1
|
Yetkin-Arik B, Kastelein AW, Klaassen I, Jansen CHJR, Latul YP, Vittori M, Biri A, Kahraman K, Griffioen AW, Amant F, Lok CAR, Schlingemann RO, van Noorden CJF. Angiogenesis in gynecological cancers and the options for anti-angiogenesis therapy. Biochim Biophys Acta Rev Cancer 2020; 1875:188446. [PMID: 33058997 DOI: 10.1016/j.bbcan.2020.188446] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis is required in cancer, including gynecological cancers, for the growth of primary tumors and secondary metastases. Development of anti-angiogenesis therapy in gynecological cancers and improvement of its efficacy have been a major focus of fundamental and clinical research. However, survival benefits of current anti-angiogenic agents, such as bevacizumab, in patients with gynecological cancer, are modest. Therefore, a better understanding of angiogenesis and the tumor microenvironment in gynecological cancers is urgently needed to develop more effective anti-angiogenic therapies, either or not in combination with other therapeutic approaches. We describe the molecular aspects of (tumor) blood vessel formation and the tumor microenvironment and provide an extensive clinical overview of current anti-angiogenic therapies for gynecological cancers. We discuss the different phenotypes of angiogenic endothelial cells as potential therapeutic targets, strategies aimed at intervention in their metabolism, and approaches targeting their (inflammatory) tumor microenvironment.
Collapse
Affiliation(s)
- Bahar Yetkin-Arik
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Department of Medical Biology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Arnoud W Kastelein
- Department of Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Department of Medical Biology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Charlotte H J R Jansen
- Department of Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Yani P Latul
- Department of Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Miloš Vittori
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Aydan Biri
- Department of Obstetrics and Gynecology, Koru Ankara Hospital, Ankara, Turkey
| | - Korhan Kahraman
- Department of Obstetrics and Gynecology, Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Frederic Amant
- Department of Oncology, KU Leuven, Leuven, Belgium; Center for Gynaecological Oncology, Antoni van Leeuwenhoek, Amsterdam, the Netherlands; Center for Gynaecological Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Center for Gynaecological Oncology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Christianne A R Lok
- Center for Gynaecological Oncology, Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Cornelis J F van Noorden
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
2
|
Chellappan DK, Leng KH, Jia LJ, Aziz NABA, Hoong WC, Qian YC, Ling FY, Wei GS, Ying T, Chellian J, Gupta G, Dua K. The role of bevacizumab on tumour angiogenesis and in the management of gynaecological cancers: A review. Biomed Pharmacother 2018; 102:1127-1144. [DOI: 10.1016/j.biopha.2018.03.061] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 02/06/2023] Open
|
3
|
Senthilkumar K, Venkatesan J, Manivasagan P, Kim SK. Antiangiogenic effects of marine sponge derived compounds on cancer. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:1097-1108. [PMID: 24148290 DOI: 10.1016/j.etap.2013.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 06/02/2023]
Abstract
The term "angiogenic switch" refers to a time-restricted event during tumor progression where the balance between pro- and anti-angiogenic factors, resulting in the transition from dormant avascularized hyperplasia to outgrowing vascularized tumor and eventually to malignant tumor progression. Targeting angiogenesis and its mechanistic pathways are critical target for cancer therapy. Recently, marine derived compounds, plays major role in cancer research. Several sponge derived compounds such as alkaloids, terpenes, macrocylic lactone and polyketide are leading drugs in the treatment of different types of diseases including cancer. Those marine sponge compounds inhibit cancer cell proliferation and tumor angiogenesis. Hence, this review sheds light on angiogenic regulators and marine sponge derived antiangiogenic compounds for cancer.
Collapse
Affiliation(s)
- Kalimuthu Senthilkumar
- Marine Bioprocess Research Center, Department of Chemistry, Pukyong National University, Busan, 608-737, Republic of Korea
| | | | | | | |
Collapse
|
4
|
Abstract
New growth in the vascular network is important since the proliferation, as well as metastatic spread, of cancer cells depends on an adequate supply of oxygen and nutrients and the removal of waste products. New blood and lymphatic vessels form through processes called angiogenesis and lymphangiogenesis, respectively. Angiogenesis is regulated by both activator and inhibitor molecules. More than a dozen different proteins have been identified as angiogenic activators and inhibitors. Levels of expression of angiogenic factors reflect the aggressiveness of tumor cells. The discovery of angiogenic inhibitors should help to reduce both morbidity and mortality from carcinomas. Thousands of patients have received antiangiogenic therapy to date. Despite their theoretical efficacy, antiangiogeic treatments have not proved beneficial in terms of long-term survival. There is an urgent need for a new comprehensive treatment strategy combining antiangiogenic agents with conventional cytoreductive treatments in the control of cancer.
Collapse
Affiliation(s)
- Naoyo Nishida
- Department of Pathology, Research Center of Innovative Cancer Therapy of the 21 Century, COE Program for Medical Science, Kurume University School of Medicine, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW This article reviews some recent developments that have occurred with the widespread use of imaging modalities during intracavitary brachytherapy in cervical cancer. RECENT FINDINGS The practice of dose prescription with intracavitary brachytherapy continues to be largely based on the traditional hypothetical point - point A. Recent studies have indicated that significant uncertainties could result with such point dose prescriptions. Gradually a shift is perceived towards the incorporation of target and normal structure outlines for dose prescription and treatment planning during intracavitary brachytherapy. SUMMARY Dose prescriptions during brachytherapy could be framed with certainty if various imaging modalities are integrated during the intracavitary procedure. With the availability of computerized tomography/magnetic resonance imaging-compatible applicators, dose prescriptions and distributions could be based on either anatomical images of the diseased and normal organs obtained from computerized tomography or magnetic resonance imaging studies or on anatometabolic images after co-registration of the anatomical and functional images obtained from computerized tomography/magnetic resonance imaging and positron emission tomography. A shift from traditional two-dimensional 'points' to three-dimensional 'profiles' for targets and normal tissue doses could be expected in the near future with the use of image-guided intracavitary brachytherapy in cervical cancer.
Collapse
Affiliation(s)
- Niloy Ranjan Datta
- Department of Radiotherapy, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 2668978, India.
| |
Collapse
|