1
|
Xiang T, Yang C, Deng Z, Sun D, Luo F, Chen Y. Krüppel-like factors family in health and disease. MedComm (Beijing) 2024; 5:e723. [PMID: 39263604 PMCID: PMC11387732 DOI: 10.1002/mco2.723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Krüppel-like factors (KLFs) are a family of basic transcription factors with three conserved Cys2/His2 zinc finger domains located in their C-terminal regions. It is acknowledged that KLFs exert complicated effects on cell proliferation, differentiation, survival, and responses to stimuli. Dysregulation of KLFs is associated with a range of diseases including cardiovascular disorders, metabolic diseases, autoimmune conditions, cancer, and neurodegenerative diseases. Their multidimensional roles in modulating critical pathways underscore the significance in both physiological and pathological contexts. Recent research also emphasizes their crucial involvement and complex interplay in the skeletal system. Despite the substantial progress in understanding KLFs and their roles in various cellular processes, several research gaps remain. Here, we elucidated the multifaceted capabilities of KLFs on body health and diseases via various compliable signaling pathways. The associations between KLFs and cellular energy metabolism and epigenetic modification during bone reconstruction have also been summarized. This review helps us better understand the coupling effects and their pivotal functions in multiple systems and detailed mechanisms of bone remodeling and develop potential therapeutic strategies for the clinical treatment of pathological diseases by targeting the KLF family.
Collapse
Affiliation(s)
- Tingwen Xiang
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Chuan Yang
- Department of Biomedical Materials Science Third Military Medical University (Army Medical University) Chongqing China
| | - Zihan Deng
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Dong Sun
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Fei Luo
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Yueqi Chen
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
- Department of Orthopedics Chinese PLA 76th Army Corps Hospital Xining China
| |
Collapse
|
2
|
Yao Q, He L, Bao C, Yan X, Ao J. The role of TNF-α in osteoporosis, bone repair and inflammatory bone diseases: A review. Tissue Cell 2024; 89:102422. [PMID: 39003912 DOI: 10.1016/j.tice.2024.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
Tumour necrosis factor alpha (TNF-α) is a pleiotropic cytokine synthesised primarily by mononuclear cells; it has a potent pro-inflammatory effect, playing a crucial role in metabolic, immune, and inflammatory diseases. This cytokine has been studied in various biological systems. In bone tissue, TNF-α plays an integral role in skeletal disorders such as osteoporosis, fracture repair and rheumatoid arthritis through its involvement in regulating the balance between osteoblasts and osteoclasts, mediating inflammatory responses, promoting angiogenesis and exacerbating synovial proliferation. The biological effect TNF-α exerts in this context is determined by a combination of the signalling pathway it activates, the type of receptor it binds, and the concentration and duration of exposure. This review summarises the participation and pathophysiological role of TNF-α in osteoporosis, bone damage repair, chronic immunoinflammatory bone disease and spinal cord injury, and discusses its main mechanisms.
Collapse
Affiliation(s)
| | - Li He
- Affiliated Hospital of Zunyi Medical University, China.
| | | | - Xuhang Yan
- Affiliated Hospital of Zunyi Medical University, China.
| | - Jun Ao
- Affiliated Hospital of Zunyi Medical University, China.
| |
Collapse
|
3
|
Lee SJ, Jang SA, Kim SC, Gu DR, Yang H, Ryuk JA, Ha H. Euonymus alatus (Thunb.) Siebold Prevents Osteoclast Differentiation and Osteoporosis. Nutrients 2023; 15:3996. [PMID: 37764779 PMCID: PMC10535286 DOI: 10.3390/nu15183996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Euonymus alatus (Thunb.) Siebold, a traditional medicinal plant, has been used in China and several other Asian countries to address a variety of health concerns. The extensive research conducted on E. alatus is driven by its diverse pharmacological applications. However, its biological effects on osteoclastogenesis and osteoporosis have not been previously studied. In this research, we investigated the impact of an ethanolic extract of E. alatus (EEEA) on osteoclast differentiation and function as well as estrogen deficiency-induced bone loss. We found that EEEA inhibits osteoclast differentiation by downregulating the expression of the receptor activator of nuclear factor-κB ligand (RANKL) in osteoclast-supporting cells and by directly impeding RANKL-mediated signaling pathways for osteoclastogenesis in precursor cells. In addition, EEEA inhibited the bone-resorptive function of mature osteoclasts in vitro. Furthermore, oral administration of EEEA significantly alleviated bone loss in an ovariectomy-induced osteoporosis mouse model. Additionally, we identified phytochemicals in EEEA that have suppressive effects on osteoclast differentiation and bone loss. Collectively, these results suggest that EEEA holds potential as a biotherapeutic candidate for anti-postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Sung-Ju Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Republic of Korea; (S.-J.L.); (S.C.K.); (D.R.G.); (H.Y.); (J.A.R.)
| | - Seon-A Jang
- Future Technology Research Center, KT&G Corporation, 30, Gajeong-ro, Yuseong-gu, Daejeon 34128, Republic of Korea;
| | - Seong Cheol Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Republic of Korea; (S.-J.L.); (S.C.K.); (D.R.G.); (H.Y.); (J.A.R.)
| | - Dong Ryun Gu
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Republic of Korea; (S.-J.L.); (S.C.K.); (D.R.G.); (H.Y.); (J.A.R.)
| | - Hyun Yang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Republic of Korea; (S.-J.L.); (S.C.K.); (D.R.G.); (H.Y.); (J.A.R.)
| | - Jin Ah Ryuk
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Republic of Korea; (S.-J.L.); (S.C.K.); (D.R.G.); (H.Y.); (J.A.R.)
| | - Hyunil Ha
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Republic of Korea; (S.-J.L.); (S.C.K.); (D.R.G.); (H.Y.); (J.A.R.)
| |
Collapse
|
4
|
Liu D, Li X, Zhang L, Hu B, Hu S, Zhang X, Hu J. Small molecule inhibitors of osteoarthritis: Current development and future perspective. Front Physiol 2023; 14:1156913. [PMID: 37089415 PMCID: PMC10119395 DOI: 10.3389/fphys.2023.1156913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Osteoarthritis (OA) is one of the common degenerative joint diseases in clinic. It mainly damages articular cartilage, causing pain, swelling and stiffness around joints, and is the main cause of disability of the elderly. Due to the unclear pathogenesis of osteoarthritis and the poor self-healing ability of articular cartilage, the treatment options for this disease are limited. At present, NSAIDs, Glucocorticoid and Duloxetine are the most commonly used treatment choice for osteoarthritis. Although it is somewhat effective, the adverse reactions are frequent and serious. The development of safer and more effective anti-osteoarthritis drugs is essential and urgent. This review summarizes recent advances in the pharmacological treatment of OA, focusing on small molecule inhibitors targeting cartilage remodeling in osteoarthritis as well as the research idea of reducing adverse effects by optimizing the dosage form of traditional drugs for the treatment of osteoarthritis. It should provide a reference for exploration of new potential treatment options.
Collapse
Affiliation(s)
- Dan Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Xingxing Li
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Zhang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Bin Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Sang Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao Zhang
- Institute of Pathology, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing, China
| | - Jing Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
5
|
Huang Z, Yu Y, Lin XL, Zhang T, Huang JL, Xiao L, Liang M, Wang YF, Qi J. Efficacy confirmation of Scutellaria baicalensis Georgi in the treatment of periodontitis via topical administration and active ingredients screening. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115699. [PMID: 36113679 DOI: 10.1016/j.jep.2022.115699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Periodontal disease is a complex inflammatory disease that seriously affects peoples' lives. Scutellaria radix (SR) is traditionally used as a folk medicine to clear away heat and dampness, purge fire and detoxification. Although it has been extensively used as a medicinal plant to treat a variety of inflammatory illnesses, the efficacy and active ingredient for topical administration in the treatment of periodontitis is unknown. AIM OF STUDY The aim of this study was to screen and validate the active ingredients in SR for the prevention and treatment of periodontitis. MATERIALS AND METHODS A ligature-induced periodontitis in rats was used to investigate the efficacy of topical administration of SR for the treatment of periodontitis, and the active fraction was screened after separation of the aqueous extract of SR into fractions of different polarities using a lipopolysaccharide (LPS)-induced cell model. Chromatographic fingerprints were established for 18 batches of SR by high performance liquid chromatography. The potential active components were screened using spectral effect relationship analysis and the target cell extraction method. RESULTS SR has good efficacy in the topical treatment of periodontitis, according to animal experiments. Five active ingredients were screened out and their anti-inflammatory activity was confirmed in vitro. CONCLUSION The main active compounds in the treatment of periodontitis via topical administration of SR were found and this provides an experimental basis for further studies on the pharmacodynamic material basis of SR, as well as reference for the comprehensive evaluation of SR quality and the development of substitute resources.
Collapse
Affiliation(s)
- Zhen Huang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yi Yu
- Infinitus (China) Company Limited, Guangzhou, 510405, China
| | - Xiao-Liang Lin
- Infinitus (China) Company Limited, Guangzhou, 510405, China
| | - Ting Zhang
- Infinitus (China) Company Limited, Guangzhou, 510405, China
| | - Jin-Lian Huang
- Infinitus (China) Company Limited, Guangzhou, 510405, China
| | - Lei Xiao
- Infinitus (China) Company Limited, Guangzhou, 510405, China
| | - Ming Liang
- Infinitus (China) Company Limited, Guangzhou, 510405, China
| | - Yu-Fei Wang
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, PR China.
| | - Jin Qi
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
6
|
Wei B, Ji M, Lin Y, Geng R, Wang Q, Lu J. Investigation of the medium-term effect of osteoprotegerin/bone morphogenetic protein 2 combining with collagen sponges on tendon-bone healing in a rabbit. J Orthop Surg (Hong Kong) 2023; 31:10225536231163467. [PMID: 36893748 DOI: 10.1177/10225536231163467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Osteoprotegerin (OPG) and bone morphogenetic protein-2 (BMP-2) could be administered sequentially to promote tendon-bone healing. There remain several unresolved issues in our previously published study: a) the release kinetics of OPG/BMP-2 from the OPG/BMP-2/collagen sponge (CS) combination in vitro remained unclear; b) the medium-term effect of the OPG/BMP-2/CS combination was not analyzed. Hence, we design this study to address the issues mentioned above. METHODS 30 rabbits undergoing anterior cruciate ligament reconstruction (ACLR) with an Achilles tendon autograft randomly received one of the 3 delivery at the femoral and tibial tunnels: OPG/BMP-2, OPG/BMP-2/CS combination, and nothing (blank control). At 8 and 24 weeks post-surgery, the biomechanical tests and histologic analysis were used to evaluate the tendon-bone healing. RESULTS In mechanical tests, the OPG/BMP-2/CS group showed a higher final failure load and stiffness than the other groups at 8 and 24 weeks. Additionally, the maximum stretching distance showed a decreasing trend. The mechanical failure pattern of samples shifted from a tunnel pull-away to a graft midsubstance rupture after OPG/BMP-2/CS-treated. From histological analysis, the OPG/BMP-2/CS treatment increased the amount of collagen fibers (collagen I and II) and promoted fibrocartilage attachment. CONCLUSION CS as a carrier promotes the medium-term effect of OPG and BMP-2 on tendon-bone healing at the tendon-bone interface in a rabbit ACLR model. OPG, BMP-2 and CS were already applied in several clinical practice, but a further study of clinic use of OPG/BMP-2/CS is still needed.
