1
|
Wang S, Li C, Kang X, Su X, Liu Y, Wang Y, Liu S, Deng X, Huang H, Li T, Lu D, Cai W, Lu Z, Wei L, Lu T. Agomelatine promotes differentiation of oligodendrocyte precursor cells and preserves white matter integrity after cerebral ischemic stroke. J Cereb Blood Flow Metab 2024; 44:1487-1500. [PMID: 38853430 PMCID: PMC11574932 DOI: 10.1177/0271678x241260100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
White matter injury contributes to neurological disorders after acute ischemic stroke (AIS). The repair of white matter injury is dependent on the re-myelination by oligodendrocytes. Both melatonin and serotonin antagonist have been proved to protect against post-stroke white matter injury. Agomelatine (AGM) is a multi-functional treatment which is both a melatonin receptor agonist and selective serotonin receptor antagonist. Whether AGM protects against white matter injury after stroke and the underlying mechanisms remain elusive. Here, using the transient middle cerebral artery occlusion (tMCAO) model, we evaluated the therapeutic effects of AGM in stroke mice. Sensorimotor and cognitive functions, white matter integrity, oligodendroglial regeneration and re-myelination in stroke hemisphere after AGM treatment were analyzed. We found that AGM efficiently preserved white matter integrity, reduced brain tissue loss, attenuated long-term sensorimotor and cognitive deficits in tMCAO models. AGM treatment promoted OPC differentiation and enhanced re-myelination both in vitro, ex vivo and in vivo, although OPC proliferation was unaffected. Mechanistically, AGM activated low density lipoprotein receptor related protein 1 (LRP1), peroxisome proliferator-activated receptor γ (PPARγ) signaling thus promoted OPC differentiation and re-myelination after stroke. Inhibition of PPARγ or knock-down of LRP1 in OPCs reversed the beneficial effects of AGM. Altogether, our data indicate that AGM represents a novel therapy against white matter injury after cerebral ischemia.
Collapse
Affiliation(s)
- Shisi Wang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunyi Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinmei Kang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaotao Su
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuge Wang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sanxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohui Deng
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huipeng Huang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tiemei Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Danli Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Cai
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Wei
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tingting Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Abdel-Hameed SS, El-Daly M, Ahmed ASF, Bekhit AA, Heeba GH. Dapoxetine prevents neuronal damage and improves functional outcomes in a model of ischemic stroke through the modulation of inflammation and oxidative stress. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:253-266. [PMID: 37417988 PMCID: PMC10771602 DOI: 10.1007/s00210-023-02601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023]
Abstract
Stroke is a medical emergency that is associated with substantial mortality and functional disability in adults. The most popular class of antidepressants, selective serotonin reuptake inhibitors SSRIs, have recently been shown in studies to have positive effects on post-stroke motor and cognitive function. Thus, we hypothesized that dapoxetine (DAP), a short-acting SSRI, would be effective against cerebral ischemia/reperfusion injury. Adult male Wister rats (200-250 g) were subjected to a sham operation or bilateral common carotid artery occlusion (BCCAO) for 30 min followed by 24 h of reperfusion to induce global cerebral ischemia/reperfusion (I/R) injury. Rats were treated with vehicle or DAP (30 or 60 mg/kg, i.p.) 1 h before BCCAO. The neurobehavioral performance of rats was assessed. The infarct volume, histopathological changes, oxidative stress parameters, and apoptotic and inflammatory mediators were determined in the brain tissues of euthanized rats. Our results confirmed that DAP significantly ameliorated cerebral I/R-induced neurobehavioral deficits, reduced cerebral infarct volume, and histopathological damage. Moreover, DAP pretreatment reduced lipid peroxidation, caspase-3, and inflammatory mediators (TNF-α and iNOS) compared to I/R-injured rats. Thus, DAP pretreatment potentially improves neurological function, and cerebral damage in cerebral ischemic rats may be partly related to the reduction in the inflammatory response, preservation of oxidative balance, and suppression of cell apoptosis in brain tissues.
