSci group exhibited decreased volume in the left cerebellum, fusiform gyrus, optic radiations and corticospinal tracts compared to healthy controls. ALSci patient imaging showed decreased brain volume in the bilateral cerebellum, right putamen gray matter and bilateral superior longitudinal fasciculi white matter compared to pure ALS patients (P < 0.001 uncorrected, corrected for the entire volume). Compared to healthy controls, ALS-pure and ALSbi groups did not show any significant volume changes in gray and white matter. CONCLUSIONS These findings also support the hypothesis that ALS pathogenesis has a dual focality of onset (cortex and anterior horn) with contiguous spread outwards. Additionally, neuropsychological features may be an important predictor of progression and survival rates in ALS.
Collapse
Affiliation(s)
- H-J Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Korea
| | - S-I Oh
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - M de Leon
- Department of Psychiatry, Center for Brain Health, NYU School of Medicine, New York, NY, USA
| | - X Wang
- Department of Neurology, NYU School of Medicine, New York, NY, USA
| | - K-W Oh
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Korea
| | - J-S Park
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Korea
| | - A Deshpande
- Department of Psychiatry, Center for Brain Health, NYU School of Medicine, New York, NY, USA
| | - M Buj
- Department of Psychiatry, Center for Brain Health, NYU School of Medicine, New York, NY, USA
| | - S H Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Korea
| |
Collapse
|
48
|
van der Burgh HK, Schmidt R, Westeneng HJ, de Reus MA, van den Berg LH, van den Heuvel MP. Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis. NEUROIMAGE-CLINICAL 2016; 13:361-369. [PMID: 28070484 PMCID: PMC5219634 DOI: 10.1016/j.nicl.2016.10.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 01/17/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease, with large variation in survival between patients. Currently, it remains rather difficult to predict survival based on clinical parameters alone. Here, we set out to use clinical characteristics in combination with MRI data to predict survival of ALS patients using deep learning, a machine learning technique highly effective in a broad range of big-data analyses. A group of 135 ALS patients was included from whom high-resolution diffusion-weighted and T1-weighted images were acquired at the first visit to the outpatient clinic. Next, each of the patients was monitored carefully and survival time to death was recorded. Patients were labeled as short, medium or long survivors, based on their recorded time to death as measured from the time of disease onset. In the deep learning procedure, the total group of 135 patients was split into a training set for deep learning (n = 83 patients), a validation set (n = 20) and an independent evaluation set (n = 32) to evaluate the performance of the obtained deep learning networks. Deep learning based on clinical characteristics predicted survival category correctly in 68.8% of the cases. Deep learning based on MRI predicted 62.5% correctly using structural connectivity and 62.5% using brain morphology data. Notably, when we combined the three sources of information, deep learning prediction accuracy increased to 84.4%. Taken together, our findings show the added value of MRI with respect to predicting survival in ALS, demonstrating the advantage of deep learning in disease prognostication.
Collapse
Affiliation(s)
- Hannelore K van der Burgh
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3508 GA, Utrecht, Netherlands
| | - Ruben Schmidt
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3508 GA, Utrecht, Netherlands
| | - Henk-Jan Westeneng
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3508 GA, Utrecht, Netherlands
| | - Marcel A de Reus
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3508 GA, Utrecht, Netherlands
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3508 GA, Utrecht, Netherlands
| | - Martijn P van den Heuvel
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3508 GA, Utrecht, Netherlands
| |
Collapse
|
49
|
Geevasinga N, Menon P, Özdinler PH, Kiernan MC, Vucic S. Pathophysiological and diagnostic implications of cortical dysfunction in ALS. Nat Rev Neurol 2016; 12:651-661. [DOI: 10.1038/nrneurol.2016.140] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Proudfoot M, Rohenkohl G, Quinn A, Colclough GL, Wuu J, Talbot K, Woolrich MW, Benatar M, Nobre AC, Turner MR. Altered cortical beta-band oscillations reflect motor system degeneration in amyotrophic lateral sclerosis. Hum Brain Mapp 2016; 38:237-254. [PMID: 27623516 PMCID: PMC5215611 DOI: 10.1002/hbm.23357] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/07/2016] [Accepted: 08/11/2016] [Indexed: 12/28/2022] Open
Abstract
Continuous rhythmic neuronal oscillations underpin local and regional cortical communication. The impact of the motor system neurodegenerative syndrome amyotrophic lateral sclerosis (ALS) on the neuronal oscillations subserving movement might therefore serve as a sensitive marker of disease activity. Movement preparation and execution are consistently associated with modulations to neuronal oscillation beta (15–30 Hz) power. Cortical beta‐band oscillations were measured using magnetoencephalography (MEG) during preparation for, execution, and completion of a visually cued, lateralized motor task that included movement inhibition trials. Eleven “classical” ALS patients, 9 with the primary lateral sclerosis (PLS) phenotype, and 12 asymptomatic carriers of ALS‐associated gene mutations were compared with age‐similar healthy control groups. Augmented beta desynchronization was observed in both contra‐ and ipsilateral motor cortices of ALS patients during motor preparation. Movement execution coincided with excess beta desynchronization in asymptomatic mutation carriers. Movement completion was followed by a slowed rebound of beta power in all symptomatic patients, further reflected in delayed hemispheric lateralization for beta rebound in the PLS group. This may correspond to the particular involvement of interhemispheric fibers of the corpus callosum previously demonstrated in diffusion tensor imaging studies. We conclude that the ALS spectrum is characterized by intensified cortical beta desynchronization followed by delayed rebound, concordant with a broader concept of cortical hyperexcitability, possibly through loss of inhibitory interneuronal influences. MEG may potentially detect cortical dysfunction prior to the development of overt symptoms, and thus be able to contribute to the assessment of future neuroprotective strategies. Hum Brain Mapp 38:237–254, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Malcolm Proudfoot
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom.,Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Gustavo Rohenkohl
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Andrew Quinn
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Giles L Colclough
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Joanne Wuu
- Department of Neurology, Miller School of Medicine, University of Miami, Florida
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Mark W Woolrich
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Michael Benatar
- Department of Neurology, Miller School of Medicine, University of Miami, Florida
| | - Anna C Nobre
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| |
Collapse
|