Collapse
Affiliation(s)
- Bing Wei
- School of Medicine, 66334Southeast University, Nanjing, China.,Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, School of Medicine, 162752Southeast University, Nanjing, China
| | - Mingliang Ji
- School of Medicine, 66334Southeast University, Nanjing, China.,Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, School of Medicine, 162752Southeast University, Nanjing, China
| | - Yucheng Lin
- School of Medicine, 66334Southeast University, Nanjing, China.,Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, School of Medicine, 162752Southeast University, Nanjing, China
| | - Rui Geng
- School of Medicine, 66334Southeast University, Nanjing, China.,Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, School of Medicine, 162752Southeast University, Nanjing, China
| | - Qing Wang
- Department of Orthopaedic Surgery, The First People's Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua, China
| | - Jun Lu
- School of Medicine, 66334Southeast University, Nanjing, China.,Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, School of Medicine, 162752Southeast University, Nanjing, China
| |
Collapse
|
7
|
Yi X, Hu G, Yang Y, Li J, Jin J, Chang B. Role of MOTS-c in the regulation of bone metabolism. Front Physiol 2023; 14:1149120. [PMID: 37200834 PMCID: PMC10185875 DOI: 10.3389/fphys.2023.1149120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
MOTS-c, a mitochondrial-derived peptide (MDP), is an essential regulatory mediator of cell protection and energy metabolism and is involved in the development of specific diseases. Recent studies have revealed that MOTS-c promotes osteoblast proliferation, differentiation, and mineralization. Furthermore, it inhibits osteoclast production and mediates the regulation of bone metabolism and bone remodeling. Exercise effectively upregulates the expression of MOTS-c, but the specific mechanism of MOTS-c regulation in bone by exercise remains unclear. Therefore, this article reviewed the distribution and function of MOTS-c in the tissue, discussed the latest research developments in the regulation of osteoblasts and osteoclasts, and proposed potential molecular mechanisms for the effect of exercise on the regulation of bone metabolism. This review provides a theoretical reference for establishing methods to prevent and treat skeletal metabolic diseases.
Collapse
Affiliation(s)
- Xuejie Yi
- Social Science Research Center, Shenyang Sport University, Shenyang, Liaoning, China
| | - Guangxuan Hu
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Yang Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jing Li
- School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Junjie Jin
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Bo Chang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
- *Correspondence: Bo Chang,
| |
Collapse
|
8
|
Necula MG, Mazare A, Negrescu AM, Mitran V, Ozkan S, Trusca R, Park J, Schmuki P, Cimpean A. Macrophage-like Cells Are Responsive to Titania Nanotube Intertube Spacing-An In Vitro Study. Int J Mol Sci 2022; 23:3558. [PMID: 35408918 PMCID: PMC8998567 DOI: 10.3390/ijms23073558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/23/2022] Open
Abstract
With the introduction of a new interdisciplinary field, osteoimmunology, today, it is well acknowledged that biomaterial-induced inflammation is modulated by immune cells, primarily macrophages, and can be controlled by nanotopographical cues. Recent studies have investigated the effect of surface properties in modulating the immune reaction, and literature data indicate that various surface cues can dictate both the immune response and bone tissue repair. In this context, the purpose of the present study was to investigate the effects of titanium dioxide nanotube (TNT) interspacing on the response of the macrophage-like cell line RAW 264.7. The cells were maintained in contact with the surfaces of flat titanium (Ti) and anodic TNTs with an intertube spacing of 20 nm (TNT20) and 80 nm (TNT80), under standard or pro-inflammatory conditions. The results revealed that nanotube interspacing can influence macrophage response in terms of cell survival and proliferation, cellular morphology and polarization, cytokine/chemokine expression, and foreign body reaction. While the nanostructured topography did not tune the macrophages' differentiation into osteoclasts, this behavior was significantly reduced as compared to flat Ti surface. Overall, this study provides a new insight into how nanotubes' morphological features, particularly intertube spacing, could affect macrophage behavior.
Collapse
Affiliation(s)
- Madalina Georgiana Necula
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.G.N.); (A.M.N.); (V.M.)
| | - Anca Mazare
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany; (A.M.); (S.O.); (P.S.)
- Advanced Institute for Materials Research (AIMR), National University Corporation Tohoku University (TU), Sendai 980-8577, Japan
| | - Andreea Mariana Negrescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.G.N.); (A.M.N.); (V.M.)
| | - Valentina Mitran
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.G.N.); (A.M.N.); (V.M.)
| | - Selda Ozkan
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany; (A.M.); (S.O.); (P.S.)
| | - Roxana Trusca
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 313 Splaiul Indendentei, 060042 Bucharest, Romania;
| | - Jung Park
- Department of Pediatrics, Division of Molecular Pediatrics, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany; (A.M.); (S.O.); (P.S.)
- Regional Centre of Advanced Technologies and Materials, 78371 Olomouc, Czech Republic
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21569, Saudi Arabia
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.G.N.); (A.M.N.); (V.M.)
| |
Collapse
|
9
|
Exogenous adenosine activates A2A adenosine receptor to inhibit RANKL-induced osteoclastogenesis via AP-1 pathway to facilitate bone repair. Mol Biol Rep 2021; 49:2003-2014. [PMID: 34846650 DOI: 10.1007/s11033-021-07017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Adenosine is a purine nucleoside involved in regulating bone homeostasis through binding to A1, A2A, A2B, and A3 adenosine receptors (A1R, A2AR, A2BR, and A3R, respectively). However, the underlying mechanisms by which adenosine and receptor subtypes regulate osteoclast differentiation remain uncertain. This study aims to assess the role of exogenous adenosine and receptor subtypes in receptor activator of NF-κB ligand (RANKL)-induced osteoclast formation and explore the underlying molecular mechanisms. METHODS AND RESULTS The nanofibrous mats incorporated with adenosine exhibited robust ability to facilitate rat critical-size calvarial defect healing with decreased number of osteoclasts. Moreover, exogenous adenosine substantially enhanced the expression of A2AR and suppressed tartrate-resistant acid phosphatase-positive osteoclast formation and expression of osteoclast-related genes Ctsk, NFATc1, MMP9, and ACP5. This enhancement and suppression could be reversed by adding an A2AR antagonist, ZM241385, in RAW264.7 cells. Finally, RNA sequencing showed that the expression of Fos-related antigen 2 (Fra2) was distinctly downregulated through stimulation of adenosine in RAW264.7 cells treated with RANKL. This downregulation was reversed by ZM241385 according to real-time PCR, Western blot, and immunofluorescence analyses. CONCLUSIONS These findings demonstrated that exogenous adenosine binding to A2AR attenuated osteoclast differentiation via the inhibition of activating protein-1 (AP-1, including Fra2 subunit) pathway both in vitro and in vivo.
Collapse
|
10
|
Krstić J, Mojsilović S, Mojsilović SS, Santibanez JF. Regulation of the mesenchymal stem cell fate by interleukin-17: Implications in osteogenic differentiation. World J Stem Cells 2021; 13:1696-1713. [PMID: 34909118 PMCID: PMC8641017 DOI: 10.4252/wjsc.v13.i11.1696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/14/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Bone regeneration is a tightly regulated process that ensures proper repair and functionality after injury. The delicate balance between bone formation and resorption is governed by cytokines and signaling molecules released during the inflammatory response. Interleukin (IL)-17A, produced in the early phase of inflammation, influences the fate of osteoprogenitors. Due to their inherent capacity to differentiate into osteoblasts, mesenchymal stem/stromal cells (MSCs) contribute to bone healing and regeneration. This review presents an overview of IL-17A signaling and the leading cellular and molecular mechanisms by which it regulates the osteogenic differentiation of MSCs. The main findings demonstrating IL-17A’s influence on osteoblastogenesis are described. To this end, divergent information exists about the capacity of IL-17A to regulate MSCs’ osteogenic fate, depending on the tissue context and target cell type, along with contradictory findings in the same cell types. Therefore, we summarize the data showing both the pro-osteogenic and anti-osteogenic roles of IL-17, which may help in the understanding of IL-17A function in bone repair and regeneration.
Collapse
Affiliation(s)
- Jelena Krstić
- Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria
| | - Slavko Mojsilović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade 11129, Serbia
| | - Sonja S Mojsilović
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, Belgrade 11129, Serbia
| | - Juan F Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O’Higgins, Chile 8370993, Chile
| |
Collapse
|
11
|
Park JH, Park SA, Kang YH, Hwa SM, Koh EB, Hwang SC, Oh SH, Byun JH. Zinc Sulfate Stimulates Osteogenic Phenotypes in Periosteum-Derived Cells and Co-Cultures of Periosteum-Derived Cells and THP-1 Cells. Life (Basel) 2021; 11:life11050410. [PMID: 33946199 PMCID: PMC8144993 DOI: 10.3390/life11050410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 01/18/2023] Open
Abstract
Coupling between osteoblast-mediated bone formation and osteoclast-mediated bone resorption maintains both mechanical integrity and mineral homeostasis. Zinc is required for the formation, mineralization, growth, and maintenance of bones. We examined the effects of zinc sulfate on osteoblastic differentiation of human periosteum-derived cells (hPDCs) and osteoclastic differentiation of THP-1 cells. Zinc sulfate enhanced the osteoblastic differentiation of hPDCs; however, it did not affect the osteoclastic differentiation of THP-1 cells. The levels of extracellular signaling-related kinase (ERK) were strongly increased during osteoblastic differentiation in zinc sulfate-treated hPDCs, compared with other mitogen-activated protein kinases (MAPKs). Zinc sulfate also promoted osteogenesis in hPDCs and THP-1 cells co-cultured with the ratio of one osteoclast to one osteoblast, as indicated by alkaline phosphatase levels, mineralization, and cellular calcium contents. In addition, the receptor activator of nuclear factor kappa B ligand (RANKL)/osteoprotegerin (OPG) ratio was decreased in the zinc sulfate-treated co-cultures. Our results suggest that zinc sulfate enhances osteogenesis directly by promoting osteoblastic differentiation and osteogenic activities in osteoblasts and indirectly by inhibiting osteoclastic bone resorption through a reduced RANKL/OPG ratio in co-cultured osteoblasts and osteoclasts.