Collapse
Affiliation(s)
| | - Mahmoud El-Daly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Amany A Bekhit
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt.
| | - Gehan H Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt.
| |
Collapse
|
3
|
Zhan Q, Kong F. Mechanisms associated with post-stroke depression and pharmacologic therapy. Front Neurol 2023; 14:1274709. [PMID: 38020612 PMCID: PMC10651767 DOI: 10.3389/fneur.2023.1274709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Stroke is one of the most common cerebrovascular diseases, which is the cause of long-term mental illness and physical disability, Post-stroke depression (PSD) is the most common neuropsychiatric complication after stroke, and its mechanisms are characterized by complexity, plurality, and diversity, which seriously affects the quality of survival and prognosis of patients. Studies have focused on and recognized neurotransmitter-based mechanisms and selective serotonin-reuptake inhibitors (SSRIs) can be used to treat PSD. Neuroinflammation, neuroendocrinology, neurotrophic factors, and the site of the stroke lesion may affect neurotransmitters. Thus the mechanisms of PSD have been increasingly studied. Pharmacological treatment mainly includes SSRIs, noradrenergic and specific serotonergic antidepressant (NaSSA), anti-inflammatory drugs, vitamin D, ect, which have been confirmed to have better efficacy by clinical studies. Currently, there is an increasing number of studies related to the mechanisms of PSD. However, the mechanisms and pharmacologic treatment of PSD is still unclear. In the future, in-depth research on the mechanisms and treatment of PSD is needed to provide a reference for the prevention and treatment of clinical PSD.
Collapse
Affiliation(s)
- Qingyang Zhan
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fanyi Kong
- Neurosurgery, Affiliated First Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Xiao Z, Li P, Shen Y, Manaenko A, Yang W, Wang P, Li X, Liu F, Xie P, Li Q. Multi-time point metabolomics reveals key metabolic features from the ultra-early stage of intracerebral hemorrhage in mice. Exp Neurol 2023; 368:114507. [PMID: 37598880 DOI: 10.1016/j.expneurol.2023.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Despite decades of intensive research, there are still very limited options for the effective treatment of intracerebral hemorrhage (ICH). Recently, mounting evidence has indicated that the ultra-early stage (<3 h), serving as the primary phase of ICH, plays a pivotal role and may even surpass other stages in terms of its significance. Therefore, uncovering the metabolic alterations induced by ICH in the ultra-early stage is of crucial importance. To investigate this, the collagenase ICH mouse model was employed in this study. ICH or sham-operated mice were euthanized at the ultra-early stage of 3 h and the acute stage of 24 h and 72 h after the operation. Then, the metabolic changes in the perihematomal tissues were detected by liquid chromatography coupled with tandem mass spectrometry. In total, alterations in the levels of 465 metabolites were detected. A total of 136 metabolites were significantly changed at 3 h. At 24 h and 72 h, the amounts were 132 and 126, respectively. Additionally, the key corresponding metabolic pathways for these time points were analyzed through KEGG. To gather additional information, quantitative real-time transcription polymerase chain reaction, enzyme-linked immunosorbent assay and Western blots were performed to validate the metabolic changes. Overall, ICH significantly alters important physiological functions such as cysteine metabolism, purine metabolism, synaptic alterations, the synaptic vesicle cycle, and the ATP-binding cassette transporter system. These might be the key pathologic mechanisms of the ultra-early stage induced by ICH.