Collapse
Affiliation(s)
- Jin-Ho Park
- Department of Oral and Maxillofacial Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Korea; (J.-H.P.); (Y.-H.K.); (S.M.H.); (E.-B.K.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Su A Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Deageon 34103, Korea;
| | - Young-Hoon Kang
- Department of Oral and Maxillofacial Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Korea; (J.-H.P.); (Y.-H.K.); (S.M.H.); (E.-B.K.)
| | - So Myeong Hwa
- Department of Oral and Maxillofacial Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Korea; (J.-H.P.); (Y.-H.K.); (S.M.H.); (E.-B.K.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Eun-Byeol Koh
- Department of Oral and Maxillofacial Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Korea; (J.-H.P.); (Y.-H.K.); (S.M.H.); (E.-B.K.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Sun-Chul Hwang
- Department of Orthopaedic Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 52727, Korea;
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea
- Correspondence: (S.H.O.); (J.-H.B.)
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Korea; (J.-H.P.); (Y.-H.K.); (S.M.H.); (E.-B.K.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
- Correspondence: (S.H.O.); (J.-H.B.)
| |
Collapse
|
12
|
Leal DV, Ferreira A, Watson EL, Wilund KR, Viana JL. Muscle-Bone Crosstalk in Chronic Kidney Disease: The Potential Modulatory Effects of Exercise. Calcif Tissue Int 2021; 108:461-475. [PMID: 33388899 DOI: 10.1007/s00223-020-00782-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) is a prevalent worldwide public burden that increasingly compromises overall health as the disease progresses. Two of the most negatively affected tissues are bone and skeletal muscle, with CKD negatively impacting their structure, function and activity, impairing the quality of life of these patients and contributing to morbidity and mortality. Whereas skeletal health in this population has conventionally been associated with bone and mineral disorders, sarcopenia has been observed to impact skeletal muscle health in CKD. Indeed, bone and muscle tissues are linked anatomically and physiologically, and together regulate functional and metabolic mechanisms. With the initial crosstalk between the skeleton and muscle proposed to explain bone formation through muscle contraction, it is now understood that this communication occurs through the interaction of myokines and osteokines, with the skeletal muscle secretome playing a pivotal role in the regulation of bone activity. Regular exercise has been reported to be beneficial to overall health. Also, the positive regulatory effect that exercise has been proposed to have on bone and muscle anatomical, functional, and metabolic activity has led to the proposal of regular physical exercise as a therapeutic strategy for muscle and bone-related disorders. The detection of bone- and muscle-derived cytokine secretion following physical exercise has strengthened the idea of a cross communication between these organs. Hence, this review presents an overview of the impact of CKD in bone and skeletal muscle, and narrates how these tissues intrinsically communicate with each other, with focus on the potential effect of exercise in the modulation of this intercommunication.
Collapse
Affiliation(s)
- Diogo V Leal
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University Institute of Maia, ISMAI, Maia, Portugal
| | - Aníbal Ferreira
- Department of Nephrology, Curry Cabral Hospital, Hospital Centre of Central Lisbon, Lisbon, Portugal
- Nova Medical School, Lisbon, Portugal
| | - Emma L Watson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Kenneth R Wilund
- Department of Kinesiology and Community Health, University of Illinois At Urbana-Champaign, Champaign, IL, USA
| | - João L Viana
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University Institute of Maia, ISMAI, Maia, Portugal.
| |
Collapse
|
13
|
Negrescu AM, Necula MG, Gebaur A, Golgovici F, Nica C, Curti F, Iovu H, Costache M, Cimpean A. In Vitro Macrophage Immunomodulation by Poly(ε-caprolactone) Based-Coated AZ31 Mg Alloy. Int J Mol Sci 2021; 22:ijms22020909. [PMID: 33477539 PMCID: PMC7831122 DOI: 10.3390/ijms22020909] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Due to its excellent bone-like mechanical properties and non-toxicity, magnesium (Mg) and its alloys have attracted great interest as biomaterials for orthopaedic applications. However, their fast degradation rate in physiological environments leads to an acute inflammatory response, restricting their use as biodegradable metallic implants. Endowing Mg-based biomaterials with immunomodulatory properties can help trigger a desired immune response capable of supporting a favorable healing process. In this study, electrospun poly(ε-caprolactone) (PCL) fibers loaded with coumarin (CM) and/or zinc oxide nanoparticles (ZnO) were used to coat the commercial AZ31 Mg alloy as single and combined formulas, and their effects on the macrophage inflammatory response and osteoclastogenic process were investigated by indirect contact studies. Likewise, the capacity of the analyzed samples to generate reactive oxygen species (ROS) has been investigated. The data obtained by attenuated total reflection Fourier-transform infrared (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analyses indicate that AZ31 alloy was perfectly coated with the PCL fibers loaded with CM and ZnO, which had an important influence on tuning the release of the active ingredient. Furthermore, in terms of degradation in phosphate-buffered saline (PBS) solution, the PCL-ZnO- and secondary PCL-CM-ZnO-coated samples exhibited the best corrosion behaviour. The in vitro results showed the PCL-CM-ZnO and, to a lower extent, PCL-ZnO coated sample exhibited the best behaviour in terms of inflammatory response and receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated differentiation of RAW 264.7 macrophages into osteoclasts. Altogether, the results obtained suggest that the coating of Mg alloys with fibrous PCL containing CM and/or ZnO can constitute a feasible strategy for biomedical applications.
Collapse
Affiliation(s)
- Andreea-Mariana Negrescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Madalina-Georgiana Necula
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Adi Gebaur
- Advance Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 17, 011061 Bucharest, Romania; (A.G.); (F.C.); (H.I.)
| | - Florentina Golgovici
- Department of General Chemistry, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania;
| | - Cristina Nica
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Filis Curti
- Advance Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 17, 011061 Bucharest, Romania; (A.G.); (F.C.); (H.I.)
| | - Horia Iovu
- Advance Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 17, 011061 Bucharest, Romania; (A.G.); (F.C.); (H.I.)
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
- Correspondence: ; Tel.: +40-21-318-1575 (ext. 106)
| |
Collapse
|
14
|
Ma L, Zhao X, Liu Y, Wu J, Yang X, Jin Q. Dihydroartemisinin attenuates osteoarthritis by inhibiting abnormal bone remodeling and angiogenesis in subchondral bone. Int J Mol Med 2021; 47:22. [PMID: 33448319 PMCID: PMC7846423 DOI: 10.3892/ijmm.2021.4855] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to investigate whether dihydroartemisinin (DHA) alleviates osteoarthritis (OA) in a mouse model of OA. Ten-week-old female C57BL/6j mice were used to establish OA models by anterior cruciate ligament transection (ACLT) and ovariectomized (OVX). DHA was then used to treat the OA in the ACLT and OVX mice. Safranin O-fast green staining and Osteoarthritis Research Society International (OARSI)-modified Mankin scores were used to grade articular cartilage degeneration. Expression of metalloproteinase-13 (MMP-13) and vascular endothelial growth factor (VEGF) in the articular cartilage and leukemia inhibitory factor (LIF), sclerostin, and β-catenin in the subchondral bone were analyzed by immunohistochemistry. Expression of RANKL and CD31 were detected by immunofluorescence. Micro-computed tomography was used to ascertain alterations in the microarchitecture of the subchondral bone. The results demonstrated that DHA decreased MMP-13 and VEGF expression in the articular cartilage. DHA decreased OARSI scores and reduced articular cartilage degeneration. In addition, DHA reduced abnormal subchondral bone remodeling, as demonstrated by a reduction in trabecular separation (Tb.Sp), increased bone volume fractions (BV/TV), as well as bone mineral densities (BMD) compared with the ACLT+vehicle group and the OVX+vehicle group. Furthermore, DHA decreased the inhibition of sclerostin through reduction of LIF secretion by osteoclasts and, hence, attenuated aberrant bone remodeling and inhibited angiogenesis in subchondral bone, further reducing the progression of OA. The present study demonstrated that DHA attenuated OA by inhibiting abnormal bone remodeling and angiogenesis in subchondral bone, which may be a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Long Ma
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xin Zhao
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yibin Liu
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jiang Wu
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xiaochun Yang
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Qunhua Jin
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
15
|
Mohamad NV, Ima-Nirwana S, Chin KY. Self-emulsified annatto tocotrienol improves bone histomorphometric parameters in a rat model of oestrogen deficiency through suppression of skeletal sclerostin level and RANKL/OPG ratio. Int J Med Sci 2021; 18:3665-3673. [PMID: 34790038 PMCID: PMC8579289 DOI: 10.7150/ijms.64045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Menopause is the leading cause of osteoporosis for elderly women due to imbalanced bone remodelling in the absence of oestrogen. The ability of tocotrienol in reversing established bone loss due to oestrogen deficiency remains unclear despite the plenitude of evidence showcasing its preventive effects. This study aimed to investigate the effects of self-emulsified annatto tocotrienol (SEAT) on bone histomorphometry and remodelling in ovariectomised rats. Female Sprague Dawley rats (n=36) were randomly assigned into baseline, sham, ovariectomised (OVX) control, OVX-treated with annatto tocotrienol (AT) (60 mg/kg), SEAT (60 mg/kg) and raloxifene (1 mg/kg). Daily treatment given through oral gavage was started two months after castration. The rats were euthanised after eight weeks of treatment. Blood was collected for bone biomarkers. Femur and lumbar bones were collected for histomorphometry and remodelling markers. The results showed that AT and SEAT improved osteoblast numbers and trabecular mineralisation rate (p<0.05 vs untreated OVX). AT also decreased skeletal sclerostin expression in OVX rats (p<0.05 vs untreated OVX). Similar effects were observed in the raloxifene-treated group. Only SEAT significantly increased bone formation rate and reduced RANKL/OPG ratio (p<0.05 vs untreated OVX). However, no changes in osteoclast-related parameters were observed among the groups (p>0.05). In conclusion, SEAT exerts potential skeletal anabolic properties by increasing bone formation, suppressing sclerostin expression and reducing RANKL/OPG ratio in rats with oestrogen deficiency.
Collapse
Affiliation(s)
- Nur-Vaizura Mohamad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
LAMP-2 Is Involved in Surface Expression of RANKL of Osteoblasts In Vitro. Int J Mol Sci 2020; 21:ijms21176110. [PMID: 32854285 PMCID: PMC7504075 DOI: 10.3390/ijms21176110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Lysosome associated membrane proteins (LAMPs) are involved in several processes, among which is fusion of lysosomes with phagosomes. For the formation of multinucleated osteoclasts, the interaction between receptor activator of nuclear kappa β (RANK) and its ligand RANKL is essential. Osteoclast precursors express RANK on their membrane and RANKL is expressed by cells of the osteoblast lineage. Recently it has been suggested that the transport of RANKL to the plasma membrane is mediated by lysosomal organelles. We wondered whether LAMP-2 might play a role in transportation of RANKL to the plasma membrane of osteoblasts. To elucidate the possible function of LAMP-2 herein and in the formation of osteoclasts, we analyzed these processes in vivo and in vitro using LAMP-2-deficient mice. We found that, in the presence of macrophage colony stimulating factor (M-CSF) and RANKL, active osteoclasts were formed using bone marrow cells from calvaria and long bone mouse bone marrow. Surprisingly, an almost complete absence of osteoclast formation was found when osteoclast precursors were co-cultured with LAMP-2 deficient osteoblasts. Fluorescence-activated cell sorting FACS analysis revealed that plasma membrane-bound RANKL was strongly decreased on LAMP-2 deficient osteoblasts. These results suggest that osteoblastic LAMP-2 is required for osteoblast-induced osteoclast formation in vitro.
Collapse
|
17
|
Wei B, Wang C, Yan C, Tang B, Yu X, Zhang H, Tang L, Wang Q. Osteoprotegerin/bone morphogenetic protein 2 combining with collagen sponges on tendon-bone healing in rabbits. J Bone Miner Metab 2020; 38:432-441. [PMID: 31980897 DOI: 10.1007/s00774-019-01078-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/17/2019] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The aim was to investigate the effect of collagen sponges (CS) as a delivery device for osteoprotegerin (OPG)/bone morphogenetic protein 2 (BMP-2) and support matrix on the tendon-bone healing after anterior crusicate ligament (ACL) reconstruction in modeled rabbits. MATERIALS AND METHODS Sixty New Zealand white rabbits were randomly divided into four groups based on treatments they received at the tendon-bone interface after left knee ACL reconstruction: the control group, OPG/BMP-2, CS, and OPG/BMP-2/CS combination. At 4, 8 and 12 weeks post-surgery, five rabbits from each group were euthanized to examine the tendon-bone healing. Levels of OPG and BMP-2 in synovial fluid, the bone tunnel enlargement value, the histomorphological typing of tendon-bone interface, and the bone tunnel area of the tendon-bone interface were compared among different treatments. RESULTS The OPG/BMP-2/CS combination treatment group had the highest levels of OPG and BMP-2 in synovial fluid (both P < 0.05), the greatest number of Sharpey-like collagen fibers at all test points (P < 0.05), the most fibrocartilage enthesis on week 12, the greatest bone tunnel area (P < 0.05), and the greatest decrease in bone tunnel enlargement on week 12 (P < 0.05). Histomorphological typing of tendon-bone interface of all groups showed changes varying from tendon-bone separation to firm healing, and the change was most significant in the OPG/BMP-2/CS combination treatment group. CONCLUSION CS treatment alone serves as a fixing support, and CS combining with growth factors OPG/BMP-2 ensures slow and stable release of OPG/BMP-2, significantly improves the tendon-bone healing in the rabbit ACL model.
Collapse
Affiliation(s)
- Bing Wei
- Department of Orthopedics, The First People's Hospital of Yongkang, Jinhua, 321300, People's Republic of China
| | - Chao Wang
- Department of Orthopedics, The First People's Hospital of Yongkang, Jinhua, 321300, People's Republic of China
| | - Cheng Yan
- Department of Orthopedics, The First People's Hospital of Yongkang, Jinhua, 321300, People's Republic of China
| | - Bushun Tang
- Department of Orthopedics, The First People's Hospital of Yongkang, Jinhua, 321300, People's Republic of China
| | - Xiaofei Yu
- Department of Pathology, The First People's Hospital of Yongkang, Jinhua, 321300, People's Republic of China
| | - Hui Zhang
- Department of General Diseases, The First People's Hospital of Yongkang, Jinhua, 321300, People's Republic of China
| | - Lixia Tang
- Department of General Diseases, The First People's Hospital of Yongkang, Jinhua, 321300, People's Republic of China.
| | - Qing Wang
- Department of Orthopedics, The First People's Hospital of Yongkang, Jinhua, 321300, People's Republic of China.
| |
Collapse
|
18
|
Naqvi SM, Panadero Pérez JA, Kumar V, Verbruggen ASK, McNamara LM. A Novel 3D Osteoblast and Osteocyte Model Revealing Changes in Mineralization and Pro-osteoclastogenic Paracrine Signaling During Estrogen Deficiency. Front Bioeng Biotechnol 2020; 8:601. [PMID: 32656194 PMCID: PMC7326002 DOI: 10.3389/fbioe.2020.00601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
Recent in vitro studies have revealed that the mechanobiological responses of osteoblasts and osteocytes are fundamentally impaired during estrogen deficiency. However, these two-dimensional (2D) cell culture studies do not account for in vivo biophysical cues. Thus, the objectives of this study are to (1) develop a three-dimensional (3D) osteoblast and osteocyte model integrated into a bioreactor and (2) apply this model to investigate whether estrogen deficiency leads to changes in osteoblast to osteocyte transition, mechanosensation, mineralization, and paracrine signaling associated with bone resorption by osteoclasts. MC3T3-E1s were expanded in media supplemented with estrogen (17β-estradiol). These cells were encapsulated in gelatin-mtgase before culture in (1) continued estrogen (E) or (2) no further estrogen supplementation. Constructs were placed in gas permeable and water impermeable cell culture bags and maintained at 5% CO2 and 37°C. These bags were either mechanically stimulated in a custom hydrostatic pressure (HP) bioreactor or maintained under static conditions (control). We report that osteocyte differentiation, characterized by the presence of dendrites and staining for osteocyte marker dentin matrix acidic phosphoprotein 1 (DMP1), was significantly greater under estrogen withdrawal (EW) compared to under continuous estrogen treatment (day 21). Mineralization [bone sialoprotein (BSP), osteopontin (OPN), alkaline phosphatase (ALP), calcium] and gene expression associated with paracrine signaling for osteoclastogenesis [receptor activator of nuclear factor kappa-β ligand (RANKL)/osteoprotegerin OPG ratio] were significantly increased in estrogen deficient and mechanically stimulated cells. Interestingly, BSP and DMP-1 were also increased at day 1 and day 21, respectively, which play a role in regulation of biomineralization. Furthermore, the increase in pro-osteoclastogenic signaling may be explained by altered mechanoresponsiveness of osteoblasts or osteocytes during EW. These findings highlight the impact of estrogen deficiency on bone cell function and provide a novel in vitro model to investigate the mechanisms underpinning changes in bone cells after estrogen deficiency.
Collapse
Affiliation(s)
| | | | | | | | - Laoise M. McNamara
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
19
|
Si J, Wang C, Zhang D, Wang B, Hou W, Zhou Y. Osteopontin in Bone Metabolism and Bone Diseases. Med Sci Monit 2020; 26:e919159. [PMID: 31996665 PMCID: PMC7003659 DOI: 10.12659/msm.919159] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
Osteopontin (OPN), a secreted phosphoprotein, is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family of cell matrix proteins and participates in many biological activities. Studies have shown that OPN plays a role in bone metabolism and homeostasis. OPN not only is an important factor in neuron-mediated and endocrine-regulated bone mass, but also is involved in biological activities such as proliferation, migration, and adhesion of several bone-related cells, including bone marrow mesenchymal stem cells, hematopoietic stem cells, osteoclasts, and osteoblasts. OPN has been demonstrated to be closely related to the occurrence and development of many bone-related diseases, such as osteoporosis, rheumatoid arthritis, and osteosarcoma. As expected, the functions of OPN in the bone have become a research hotspot. In this article, we try to decipher the mechanism of OPN-regulated bone metabolism and bone diseases.
Collapse
Affiliation(s)
- Jinyan Si
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Chaowei Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Denghui Zhang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Bo Wang
- Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Weiwei Hou
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Yi Zhou
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
20
|
Zhang Q, Liu J, Ma L, Bai N, Xu H. LOX-1 is involved in TLR2 induced RANKL regulation in peri-implantitis. Int Immunopharmacol 2019; 77:105956. [PMID: 31655342 DOI: 10.1016/j.intimp.2019.105956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/13/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE To explore whether receptor activator of nuclear factor kappa-B ligand (RANKL) is involved in the nosogenesis of peri-implantitis and to reveal the regulatory mechanism in Porphyromonas gingivalis induced RANKL production. METHODS Therefore, we collected peri-implant crevicular fluid (PICF) and gingival tissues from healthy implants and peri-implantitis patients. The expression of RANKL in samples was tested by ELISA, Western blot and immunofluorescence staining. The production of RANKL in THP-1 macrophages stimulated with P. gingivalis was detected by qRT-PCR and Western blot. Then macrophages were pre-treated with neutralizing antibodies of Toll-like receptor 2 (TLR2) or lectin-type oxidized LDL receptor 1 (LOX-1) and inhibitors of TLR2, LOX-1 or Erk1/2 before P. gingivalis stimulation to evaluate the roles of TLR2, LOX-1 and Erk1/2 in RANKL production by qRT-PCR and Western blot. RESULTS The protein level of RANKL was higher in PICF of peri-implantitis patients than healthy implants. We observed increased RANKL expression in P. gingivalis infected macrophages compared to controls. RANKL induced by P. gingivalis stimulation was mediated by TLR2 and Erk1/2 signaling pathway in THP-1 macrophages. LOX-1 is involved in TLR2 induced RANKL expression. CONCLUSION RANKL was involved in peri-implantitis, and regulated by TLR2, LOX-1 and Erk1/2 signaling against P. gingivalis infection. As the novel inflammation pathway triggers, TLR2 and LOX-1 which mediate RANKL production seems to be potential drug targets of peri-implantitis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Jie Liu
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lei Ma
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Na Bai
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Huirong Xu
- Department of Pathology, ZiBo Central Hospital, ZiBo, Shandong Province, China
| |
Collapse
|
21
|
金 健, 金 大. [Risedronate inhibits rat bone marrow adipogenesis and reduces RANKL expression in adipocytes]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:987-992. [PMID: 31511221 PMCID: PMC6765598 DOI: 10.12122/j.issn.1673-4254.2019.08.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effects of risedronate on bone marrow adipogenesis and the expression of the receptor activator of nuclear factor κB ligand (RANKL) in adipocytes in the bone marrow micro-environment. METHODS Primary cultured rat mesenchymal stem cells (BMSCs) with or without adipogenic induction for 14 days were treated with 1, 5, 10, and 25 μmol/L risedronate. The droplets of the differentiated adipocytes were analyzed, and Western blotting was performed to detect the expression level of RANKL. Female SD rats (24-week-old) were randomly divided into sham-operated group and ovariectomy (OVX) group, and 12 weeks after the operation, the OVX rats were further divided into control group and risedronate group (2.4 μg/kg, injected subcutaneously for 3 times a week). Eight weeks later, the bone mineral density (BMD) of the rats and bone marrow histopathology of the femurs was examined to evaluate the effect of risedronate on the fat fraction in the bone marrow. RESULTS Risdronate significantly inhibited adipogenic differentiation of rat BMSCs and suppressed RANKL expression in the adipocytes derived from the BMSCs in a concentration-dependent manner. In OVX rats, risdronate treatment significantly increased the BMD and decreased the fat content in the bone marrow. CONCLUSIONS Risdronate can effectively inhibit the adipogenic differentiation of rat BMSCs, decrease fat content in the bone marrow, and suppress the generation and function of osteoclasts by down-regulating the expression of RANKL, which can be an important mechanism underlying the therapeutic effect of risedronate against osteoporosis.