Collapse
Affiliation(s)
- Zhongsong Xiao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peizheng Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yiqing Shen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Anatol Manaenko
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wensong Yang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xinhui Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fangyu Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Qi Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
5
|
Fasakin OW, Oboh G, Ademosun AO, Lawal AO. The modulatory effects of alkaloid extracts of Cannabis sativa, Datura stramonium, Nicotiana tabacum and male Carica papaya on neurotransmitter, neurotrophic and neuroinflammatory systems linked to anxiety and depression. Inflammopharmacology 2022; 30:2447-2476. [PMID: 35665872 DOI: 10.1007/s10787-022-01006-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/08/2022] [Indexed: 01/03/2023]
Abstract
This study investigated the modulatory effects of alkaloid extracts of Cannabis sativa (CSAE), Datura stramonium (DSAE), Nicotiana tabacum (NTAE) and male Carica papaya (CMAE) on neurotransmitter, neurotrophic and neuro-inflammatory systems linked to anxiety and depression. Male Wistar rats were orally administered the alkaloid extracts in doses of 5, 50, 500, and 2000 mg/kg for 90 days. On day 91, neurobehavioural studies were evaluated, rats were sacrificed, brain hippocampus removed and tissue homogenate prepared. Biochemical, cytokine and neurotransmitter metabolisms were estimated in the hippocampus. Expressions of genes linked to anxiety and depression were evaluated by RT-qPCR. Results showed CSAE, NTAE and CMAE act as anxiolytic and antidepressant agents by depleting TNF-α, IL-1β and reactive oxygen species concentrations, and monoamine oxidase, angiotensin 1-converting enzyme and acetylcholinesterase activities while elevating IL-10 and dopamine concentrations and glutamate dehydrogenase activity at doses of 5, 50 and 500. Same doses of CSAE, NTAE and CMAE also depleted the gene expressions of GSK3β, JNK, NF-ĸB, and Nesfatin-1 while increasing expressions of CREB, BDNF, serotonin and Nrf2. However, administration of DSAE and 2000 mg/kg CSAE, NTAE and CMAE had adverse modulatory effects on the neurochemical concentrations and activities as well as the gene expressions of the evaluated neurotransmitter, neurotrophic and inflammatory systems. In conclusion, the study established the sub-chronic instrumentalization potential of CSAE, CMAE, and NTAE for anxiolytic and anti-depressive moods, though their use may be associated with dependence and addiction, which may result in more detrimental effects than any therapeutic potential they may proffer.
Collapse
Affiliation(s)
- Olamide Wilson Fasakin
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria
| | - Ganiyu Oboh
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria.
| | - Ayokunle Olubode Ademosun
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria
| | - Akeem O Lawal
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria
| |
Collapse
|
6
|
L’utilisation des antidépresseurs dans l’épisode dépressif caractérisé unipolaire du sujet âgé. Encephale 2022; 48:445-454. [DOI: 10.1016/j.encep.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/01/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
|
7
|
Greenberg SM, Ziai WC, Cordonnier C, Dowlatshahi D, Francis B, Goldstein JN, Hemphill JC, Johnson R, Keigher KM, Mack WJ, Mocco J, Newton EJ, Ruff IM, Sansing LH, Schulman S, Selim MH, Sheth KN, Sprigg N, Sunnerhagen KS. 2022 Guideline for the Management of Patients With Spontaneous Intracerebral Hemorrhage: A Guideline From the American Heart Association/American Stroke Association. Stroke 2022; 53:e282-e361. [PMID: 35579034 DOI: 10.1161/str.0000000000000407] [Citation(s) in RCA: 514] [Impact Index Per Article: 171.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - William J Mack
- AHA Stroke Council Scientific Statement Oversight Committee on Clinical Practice Guideline liaison
| | | | | | - Ilana M Ruff
- AHA Stroke Council Stroke Performance Measures Oversight Committee liaison
| | | | | | | | - Kevin N Sheth
- AHA Stroke Council Scientific Statement Oversight Committee on Clinical Practice Guideline liaison.,AAN representative
| | | | | | | |
Collapse
|
8
|
Capizzi A, Woo J, Magat E. Poststroke aphasia treatment: A review of pharmacologic therapies and noninvasive brain stimulation techniques. THE JOURNAL OF THE INTERNATIONAL SOCIETY OF PHYSICAL AND REHABILITATION MEDICINE 2022. [DOI: 10.4103/jisprm.jisprm-000151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Huang Y, Zhao M, Chen X, Zhang R, Le A, Hong M, Zhang Y, Jia L, Zang W, Jiang C, Wang J, Fan X, Wang J. Tryptophan Metabolism in Central Nervous System Diseases: Pathophysiology and Potential Therapeutic Strategies. Aging Dis 2022; 14:858-878. [PMID: 37191427 DOI: 10.14336/ad.2022.0916] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022] Open
Abstract
The metabolism of L-tryptophan (TRP) regulates homeostasis, immunity, and neuronal function. Altered TRP metabolism has been implicated in the pathophysiology of various diseases of the central nervous system. TRP is metabolized through two main pathways, the kynurenine pathway and the methoxyindole pathway. First, TRP is metabolized to kynurenine, then kynurenic acid, quinolinic acid, anthranilic acid, 3-hydroxykynurenine, and finally 3-hydroxyanthranilic acid along the kynurenine pathway. Second, TRP is metabolized to serotonin and melatonin along the methoxyindole pathway. In this review, we summarize the biological properties of key metabolites and their pathogenic functions in 12 disorders of the central nervous system: schizophrenia, bipolar disorder, major depressive disorder, spinal cord injury, traumatic brain injury, ischemic stroke, intracerebral hemorrhage, multiple sclerosis, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Furthermore, we summarize preclinical and clinical studies, mainly since 2015, that investigated the metabolic pathway of TRP, focusing on changes in biomarkers of these neurologic disorders, their pathogenic implications, and potential therapeutic strategies targeting this metabolic pathway. This critical, comprehensive, and up-to-date review helps identify promising directions for future preclinical, clinical, and translational research on neuropsychiatric disorders.
Collapse
|
10
|
Abstract
The integrity of the blood-brain barrier (BBB) is mainly maintained by the brain vascular endothelial cells and the tight junctions amongst them. Pimavanserin is a novel agent approved for the treatment of Parkinson’s disease and exerts neuroprotective properties. The present study aims to explore the possibility that Pimavanserin might be an effective agent used for the treatment of cerebral ischemia stroke. Middle cerebral artery occlusion (MCAO) was established in mice, and oxygen-glucose deprivation/reoxygenation (OGD/R) was established in brain bEND.3 endothelial cells. Mice were randomly divided into four groups: (1) Sham operation group; (2). Pimavanserin (1 mg/kg); (3). MCAO; (4). Pimavanserin+ MCAO. We found that compared to the Sham group, the elevated neurological deficit score and brain water content increased production of inflammatory factors, increased BBB permeability, and downregulated Claudin 5 expression were observed in the MCAO group and were all dramatically reversed by the administration of Pimavanserin. Brain bEND.3 endothelial cells were treated with Pimavanserin before the exposure to OGD/R. The significantly increased lactate dehydrogenase (LDH) release, declined cell viability, increased endothelial permeability, downregulated Claudin 5 and Krüppel-like factors 6 (KLF6) were observed in the OGD/R group and were all reversed by the introduction of Pimavanserin. Lastly, the effects of Pimavanserin on the expression level of Claudin 5 and endothelial permeability in OGD/R-challenged endothelial cells were both abolished by the knockdown of KLF6. Taken together, our data revealed that Pimavanserin protected against cerebral ischemia injury by regulating the BBB integrity in a KLF6-dependent manner.
Collapse
Affiliation(s)
- Xiang Li
- Department of General Practice, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, HL, China
| | - Xiaoyan Tian
- Department of General Practice, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, HL, China
| |
Collapse
|
11
|
Role of the nucleus accumbens in functional recovery from spinal cord injury. Neurosci Res 2021; 172:1-6. [PMID: 33895202 DOI: 10.1016/j.neures.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 11/21/2022]
Abstract
Post brain damage depression impedes functional recovery. On the other hand, higher motivation facilitates functional recovery after damage to the central nervous system, but the neural mechanism of psychological effects on functional recovery is unclear. The nucleus accumbens (NAcc), a motivation center, has not been considered directly involved in motor function. Recently, it was demonstrated that the NAcc makes a direct contribution to motor performance after spinal cord injury by facilitating motor cortex activity. In this perspective, we first summarize our investigation of role of NAcc in motor control during the recovery course after spinal cord injury, followed by a discussion of the current knowledge regarding the relationship between the recovery and NAcc after neuronal damage.