Collapse
Affiliation(s)
- 健 金
- 南方医科大学南方医院脊柱骨科,广东 广州 510515Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 大地 金
- 南方医科大学第三附属医院脊柱骨科,广东 广州 510000Department of Spine Surgery, Third Affiliated Hospital, Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
22
|
Dal-Fabbro R, Marques-de-Almeida M, Cosme-Silva L, Capalbo LC, Ervolino E, Cintra LTA, Gomes-Filho JE. Effects of different alcohol concentrations on the development of apical periodontitis in rats. Arch Oral Biol 2019; 108:104538. [PMID: 31476521 DOI: 10.1016/j.archoralbio.2019.104538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 12/21/2022]
Abstract
AIM To investigate the effect of different alcohol concentrations on the development of apical periodontitis (AP) in rats. METHODS Forty Wistar rats were arranged into five groups: (C) - control rats receiving sterile water as the only liquid; (G5) - animals receiving an alcohol solution at 5%, (G10) - alcohol solution at 10%, (G15) - alcohol solution at 15%, and (G20) - alcohol solution at 20%. The alcoholic solution or water was given to the groups as the sole source of hydration throughout the 30 days of the experiment. AP was induced in the mandibular molars on the first day. In the end, the animals were euthanized for histopathological and IL-1b, RANKL, OPG, and TRAP analyses. The Kruskal-Wallis test was used for nonparametric data, and ANOVA followed by the Tukey test were performed for parametric data, p < 0.05. RESULTS G15 and G20 had a greater chronic inflammatory infiltrate (Score 3) and AP size bigger (1.59 ± 0.41 and 1.83 ± 0.38, respectively) than the C, G5 and G10 (p < 0.05). No significant difference was found in the IL-1b analyses. The G15 and G20 showed the highest immunolabeling pattern for RANKL and the lowest for OPG. The G20 had greater TRAP cells per mm (4.70 ± 0.99) compared to the C, G5, and G10 (p < 0.05). Furthermore, G15 presented 3.92 ± 0.64 TRAP cells/mm, higher than C (p < 0.05). CONCLUSIONS G5 and G10 did not exert a protective or aggravating effect on the AP development. However, G15 and G20 had a significant effect on the AP severity, exacerbating the inflammation and osteoclast markers.
Collapse
Affiliation(s)
- Renan Dal-Fabbro
- Department of Endodontics, São Paulo State University (Unesp) - School of Dentistry, Araçatuba, Brazil.
| | - Melyna Marques-de-Almeida
- Department of Endodontics, São Paulo State University (Unesp) - School of Dentistry, Araçatuba, Brazil
| | - Leopoldo Cosme-Silva
- Department of Endodontics, São Paulo State University (Unesp) - School of Dentistry, Araçatuba, Brazil; Department of Restorative Dentistry, Endodontics, School of Dentistry, Federal University of Alagoas, Alagoas, Brazil (UFAL)
| | - Letícia Cabrera Capalbo
- Department of Endodontics, São Paulo State University (Unesp) - School of Dentistry, Araçatuba, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, São Paulo State University (Unesp) - School of Dentistry, Araçatuba, Brazil
| | | | - João Eduardo Gomes-Filho
- Department of Endodontics, São Paulo State University (Unesp) - School of Dentistry, Araçatuba, Brazil.
| |
Collapse
|
23
|
Protective Effects of Fermented Oyster Extract against RANKL-Induced Osteoclastogenesis through Scavenging ROS Generation in RAW 264.7 Cells. Int J Mol Sci 2019; 20:ijms20061439. [PMID: 30901917 PMCID: PMC6471417 DOI: 10.3390/ijms20061439] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/17/2022] Open
Abstract
Excessive bone resorption by osteoclasts causes bone loss-related diseases and reactive oxygen species (ROS) act as second messengers in intercellular signaling pathways during osteoclast differentiation. In this study, we explored the protective effects of fermented oyster extract (FO) against receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation in murine monocyte/macrophage RAW 264.7 cells. Our results showed that FO markedly inhibited RANKL-induced activation of tartrate-resistant acid phosphatase and formation of F-actin ring structure. Mechanistically, FO has been shown to down-regulate RANKL-induced expression of osteoclast-specific markers by blocking the nuclear translocation of NF-κB and the transcriptional activation of nuclear factor of activated T cells c1 (NFATc1) and c-Fos. Furthermore, FO markedly diminished ROS production by RANKL stimulation, which was associated with blocking the expression of nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1) and its regulatory subunit Rac-1. However, a small interfering RNA (siRNA) targeting NOX1 suppressed RANKL-induced expression of osteoclast-specific markers and production of ROS and attenuated osteoclast differentiation as in the FO treatment group. Collectively, our findings suggest that FO has anti-osteoclastogenic potential by inactivating the NF-κB-mediated NFATc1 and c-Fos signaling pathways and inhibiting ROS generation, followed by suppression of osteoclast-specific genes. Although further studies are needed to demonstrate efficacy in in vivo animal models, FO may be used as an effective alternative agent for the prevention and treatment of osteoclastogenic bone diseases.
Collapse
|
24
|
Fu G, Li S, Ouyang N, Wu J, Li C, Liu W, Qiu J, Peng P, Qin L, Ding Y. Antiresorptive Agents are More Effective in Preventing Titanium Particle-Induced Calvarial Osteolysis in Ovariectomized Mice Than Anabolic Agents in Short-Term Administration. Artif Organs 2019; 42:E259-E271. [PMID: 30328628 PMCID: PMC6585759 DOI: 10.1111/aor.13271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/28/2018] [Accepted: 04/02/2018] [Indexed: 12/22/2022]
Abstract
Aseptic loosening due to wear particle‐induced osteolysis is the main cause of arthroplasty failure and the influence of postmenopausal osteoporosis and anti‐osteoporosis treatment on Titanium (Ti) particle‐induced osteolysis remains unclear. 66 C57BL/6J female mice were used in this study. Ovariectomy (OVX) was performed to induce osteopenia mice and confirmed by micro‐CT. The Ti particle‐induced mouse calvaria osteolysis model was established subsequently and both OVX and Sham‐OVX mice were divided into four groups, respectively: Ti (‐) group, Ti group, Ti + zoledronic acid (ZOL) group (50ug/kg, local administration, single dose) and Ti + teriparatide (TPTD) group (40ug/kg/d, subcutaneous injection*14d). Mice calvarias were collected for micro‐CT and histomorphometric analysis 2 weeks after particle induction. 8 weeks after bilateral OVX, significantly reduced BMD and microstructure parameters in both proximal tibia and calvaria were observed in OVX mice when comparing with Sham‐OVX mice. OVX mice in Ti group had not only markly decreased BMD and BV/TV, but also significantly increased total porosity, eroded surface area and osteoclast numbers when comparing with Sham‐OVX mice. Shown by Two‐way ANOVA analysis, the interaction terms between OVX and Ti implantation on micro‐CT and histomorphometry parameters didn’t reach significant difference. As illustrated by micro‐CT and histological analysis, ZOL treatment markedly inhibited Ti particle‐induced osteolysis in OVX mice and Sham‐OVX mice, and there were significant differences when comparing to both Ti and Ti+TPTD group. The combination of osteoporosis and Ti particle implantation result in aggravated bone resorption, accompanied with increased osteoclasts and excessive inflammation response. ZOL was more effective in preventing Ti particle‐induced osteolysis in both OVX mice and Sham‐OVX mice than TPTD in short‐term administration. ZOL exert the protective effects on Ti particle‐induced bone loss via the suppression of osteoclasts.
Collapse
Affiliation(s)
- Guangtao Fu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yuexiu District, Guangzhou, Guangdong Province, People's Republic of China
| | - Shixun Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yuexiu District, Guangzhou, Guangdong Province, People's Republic of China
| | - Nengtai Ouyang
- Cellular & Molecular Diagnostics Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yuexiu District, Guangzhou, Guangdong Province, People's Republic of China
| | - Junyan Wu
- Department of Pharmaceuticals, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yuexiu District, Guangzhou, Guangdong Province, People's Republic of China
| | - Changchuan Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yuexiu District, Guangzhou, Guangdong Province, People's Republic of China
| | - Wei Liu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yuexiu District, Guangzhou, Guangdong Province, People's Republic of China
| | - Junxiong Qiu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yuexiu District, Guangzhou, Guangdong Province, People's Republic of China
| | - Peng Peng
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yuexiu District, Guangzhou, Guangdong Province, People's Republic of China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Yue Ding
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yuexiu District, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yuexiu District, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
25
|
Hou YC, Lu CL, Lu KC. Mineral bone disorders in chronic kidney disease. Nephrology (Carlton) 2019; 23 Suppl 4:88-94. [PMID: 30298663 DOI: 10.1111/nep.13457] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2018] [Indexed: 12/11/2022]
Abstract
As the GFR loss aggravates, the disturbed mineral metabolism worsens the bone microstructure and remodelling - scenario, which is known as CKD-mineral bone disease (MBD). CKD-MBD is characterized by : (i) abnormal metabolism of calcium, phosphorus, parathyroid hormone (PTH), or vitamin D; (ii) abnormalities in bone turnover, mineralization, volume linear growth or strength; (iii) soft-tissue calcifications, either vascular or extra-osseous. Uremic vascular calcification and osteoporosis are the most common complications related to CKD-MBD. Disregulated bone turnover by uremic toxin or secondary hyperparathyroidism disturbed bone mineralization and makes it difficult for calcium and inorganic phosphate to enter into bone, resulting in increased serum calcium and inorganic phosphate. Vascular calcification worsens by hyperphosphatemia and systemic inflammation. Since vitamin D deficiency plays an important role in renal osteodystrophy, supplement of nutritional vitamin D is important in treating uremic osteoporosis and vascular calcification at the same time. Its pleotropic effect improves the bone remodeling initiated by osteoblast and alleviates the risk factors for vascular calcification with less hypercalcemia than vitamin D receptor analogs. Therefore, nutritional vitamin D should be considered in managing CKDMBD.