Collapse
|
12
|
Cogo A, Mangin G, Maïer B, Callebert J, Mazighi M, Chabriat H, Launay JM, Huberfeld G, Kubis N. Increased serum QUIN/KYNA is a reliable biomarker of post-stroke cognitive decline. Mol Neurodegener 2021; 16:7. [PMID: 33588894 PMCID: PMC7885563 DOI: 10.1186/s13024-020-00421-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Strokes are becoming less severe due to increased numbers of intensive care units and improved treatments. As patients survive longer, post-stroke cognitive impairment (PSCI) has become a major health public issue. Diabetes has been identified as an independent predictive factor for PSCI. Here, we characterized a clinically relevant mouse model of PSCI, induced by permanent cerebral artery occlusion in diabetic mice, and investigated whether a reliable biomarker of PSCI may emerge from the kynurenine pathway which has been linked to inflammatory processes. METHODS Cortical infarct was induced by permanent middle cerebral artery occlusion in male diabetic mice (streptozotocin IP). Six weeks later, cognitive assessment was performed using the Barnes maze, hippocampi long-term potentiation using microelectrodes array recordings, and neuronal death, white matter rarefaction and microglia/macrophages density assessed in both hemispheres using imunohistochemistry. Brain and serum metabolites of the kynurenin pathway were measured using HPLC and mass fragmentography. At last, these same metabolites were measured in the patient's serum, at the acute phase of stroke, to determine if they could predict PSCI 3 months later. RESULTS We found long-term spatial memory was impaired in diabetic mice 6 weeks after stroke induction. Synaptic plasticity was completely suppressed in both hippocampi along with increased neuronal death, white matter rarefaction in both striatum, and increased microglial/macrophage density in the ipsilateral hemisphere. Brain and serum quinolinic acid concentrations and quinolinic acid over kynurenic acid ratios were significantly increased compared to control, diabetic and non-diabetic ischemic mice, where PSCI was absent. These putative serum biomarkers were strongly correlated with degradation of long-term memory, neuronal death, microglia/macrophage infiltration and white matter rarefaction. Moreover, we identified these same serum biomarkers as potential predictors of PSCI in a pilot study of stroke patients. CONCLUSIONS we have established and characterized a new model of PSCI, functionally and structurally, and we have shown that the QUIN/KYNA ratio could be used as a surrogate biomarker of PSCI, which may now be tested in large prospective studies of stroke patients.
Collapse
Affiliation(s)
- Adrien Cogo
- Université de Paris, INSERM U1148, Laboratory for Vascular Translational Science, F-75018 Paris, France
- Université de Paris, INSERM U965, CART, F-75010 Paris, France
| | - Gabrielle Mangin
- Université de Paris, INSERM U1148, Laboratory for Vascular Translational Science, F-75018 Paris, France
- Université de Paris, INSERM U965, CART, F-75010 Paris, France
| | - Benjamin Maïer
- Université de Paris, INSERM U965, CART, F-75010 Paris, France
| | - Jacques Callebert
- Université de Paris, Inserm UMR-S 942; Département de Biochimie et de Biologie Moléculaire, APHP, Hôpital Lariboisière, F-75010 Paris, France
| | - Mikael Mazighi
- Université de Paris, INSERM U1148, Laboratory for Vascular Translational Science, F-75018 Paris, France
- Service de Neurologie, APHP, Hôpital Lariboisière, F-75010 Paris, France
| | - Hughes Chabriat
- Service de Neurologie, APHP, Hôpital Lariboisière, F-75010 Paris, France
| | - Jean-Marie Launay
- Université de Paris, Inserm UMR-S 942; Département de Biochimie et de Biologie Moléculaire, APHP, Hôpital Lariboisière, F-75010 Paris, France
| | - Gilles Huberfeld
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, F-75005 Paris, France
- Clinical Neurophysiology department, APHP, Pitie-Salpetriere Hospital, Sorbonne Université, APHP, F-75013 Paris, France
| | - Nathalie Kubis
- Université de Paris, INSERM U1148, Laboratory for Vascular Translational Science, F-75018 Paris, France
- Université de Paris, INSERM U965, CART, F-75010 Paris, France
- Service de Physiologie Clinique-Explorations Fonctionnelles, DMU DREAM, APHP, Hôpital Lariboisière, F-75010 Paris, France
| |
Collapse
|
13
|
Zahrai A, Vahid-Ansari F, Daigle M, Albert PR. Fluoxetine-induced recovery of serotonin and norepinephrine projections in a mouse model of post-stroke depression. Transl Psychiatry 2020; 10:334. [PMID: 32999279 PMCID: PMC7527452 DOI: 10.1038/s41398-020-01008-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic treatment with fluoxetine (FLX) is required for its antidepressant effects, but the role of serotonin (5-HT) axonal plasticity in FLX action is unknown. To address this, we examined mice with a stroke in the left medial prefrontal cortex (mPFC) resulting in persistent anxiety-like and depression-like behaviors and memory deficits as a model of post-stroke depression. Chronic treatment with FLX (but not exercise) completely reversed the behavioral phenotype and partially reversed changes in FosB-labeled cells in the mPFC, nucleus accumbens, septum, hippocampus, basolateral amygdala (BLA), and dorsal raphe. In these regions, 5-HT or norepinephrine (NE) innervation was quantified by staining for 5-HT or NE transporters, respectively. 5-HT synapses and synaptic triads were identified as synaptophysin-stained sites on 5-HT axons located proximal to gephyrin-stained or PSD95-stained spines. A week after stroke, 5-HT innervation was greatly reduced at the stroke site (left cingulate gyrus (CG) of the mPFC) and the left BLA. Chronically, 5-HT and NE innervation was reduced at the left CG, nucleus accumbens, and BLA, with no changes in other regions. In these areas, pre-synaptic and post-synaptic 5-HT synapses and triads to inhibitory (gephyrin+) sites were reduced, while 5-HT contacts at excitatory (PSD95+) sites were reduced in the CG and prelimbic mPFC. Chronic FLX, but not exercise, reversed these reductions in 5-HT innervation but incompletely restored NE projections. Changes in 5-HT innervation were verified using YFP staining in mice expressing YFP-tagged channelrhodopsin in 5-HT neurons. Thus, FLX-induced 5-HT axonal neuroplasticity of forebrain projections may help mediate recovery from brain injury.