Collapse
Affiliation(s)
- Yi-Chou Hou
- Department of Internal Medicine, Cardinal Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Chien-Lin Lu
- Department of Medicine, Fu-Jen Catholic University Hospital, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Kuo-Cheng Lu
- Department of Medicine, Fu-Jen Catholic University Hospital, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
26
|
He YQ, Zhang Q, Shen Y, Han T, Zhang QL, Zhang JH, Lin B, Song HT, Hsu HY, Qin LP, Xin HL, Zhang QY. Rubiadin-1-methyl ether from Morinda officinalis How. Inhibits osteoclastogenesis through blocking RANKL-induced NF-κB pathway. Biochem Biophys Res Commun 2018; 506:927-931. [PMID: 30392907 DOI: 10.1016/j.bbrc.2018.10.100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022]
Abstract
Rubiadin-1-methyl ether (RBM) is a natural anthraquinone compound isolated from the root of Morinda officinalis How. In our previous study, RBM was found to have inhibitory effects on the TRAP activity of osteoclasts, which means that RBM may be a candidate for therapy of bone diseases characterized by enhanced bone resorption. However, the further effect of RBM on osteoclasts and the underlying mechanism remain unclear. In the present study, we investigated the effects of RBM isolated from Morinda officinalis How. on osteoclasts derived from bone marrow macrophages (BMMs) and the underlying mechanism in vitro. RBM at the dose that did not affect the viability of cells significantly inhibited RANKL-induced osteoclastogenesis and actin ring formation of osteoclast, while RBM performed a stronger effect at the early stage. In addition, RBM downregulated the expression of osteoclast-related proteins, including nuclear factor of activated T cells cytoplasmic 1 (NFATc1), cellular oncogene Fos (c-Fos), matrix metallopeptidase 9 (MMP-9) and cathepsin K (CtsK) as shown by Western blot. Furthermore, RBM inhibited the phosphorylation of NF-κB p65 and the degradation of IκBα as well as decreased the nuclear translocation of p65. Collectively, the results suggest that RBM inhibit osteoclastic bone resorption through blocking NF-κB pathway and may be a promising agent for the prevention and treatment of bone diseases characterized by excessive bone resorption.
Collapse
Affiliation(s)
- Yu-Qiong He
- Department of Pharmacognosy, Second Military Medical University School of Pharmacy, Shanghai, 200433, China; College of Pharmaceutical science, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Qi Zhang
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Yi Shen
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Ting Han
- Department of Pharmacognosy, Second Military Medical University School of Pharmacy, Shanghai, 200433, China
| | - Quan-Long Zhang
- College of Pharmaceutical science, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Jian-Hua Zhang
- Department of Pharmacognosy, Second Military Medical University School of Pharmacy, Shanghai, 200433, China
| | - Bing Lin
- Fuzhou General Hospital of Nanjing Military Region, Fuzhou, 350025, China
| | - Hong-Tao Song
- Fuzhou General Hospital of Nanjing Military Region, Fuzhou, 350025, China
| | - Hsien-Yeh Hsu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Lu-Ping Qin
- Department of Pharmacognosy, Second Military Medical University School of Pharmacy, Shanghai, 200433, China; College of Pharmaceutical science, Zhejiang Chinese Medical University, Hangzhou, 311402, China.
| | - Hai-Liang Xin
- Department of Pharmacognosy, Second Military Medical University School of Pharmacy, Shanghai, 200433, China.
| | - Qiao-Yan Zhang
- Department of Pharmacognosy, Second Military Medical University School of Pharmacy, Shanghai, 200433, China; College of Pharmaceutical science, Zhejiang Chinese Medical University, Hangzhou, 311402, China.
| |
Collapse
|
27
|
Hassumi JS, Mulinari-Santos G, Fabris ALDS, Jacob RGM, Gonçalves A, Rossi AC, Freire AR, Faverani LP, Okamoto R. Alveolar bone healing in rats: micro-CT, immunohistochemical and molecular analysis. J Appl Oral Sci 2018; 26:e20170326. [PMID: 29898174 PMCID: PMC6010327 DOI: 10.1590/1678-7757-2017-0326] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/11/2017] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Alveolar bone healing after upper incisor extraction in rats is a classical model of preclinical studies. The underlying morphometric, cellular and molecular mechanism, however, remains imprecise in a unique study. OBJECTIVES The aim of this study was therefore to characterize the alveolar bone healing after upper incisor extraction in rats by micro computed tomographic (Micro-CT), immunohistochemical and real-time polymerase chain reaction (RT-PCR) analysis. MATERIAL AND METHODS Thirty animals (Rattus norvegicus, Albinus Wistar) were divided into three groups after upper incisors extraction at 7, 14, and 28 days. Micro-CT was evaluated based on the morphometric parameters. Subsequently, the histological analyses and immunostaining of osteoprotegerin (OPG), receptor activator of nuclear kappa B ligand (RANKL) and tartrate resistant acid phosphate (TRAP) was performed. In addition, RT-PCR analyses of OPG, RANKL, the runt-related transcription factor 2 (RUNX2), osteocalcin (OC), osteopontin (OPN), osterix (OST) and receptor activator of nuclear kappa B (RANK) were performed to determine the expression of these proteins in the alveolar bone healing. RESULTS Micro-CT: The morphometric parameters of bone volume and trabecular thickness progressively increased over time. Consequently, a gradual decrease in trabecular separation, trabecular space and total bone porosity was observed. Immunohistochemical: There were no differences statistically significant between the positive labeling for OPG, RANKL and TRAP in the different periods. RT-PCR: At 28 days, there was a significant increase in OPG expression, while RANKL expression and the RANKL/OPG ratio both decreased over time. CONCLUSION Micro-CT showed the newly formed bone had favorable morphometric characteristics of quality and quantity. Beyond the RUNX2, OC, OPN, OST, and RANK proteins expressed in the alveolar bone healing, OPG and RANKL activity showed to be essential for activation of basic multicellular units during the alveolar bone healing.
Collapse
Affiliation(s)
- Jaqueline Suemi Hassumi
- Univ. Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Cirurgia e Clínica Integrada, Araçatuba, São Paulo, Brasil
| | - Gabriel Mulinari-Santos
- Univ. Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Ciências Básicas, Araçatuba, São Paulo, Brasil
| | - André Luis da Silva Fabris
- Univ. Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Ciências Básicas, Araçatuba, São Paulo, Brasil
| | - Ricardo Garcia Mureb Jacob
- Univ. Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Ciências Básicas, Araçatuba, São Paulo, Brasil
| | - Alaíde Gonçalves
- Univ. Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Cirurgia e Clínica Integrada, Araçatuba, São Paulo, Brasil
| | - Ana Cláudia Rossi
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Departamento de Morfologia, Piracicaba, São Paulo, Brasil
| | - Alexandre Rodrigues Freire
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Departamento de Morfologia, Piracicaba, São Paulo, Brasil
| | - Leonardo Pérez Faverani
- Univ. Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Ciências Básicas, Araçatuba, São Paulo, Brasil
| | - Roberta Okamoto
- Univ. Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Cirurgia e Clínica Integrada, Araçatuba, São Paulo, Brasil
| |
Collapse
|
28
|
Role of nutritional vitamin D in osteoporosis treatment. Clin Chim Acta 2018; 484:179-191. [PMID: 29782843 DOI: 10.1016/j.cca.2018.05.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 01/02/2023]
Abstract
Osteoporosis is a systemic skeletal disorder characterized by a decrease in bone mass and microarchitectural deterioration of bone tissue. The World Health Organization has defined osteoporosis as a decrease in bone mass (50%) and bony quality (50%). Vitamin D, a steroid hormone, is crucial for skeletal health and in mineral metabolism. Its direct action on osteoblasts and osteoclasts and interaction with nonskeletal tissues help in maintaining a balance between bone turnover and bone growth. Vitamin D affects the activity of osteoblasts, osteoclasts, and osteocytes, suggesting that it affects bone formation, bone resorption, and bone quality. At physiological concentrations, active vitamin D maintains a normal rate of bone resorption and formation through the RANKL/OPG signal. However, active vitamin D at pharmacological concentration inhibits bone resorption at a higher rate than that of bone formation, which influences the bone quality and quantity. Nutritional vitamin D rather than active vitamin D activates osteoblasts and maintains serum 25(OH)D3 concentration. Despite many unanswered questions, much data support nutritional vitamin D use in osteoporosis patients. This article emphasizes the role of nutritional vitamin D replacement in different turnover status (high or low bone turnover disorders) of osteoporosis together with either anti-resorptive (Bisphosphonate, Denosumab et.) or anabolic (Teriparatide) agents when osteoporosis persists.
Collapse
|
29
|
Dufresne SS, Boulanger-Piette A, Bossé S, Argaw A, Hamoudi D, Marcadet L, Gamu D, Fajardo VA, Yagita H, Penninger JM, Russell Tupling A, Frenette J. Genetic deletion of muscle RANK or selective inhibition of RANKL is not as effective as full-length OPG-fc in mitigating muscular dystrophy. Acta Neuropathol Commun 2018; 6:31. [PMID: 29699580 PMCID: PMC5922009 DOI: 10.1186/s40478-018-0533-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/10/2018] [Indexed: 01/13/2023] Open
Abstract
Although there is a strong association between osteoporosis and skeletal muscle atrophy/dysfunction, the functional relevance of a particular biological pathway that regulates synchronously bone and skeletal muscle physiopathology is still elusive. Receptor-activator of nuclear factor κB (RANK), its ligand RANKL and the soluble decoy receptor osteoprotegerin (OPG) are the key regulators of osteoclast differentiation and bone remodelling. We thus hypothesized that RANK/RANKL/OPG, which is a key pathway for bone regulation, is involved in Duchenne muscular dystrophy (DMD) physiopathology. Our results show that muscle-specific RANK deletion (mdx-RANKmko) in dystrophin deficient mdx mice improves significantly specific force [54% gain in force] of EDL muscles with no protective effect against eccentric contraction-induced muscle dysfunction. In contrast, full-length OPG-Fc injections restore the force of dystrophic EDL muscles [162% gain in force], protect against eccentric contraction-induced muscle dysfunction ex vivo and significantly improve functional performance on downhill treadmill and post-exercise physical activity. Since OPG serves a soluble receptor for RANKL and as a decoy receptor for TRAIL, mdx mice were injected with anti-RANKL and anti-TRAIL antibodies to decipher the dual function of OPG. Injections of anti-RANKL and/or anti-TRAIL increase significantly the force of dystrophic EDL muscle [45% and 17% gains in force, respectively]. In agreement, truncated OPG-Fc that contains only RANKL domains produces similar gains, in terms of force production, than anti-RANKL treatments. To corroborate that full-length OPG-Fc also acts independently of RANK/RANKL pathway, dystrophin/RANK double-deficient mice were treated with full-length OPG-Fc for 10 days. Dystrophic EDL muscles exhibited a significant gain in force relative to untreated dystrophin/RANK double-deficient mice, indicating that the effect of full-length OPG-Fc is in part independent of the RANKL/RANK interaction. The sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) activity is significantly depressed in dysfunctional and dystrophic muscles and full-length OPG-Fc treatment increased SERCA activity and SERCA-2a expression. These findings demonstrate the superiority of full-length OPG-Fc treatment relative to truncated OPG-Fc, anti-RANKL, anti-TRAIL or muscle RANK deletion in improving dystrophic muscle function, integrity and protection against eccentric contractions. In conclusion, full-length OPG-Fc represents an efficient alternative in the development of new treatments for muscular dystrophy in which a single therapeutic approach may be foreseeable to maintain both bone and skeletal muscle functions.
Collapse
|
30
|
Awaja F, Speranza G, Kaltenegger H, Coraça-Huber D, Lohberger B. Surface modification and characterization of GO/polymer thin coatings as excellent bio-active platforms for tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2017.11.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
31
|
Kim HJ, Park C, Kim GY, Park EK, Jeon YJ, Kim S, Hwang HJ, Choi YH. Sargassum serratifolium attenuates RANKL-induced osteoclast differentiation and oxidative stress through inhibition of NF-κB and activation of the Nrf2/HO-1 signaling pathway. Biosci Trends 2018; 12:257-265. [PMID: 30012915 DOI: 10.5582/bst.2018.01107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Sargassum serratifolium C. Agardh is a marine brown alga that has long been used as an ingredient for food and medicine by many people living along Asian coastlines. Recently, various beneficial effects of extracts or compounds isolated from S. serratifolium have been reported, but their efficacies against bone destruction are unclear. Therefore, in this study, we investigated the inhibitory property of an ethanol extract of S. serratifolium (EESS) on osteoclast differentiation by focusing on the receptor activator of nuclear factor-κB ligand (RANKL)-stimulated osteoclastogenesis model using RAW 264.7 macrophages. Our results demonstrated that EESS reduced RANKL-induced osteoclast differentiation in RAW 264.7 cells, by inhibiting tartrate-resistant acid phosphatase (TRAP) activity and destroying the F-actin ring formation. EESS also attenuated RANKL-induced expressions of key osteoclast-specific genes, such as nuclear factor of activated T cells cytoplasmic 1 (NFATC1), TRAP, cathepsin K and matrix metalloproteinase-9. These effects were mediated by impaired nuclear translocation of nuclear factor (NF)-κB and suppression of IκB-α degradation. In addition, EESS effectively inhibited the production of reactive oxygen species (ROS) by RANKL, which was associated with enhanced expression of nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Overall, our findings provide evidence that EESS suppresses RANKL-induced osteoclastogenesis and oxidative stress through suppression of NF-κB and activation of Nrf2/HO-1 signaling pathway, indicating that S. serratifolium has a potential application the prevention and treatment of osteoclastogenic bone disease.
Collapse
Affiliation(s)
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dongeui University
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University
| | - Suhkmann Kim
- Department of Chemistry, College of Natural Sciences, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University
| | - Hye Jin Hwang
- Department of Food and Nutrition, College of Natural Sciences and Human Ecology, Dongeui University
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dongeui University
- Department of Biochemistry, Dongeui University College of Korean Medicine
| |
Collapse
|
32
|
Lü Q, Gou Y, Tian F, Zhang L. [Research progress on protease-activated receptor 2 in pathogenesis of osteoarthritis]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:1517-1522. [PMID: 29806398 DOI: 10.7507/1002-1892.201705025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective To review the research progress on protease-activated receptor 2 (PAR-2) in the pathogenesis of osteoarthritis (OA). Methods The relevant literature about the mechanism of PAR-2 in the occurrence and development of OA in recent years was extensively reviewed and comprehensively analyzed. Results Abnormal activation of PAR-2 plays an important role in responses to occurrence and development of OA. Through regulating production and releasing of a variety of cytokines (such as inflammatory factors, metabolic factors, pain factors, etc.), the PAR-2 can involve in pathophysiological progression of OA articular cartilage, subchondral bone, and synovial membrane, as well as occurrence and transmission of pain. Conclusion PAR-2 participation in the development of OA has been confirmed. However, since PAR-2 is complicated and widespread, it is necessary to study the specific role of PAR-2 and the interaction between various signal pathways in the progression of OA, and to elucidate the potential pathophysiological mechanisms of PAR-2 participating in the process of OA, in the hope of exploring the new targets for the effective control of OA.
Collapse
Affiliation(s)
- Qinglie Lü
- Department of Orthopedics, Affiliated Hospital of North China University of Science and Technology, Tangshan Hebei, 063000, P.R.China
| | - Yu Gou
- Graduate School of Hebei Medical University, Shijiazhuang Hebei, 050017, P.R.China
| | - Faming Tian
- Medical Research Center, North China University of Science and Technology, Tangshan Hebei, 063000,
| | - Liu Zhang
- Department of Orthopedics, Affiliated Hospital of North China University of Science and Technology, Tangshan Hebei, 063000,
| |
Collapse
|
33
|
Wein MN. Parathyroid Hormone Signaling in Osteocytes. JBMR Plus 2017; 2:22-30. [PMID: 30283888 PMCID: PMC6124166 DOI: 10.1002/jbm4.10021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 12/13/2022] Open
Abstract
Osteocytes are the most abundant cell type in bone and play a central role in orchestrating skeletal remodeling, in part by producing paracrine‐acting factors that in turn influence osteoblast and osteoclast activity. Recent evidence has indicated that osteocytes are crucial cellular targets of parathyroid hormone (PTH). Here, we will review the cellular and molecular mechanisms through which PTH influences osteocyte function. Two well‐studied PTH target genes in osteocytes are SOST and receptor activator of NF‐κB ligand (RANKL). The molecular mechanisms through which PTH regulates expression of these two crucial target genes will be discussed. Beyond SOST and RANKL, PTH/PTH‐related peptide (PTHrP) signaling in osteocytes may directly influence the way osteocytes remodel their perilacunar environment to influence bone homeostasis in a cell‐autonomous manner. Here, I will highlight novel, additional mechanisms used by PTH and PTHrP to modulate bone homeostasis through effects in osteocytes. © 2017 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Marc N Wein
- Endocrine Unit, Massachusetts General Hospital Harvard Medical School Boston MA USA
| |
Collapse
|
34
|
Zou G, Song E, Wei B. Effects of tendon-bone healing of anterior cruciate ligament reconstruction by osteoprotegerin combined with deproteinized bovine bone. Muscles Ligaments Tendons J 2017; 7:256-262. [PMID: 29264336 DOI: 10.11138/mltj/2017.7.2.256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background The healing of a tendon graft in a bone tunnel depends on bone ingrowth into the interface between tendon and bone, or that can enhance tendon-bone healing, which is important to reduce the failure rate after ACL reconstruction. Methods Sixty skeletally mature, New Zealand white rabbits underwent left ACL reconstruction. OPG/DBB compound (concentration ratio of 30%, 60%, 100%) was delivered to the tendon-bone interface with use of a DBB carrier, and nothing as control group. Twenty animals were killed at 4, 8 and 12 weeks after surgery. I-IV levels of semi-quantitative and Sharpey fibers at the healing tendon-bone interface were evaluated, and the biomechanical properties were tested. Results A significantly greater amount of Sharpey fibers at the healing tendon-bone interface in the concentration ratio of 100% OPG/DBB-treated group was found compared with the others at all time-points (P<0.05), and it is the same to the Grade Scores at 12 weeks (P<0.05). The femur-ACL-tibia complex of the concentration ratio of 100% OPG/DBB-treated group has significantly increased stiffness compared with the others at 12 weeks (P<0.05). Conclusion The concentration ratio of 100% OPG/DBB compound significantly improve bone formation around the grafted tendon and improve the stiffness at the healing tendon-bone junction in a rabbit model.
Collapse
Affiliation(s)
- Guoyao Zou
- Department of Spinal and Joint Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Enhong Song
- Department of Spinal and Joint Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Bing Wei
- Department of Spinal and Joint Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
35
|
Bu YM, Zheng DZ, Wang L, Liu J. Abrasive Endoprosthetic Wear Particles Inhibit IFN-γ Secretion in Human Monocytes Via Upregulating TNF-α-Induced miR-29b. Inflammation 2017; 40:166-173. [PMID: 27812842 DOI: 10.1007/s10753-016-0465-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The adverse biological responses to prostheses wear particles commonly led to the failure of total hip arthroplasty. Among the released cytokines, interferon-γ (IFN-γ) has been found to be a critical functional factor during osteoclast differentiation. However, the molecular mechanism underlying the regulation of IFN-γ in wear particles-induced cells still needs to be determined. Four kinds of abrasive endoprosthetic wear particle were used to treat THP-1 cells, including polymethylmethacrylate (PMMA), zirconiumoxide (ZrO2), commercially pure titanium (cpTi), and titanium alloy (Ti-6Al-7Nb), with a concentration of 0.01, 0.05, 0.1, or 0.2 mg/ml for 48 h. The expression of IFN-γ and miR-29b was detected by real-time RT-PCR or ELISA. Luciferase reporter assay was performed to determine the regulation of miR-29b on IFN-γ. The effect of miR-29b inhibitor on the expression of wear particle-induced IFN-γ was detected. The expression of miR-29b was examined in THP-1 cells treated with tumor necrosis factor-alpha (TNF-α). The expression of IFN-γ was downregulated and the level of miR-29b was increased in THP-1 cells pretreated with wear particles. IFN-γ was a target of miR-29b. Wear particles inhibited the expression of IFN-γ through miR-29b. The expression of miR-29b was significantly reduced in THP-1 cells treated with TNF-α neutralizing antibody and particles comparing to that in the cells treated with particles alone. Wear particles inhibit the IFN-γ secretion in human monocytes, which was associated with the upregulating TNF-α-induced miR-29b.
Collapse
Affiliation(s)
- Yan-Min Bu
- Department of Orthopedics, Tianjin Hospital, No. 406, Jie Fang South Rd, Tianjin, 300211, People's Republic of China
| | - De-Zhi Zheng
- Department of Orthopedics, Tianjin Hospital, No. 406, Jie Fang South Rd, Tianjin, 300211, People's Republic of China
| | - Lei Wang
- Department of Orthopedics, Tianjin Hospital, No. 406, Jie Fang South Rd, Tianjin, 300211, People's Republic of China
| | - Jun Liu
- Department of Orthopedics, Tianjin Hospital, No. 406, Jie Fang South Rd, Tianjin, 300211, People's Republic of China.
| |
Collapse
|
36
|
Seca AM, Silva AM, Pinto DC. Parthenolide and Parthenolide-Like Sesquiterpene Lactones as Multiple Targets Drugs. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63931-8.00009-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Osteogenic Differentiation in Healthy and Pathological Conditions. Int J Mol Sci 2016; 18:ijms18010041. [PMID: 28035992 PMCID: PMC5297676 DOI: 10.3390/ijms18010041] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the osteogenic differentiation of mesenchymal stem cells (MSC), bone formation and turn-over in good and ill skeletal fates. The interacting molecular pathways which control bone remodeling in physiological conditions during a lifelong process are described. Then, alterations of the molecular pathways regulating osteogenesis are addressed. In the aging process, as well as in glucocorticoid-induced osteoporosis, bone loss is caused not only by an unbalanced bone resorption activity, but also by an impairment of MSCs’ commitment towards the osteogenic lineage, in favour of adipogenesis. Mutations affecting the expression of key genes involved in the control of bone development occur in several heritable bone disorders. A few examples are described in order to illustrate the pathological consequences of perturbation in different steps of osteogenic commitment, osteoblast maturation, and matrix mineralization, respectively. The involvement of abnormal MSC differentiation in cancer is then discussed. Finally, a brief overview of clinical applications of MSCs in bone regeneration and repair is presented.