Collapse
Affiliation(s)
- Amin Zahrai
- grid.412687.e0000 0000 9606 5108Ottawa Hospital Research Institute (Neuroscience), UOttawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H-8M5 Canada
| | - Faranak Vahid-Ansari
- grid.412687.e0000 0000 9606 5108Ottawa Hospital Research Institute (Neuroscience), UOttawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H-8M5 Canada
| | - Mireille Daigle
- grid.412687.e0000 0000 9606 5108Ottawa Hospital Research Institute (Neuroscience), UOttawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H-8M5 Canada
| | - Paul R. Albert
- grid.412687.e0000 0000 9606 5108Ottawa Hospital Research Institute (Neuroscience), UOttawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H-8M5 Canada
| |
Collapse
|
14
|
Effectiveness and safety of the Xuefu Zhuyu Tang for post-stroke depression: A systematic review and meta-analysis. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Comparative Cerebroprotective Potential of d- and l-Carnosine Following Ischemic Stroke in Mice. Int J Mol Sci 2020; 21:ijms21093053. [PMID: 32357505 PMCID: PMC7246848 DOI: 10.3390/ijms21093053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
l-carnosine is an attractive therapeutic agent for acute ischemic stroke based on its robust preclinical cerebroprotective properties and wide therapeutic time window. However, large doses are needed for efficacy because carnosine is rapidly degraded in serum by carnosinases. The need for large doses could be particularly problematic when translating to human studies, as humans have much higher levels of serum carnosinases. We hypothesized that d-carnosine, which is not a substrate for carnosinases, may have a better pharmacological profile and may be more efficacious at lower doses than l-carnosine. To test our hypothesis, we explored the comparative pharmacokinetics and neuroprotective properties of d- and L-carnosine in acute ischaemic stroke in mice. We initially investigated the pharmacokinetics of d- and L-carnosine in serum and brain after intravenous (IV) injection in mice. We then investigated the comparative efficacy of d- and l-carnosine in a mouse model of transient focal cerebral ischemia followed by in vitro testing against excitotoxicity and free radical generation using primary neuronal cultures. The pharmacokinetics of d- and l-carnosine were similar in serum and brain after IV injection in mice. Both d- and l-carnosine exhibited similar efficacy against mouse focal cerebral ischemia. In vitro studies in neurons showed protection against excitotoxicity and the accumulation of free radicals. d- and l-carnosine exhibit similar pharmacokinetics and have similar efficacy against experimental stroke in mice. Since humans have far higher levels of carnosinases, d-carnosine may have more favorable pharmacokinetics in future human studies.
Collapse
|
16
|
Liu L, Fuller M, Behymer TP, Ng Y, Christianson T, Shah S, King NKK, Woo D, James ML. Selective Serotonin Reuptake Inhibitors and Intracerebral Hemorrhage Risk and Outcome. Stroke 2020; 51:1135-1141. [PMID: 32126942 DOI: 10.1161/strokeaha.119.028406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Selective serotonin reuptake inhibitors (SSRIs) have a well-established association with bleeding complications and conflicting reports on outcome after stroke. We sought to evaluate whether pre-intracerebral hemorrhage (ICH) SSRI use increased ICH risk and post-ICH SSRI use improved ICH outcome. Methods- Through post hoc analysis of the ERICH study (Ethnic/Racial Variations of Intracerebral Hemorrhage), SSRI use was categorized into no use, pre-ICH only, pre- and post-ICH use (termed "continuous"), and post-ICH only (termed "new"). Using multivariable modeling, associations were sought between pre-ICH SSRI use and ICH risk in the case-control set, and associations between post-ICH SSRI use and 3-month outcome were analyzed in the ICH case set. Exploratory analyses sought to assess influence of race/ethnicity in models. Results- The final study cohort consisted of 2287 ICH cases and 2895 controls. Pre-ICH SSRI use was not associated with ICH risk (odds ratio, 0.824 [95% CI, 0.632-1.074]) nor potentiation of ICH risk with anticoagulant or antiplatelet use. New post-ICH SSRI use was associated with unfavorable modified Rankin Scale score at 3 months after ICH (odds ratio, 1.673 [95% CI, 1.162-2.408]; P=0.006) in multivariable analyses. Additional propensity score analysis indicated a similar trend but did not reach statistical significance (P=0.107). When stratified by race/ethnicity, multivariable modeling demonstrated reduced ICH risk with pre-ICH SSRI use in Hispanics (odds ratio, 0.513 [95% CI, 0.301-0.875]; P=0.014), but not non-Hispanic whites or blacks, and no associations between post-ICH SSRI use and 3-month outcome in any racial/ethnic group. Conclusions- In a large multiethnic cohort, pre-ICH SSRI use was not associated with increased ICH risk, but post-ICH SSRI use was associated with unfavorable 3-month neurological outcome after ICH. Registration- URL: https://www.clinicaltrials.gov; Unique identifier: NCT01202864.
Collapse
Affiliation(s)
- Li Liu
- From the Department of Neurology (L.L.), PLA Strategic Support Force Characteristic Medical Center, Beijing, P.R. China
| | - Matthew Fuller
- Department of Anesthesiology (M.F., M.J.L.), Duke University, Durham, NC
| | - Tyler P Behymer
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH (T.P.B., D.W.)
| | - Yisi Ng
- Duke-NUS Graduate Medical School, Singapore (Y.N., N.K.K.K.)
| | | | - Shreyansh Shah
- Department of Neurology (S.S., M.L.J.), Duke University, Durham, NC
| | - Nicolas Kon Kam King
- Duke-NUS Graduate Medical School, Singapore (Y.N., N.K.K.K.).,National Neuroscience Institute, Singapore (N.K.K.K.)
| | - Daniel Woo
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH (T.P.B., D.W.)
| | - Michael L James
- Department of Neurology (S.S., M.L.J.), Duke University, Durham, NC
| |
Collapse
|
17
|
Cirillo C, Brihmat N, Castel-Lacanal E, Le Friec A, Barbieux-Guillot M, Raposo N, Pariente J, Viguier A, Simonetta-Moreau M, Albucher JF, Olivot JM, Desmoulin F, Marque P, Chollet F, Loubinoux I. Post-stroke remodeling processes in animal models and humans. J Cereb Blood Flow Metab 2020; 40:3-22. [PMID: 31645178 PMCID: PMC6928555 DOI: 10.1177/0271678x19882788] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 01/05/2023]
Abstract
After cerebral ischemia, events like neural plasticity and tissue reorganization intervene in lesioned and non-lesioned areas of the brain. These processes are tightly related to functional improvement and successful rehabilitation in patients. Plastic remodeling in the brain is associated with limited spontaneous functional recovery in patients. Improvement depends on the initial deficit, size, nature and localization of the infarction, together with the sex and age of the patient, all of them affecting the favorable outcome of reorganization and repair of damaged areas. A better understanding of cerebral plasticity is pivotal to design effective therapeutic strategies. Experimental models and clinical studies have fueled the current understanding of the cellular and molecular processes responsible for plastic remodeling. In this review, we describe the known mechanisms, in patients and animal models, underlying cerebral reorganization and contributing to functional recovery after ischemic stroke. We also discuss the manipulations and therapies that can stimulate neural plasticity. We finally explore a new topic in the field of ischemic stroke pathophysiology, namely the brain-gut axis.
Collapse
Affiliation(s)
- Carla Cirillo
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Nabila Brihmat
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Evelyne Castel-Lacanal
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Alice Le Friec
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | | | - Nicolas Raposo
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Jérémie Pariente
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Alain Viguier
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Marion Simonetta-Moreau
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Jean-François Albucher
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Jean-Marc Olivot
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Philippe Marque
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - François Chollet
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Isabelle Loubinoux
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| |
Collapse
|
18
|
Syed MJ, Farooq S, Siddiqui S, Awan S, Wasay M. Depression and the Use of Selective Serotonin Reuptake Inhibitors in Patients with Acute Intracerebral Hemorrhage. Cureus 2019; 11:e5975. [PMID: 31803557 PMCID: PMC6874294 DOI: 10.7759/cureus.5975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Introduction Depression is a common psychiatric complication associated with stroke. However, while most studies focus on post-stroke depression (PSD) subsequent to ischemic strokes, fewer studies have specifically explored depressive symptoms and the use of selective serotonin reuptake inhibitors (SSRIs) in patients with acute intracerebral hemorrhage (ICH). The aim of our study was to identify the incidence and factors associated with depression in ICH patients and the use of SSRIs as therapy by physicians at a tertiary care hospital in Karachi, Pakistan. Materials and methods A retrospective chart review was conducted to identify patients with ICH through the International Classification of Diseases, Ninth Revision (ICD-9) coding system electronic medical records of Aga Khan University Hospital, Karachi, Pakistan. Patient records spanning a period of five years at the hospital were identified and analyzed by neurology residents. Patients' clinical, laboratory, radiological, and pharmacological data were recorded and analyzed using a structured proforma. Patients with a past history of depression or those who were taking SSRIs at the time of admission were excluded from the analysis. Depression was defined as the presence of five or more symptoms according to the diagnostic criteria of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV). Results Out of the 458 patients we analyzed, 258 (56%) were men and 200 (44%) were women. The mean age was 59 years. Median National Institutes of Health Stroke Scale (NIHSS) score on admission was 13 (range: 0-42), and the median modified Rankin Scale (mRS) score was 4 (range: 0-6). On neuroimaging, sites of hemorrhage in patients were found to include the basal ganglia/thalamus in 279 (61%) patients, cerebral cortex in 105 (23%), cerebellum in 25 (5%), brain stem in 17 (4%), ventricles in 17 (4%), and multiple sites in eight (2%). We found that 48 (10%) patients had a ventricular extension, and 130 (28%) had midline shift, hydrocephalus, or both. Overall, 103 (22%) patients met the DSM-IV diagnostic criteria for depression. The most common depressive symptoms included tearfulness (67%), sadness (55%), and loss of interest or pleasure in life activities (53%). None of the patients reported suicidal ideation. Only seven patients (2%) were seen by a psychiatrist. The presence of depression was not significantly associated with hemorrhage sites [prabability value (p): 0.55] or the extent of disability (p: 0.09). Among the 103 depressed patients, only 25 (24%) received SSRIs during the hospital stay. A total of 57 (12%) received SSRIs during the hospital stay, of which only 25 had met the DSM-IV diagnostic criteria for depression. The mean duration between the diagnosis of ICH and the start of SSRIs was five days (range 3-25 days). None of the patients received any psychotherapeutic help for depression. At the time of discharge, only 13 (13%) of the 103 patients diagnosed with depression were discharged on SSRIs, while 23 that had not met the DSM-IV diagnostic criteria were discharged on SSRIs. Conclusion The present study demonstrates that depression is not uncommon in acute ICH patients, and it is both underdiagnosed and inadequately treated. Physicians should be trained to accurately identify and effectively treat depressive symptoms in ICH patients. Clear guidelines should be developed to aid the diagnosis and treatment of post-ICH depression in hospital settings.
Collapse
Affiliation(s)
- Maryam J Syed
- Neurology, Aga Khan University Hospital, Karachi, PAK
| | - Salman Farooq
- Neurology, Aga Khan University Hospital, Karachi, PAK
| | | | - Safia Awan
- Internal Medicine, Aga Khan University Hospital, Karachi, PAK
| | | |
Collapse
|