Collapse
|
38
|
Govey PM, Kawasawa YI, Donahue HJ. Mapping the osteocytic cell response to fluid flow using RNA-Seq. J Biomech 2015; 48:4327-32. [DOI: 10.1016/j.jbiomech.2015.10.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/10/2015] [Accepted: 10/29/2015] [Indexed: 10/22/2022]
|
39
|
The Multiple Roles of Microrna-223 in Regulating Bone Metabolism. Molecules 2015; 20:19433-48. [PMID: 26512640 PMCID: PMC6332311 DOI: 10.3390/molecules201019433] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/13/2015] [Accepted: 10/20/2015] [Indexed: 12/23/2022] Open
Abstract
Bone metabolism is a lifelong process for maintaining skeletal system homeostasis, which is regulated by bone-resorbing osteoclasts and bone-forming osteoblasts. Aberrant differentiation of osteoclasts and osteoblasts leads to imbalanced bone metabolism, resulting in ossification and osteolysis diseases. MicroRNAs (miRNAs) are pivotal factors in regulating bone metabolism via post-transcriptional inhibition of target genes. Recent studies have revealed that miR-223 exerts multiple effects on bone metabolism, especially in the processes of osteoclast and osteoblasts differentiation. In this review, we highlight the roles of miR-223 during the processes of osteoclast and osteoblast differentiation, as well as the potential clinical applications of miR-223 in bone metabolism disorders.
Collapse
|
40
|
Kim JY, Lee MS, Baek JM, Park J, Youn BS, Oh J. Massive elimination of multinucleated osteoclasts by eupatilin is due to dual inhibition of transcription and cytoskeletal rearrangement. Bone Rep 2015; 3:83-94. [PMID: 28377971 PMCID: PMC5365243 DOI: 10.1016/j.bonr.2015.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/16/2015] [Accepted: 10/04/2015] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is an aging-associated disease requiring better therapeutic modality. Eupatilin is a major flavonoid from Artemisia plants such as Artemisia princeps and Artemisia argyi which has been reported to possess various beneficial biological effects including anti-inflammation, anti-tumor, anti-cancer, anti-allergy, and anti-oxidation activity. Complete blockade of RANK-dependent osteoclastogenesis was accomplished upon stimulation prior to the receptor activator of nuclear factor κB (RANK)-ligand (RANKL) treatment or post-stimulation of bone marrow macrophages (BMCs) in the presence of RANKL with eupatilin. This blockade was accompanied by inhibition of rapid phosphorylation of Akt, GSK3β, ERK and IκB as well as downregulation of c-Fos and NFATc1 at protein, suggesting that transcriptional suppression is a key mechanism for anti-osteoclastogenesis. Transient reporter assays or gain of function assays confirmed that eupatilin was a potent transcriptional inhibitor in osteoclasts (OC). Surprisingly, when mature osteoclasts were cultured on bone scaffolds in the presence of eupatilin, bone resorption activity was also completely blocked by dismantling the actin rings, suggesting that another major acting site of eupatilin is cytoskeletal rearrangement. The eupatilin-treated mature osteoclasts revealed a shrunken cytoplasm and accumulation of multi-nuclei, eventually becoming fibroblast-like cells. No apoptosis occurred. Inhibition of phosphorylation of cofilin by eupatilin suggests that actin may play an important role in the morphological change of multinucleated cells (MNCs). Human OC similarly responded to eupatilin. However, eupatilin has no effects on osteoblast differentiation and shows cytotoxicity on osteoblast in the concentration of 50 μM. When eupatilin was administered to LPS-induced osteoporotic mice after manifestation of osteoporosis, it prevented bone loss. Ovariectomized (OVX) mice remarkably exhibited bone protection effects. Taken together, eupatilin is an effective versatile therapeutic intervention for osteoporosis via; 1) transcriptional suppression of c-Fos and NFATc1 of differentiating OC and 2) inhibition of actin rearrangement of pathogenic MNCs. Eupatilin exhibits a potent inhibitory effect on differentiation of mouse and human osteoclasts. Eupatilin inhibits osteoclastogenesis via modulation of both transcriptional repression and actin polymerization. Eupatilin treatment shows preventive or therapeutic modality for osteoporosis in LPS-induced and OVX-induced bone loss mice model. Eupatilin may be a potential therapeutic treatment for excessive osteoclastic bone diseases.
Collapse
Key Words
- ALP, alkaline phosphatase
- Actin depolymerization;
- BMCs, bone marrow cells
- BMMs, bone marrow macrophages
- Cytoskeletal rearrangement
- FBS, fetal bovine serum
- H&E, hematoxylin and eosin
- HDACis, Histone deacetylase inhibitors
- LPS, lipopolysaccharide
- M-CSF, macrophage colony-stimulating factor
- MNCs, multinucleated cells
- NFATc1, nuclear factor of activated T cells c1
- OB, osteoblasts
- OC, osteoclasts
- OVX, ovariectomized
- Osteoclastogenesis;
- PGE2, prostaglandin E2
- RANK, the receptor activator of nuclear factor κB
- RANKL, RANK ligand
- SD, standard deviation
- SE, standard error
- SOST, sclerostin
- TBST, tris-buffered saline contacting 0.1% Tween-20
- TRAP, tartrate-resistant acid phosphate
- Transcriptional repression;
- XTT, sodium3’-[1-(phenyl-aminocarbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro)
- α-MEM, α-minimum essential medium
- μCT, micro-computed tomography
Collapse
Affiliation(s)
- Ju-Young Kim
- Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Myeung Su Lee
- Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea; Institute for Skeletal Disease, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Jong Min Baek
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Jongtae Park
- Department of Neurosurgery, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Byung-Soo Youn
- Biomedical Research Center, University of Ulsan College of Medicine, Ulsan University Hospital, 877 Bangeojinsunwhando-ro, Dong-Ku, Ulsan 682-714, Republic of Korea; OsteoNeuroGen 40 MiKeum-ro, Bundang, Kyunggi 461-871, Republic of Korea
| | - Jaemin Oh
- Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea; Institute for Skeletal Disease, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea; Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| |
Collapse
|
41
|
Li S, Zou D, Li C, Meng H, Sui W, Feng S, Cheng T, Zhai Q, Qiu L. Targeting stem cell niche can protect hematopoietic stem cells from chemotherapy and G-CSF treatment. Stem Cell Res Ther 2015; 6:175. [PMID: 26373707 PMCID: PMC4572669 DOI: 10.1186/s13287-015-0164-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 01/25/2015] [Accepted: 08/19/2015] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Hematopoietic stem/progenitor cells (HSPCs) reside in a tightly controlled local microenvironment called bone marrow niche. The specialized microenvironment or niche not only provides a favorable habitat for HSPC maintenance and development but also governs stem cell function. METHOD We investigated the effect of cytotoxic drugs on bone marrow niche. To mimic the multiple rounds of chemotherapy followed by autologous hematopoietic stem cells (HSCs) transplantation in a clinical setting, we further verified the hypothesis that targeting the niche might improve stem cell-based therapies in mouse models. RESULTS We found that multiple rounds of cytotoxic drug treatment significantly disrupted niche and serum osteocalcin level was significantly reduced after treatment in autologous HSPCs transplanted patients (P = 0.01). In mouse models, the number of CD45(-)Ter119(-)OPN(+) osteoblasts was significantly reduced after multiple rounds of chemotherapies and granulocyte colony stimulating factor (G-CSF) treatment (P < 0.01). Parathyroid hormone (PTH) or receptor activator of nuclear factor kappa-B ligand (RANKL) treatment significantly increased the number of HSCs mobilized into peripheral blood (PB) for stem cell harvesting and protected stem cells from repeated exposure to cytotoxic chemotherapy. Treatments with G-CSF and PTH significantly increased the preservation of the HSC pool (P < 0.05). Moreover, recipient mice transplanted with circulation HSPCs that were previously treated with PTH and RANKL showed robust myeloid and lymphatic cell engraftment compared to the mice transplanted with HSCs after chemotherapy or G-CSF treatment. CONCLUSION These data provide new evidence that the niche may be an important target for drug-based stem cell therapy.
Collapse
Affiliation(s)
- Sidan Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin, 30020, China. .,Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Dehui Zou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin, 30020, China.
| | - Changhong Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin, 30020, China.
| | - Hengxing Meng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin, 30020, China.
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin, 30020, China.
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin, 30020, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin, 30020, China.
| | - Qiongli Zhai
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin, 30020, China.
| |
Collapse
|
42
|
FU YINGXIAO, GU JIANHONG, WANG YI, YUAN YAN, LIU XUEZHONG, BIAN JIANCHUN, LIU ZONGPING. Involvement of the mitogen-activated protein kinase signaling pathway in osteoprotegerin-induced inhibition of osteoclast differentiation and maturation. Mol Med Rep 2015; 12:6939-45. [DOI: 10.3892/mmr.2015.4284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 07/14/2015] [Indexed: 11/06/2022] Open
|
43
|
Buchwald ZS, Yang C, Nellore S, Shashkova EV, Davis JL, Cline A, Ko J, Novack DV, DiPaolo R, Aurora R. A Bone Anabolic Effect of RANKL in a Murine Model of Osteoporosis Mediated Through FoxP3+ CD8 T Cells. J Bone Miner Res 2015; 30:1508-22. [PMID: 25656537 PMCID: PMC4506715 DOI: 10.1002/jbmr.2472] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/15/2015] [Accepted: 01/30/2015] [Indexed: 12/30/2022]
Abstract
TNF-α and IL-17 secreted by proinflammatory T cells (T(EFF)) promote bone erosion by activating osteoclasts. We previously demonstrated that in addition to bone resorption, osteoclasts act as antigen-presenting cells to induce FoxP3 in CD8 T cells (Tc(REG)). The osteoclast-induced regulatory CD8 T cells limit bone resorption in ovariectomized mice (a murine model of postmenopausal osteoporosis). Here we show that although low-dose receptor activator of NF-κB ligand (RANKL) maximally induces Tc(REG) via Notch signaling pathway to limit bone resorption, high-dose RANKL promotes bone resorption. In vitro, both TNF-α and IL-17, cytokines that are abundant in ovariectomized animals, suppress Tc(REG) induction by osteoclasts by repressing Notch ligand expression in osteoclasts, but this effect can be counteracted by addition of RANKL. Ovariectomized mice treated with low-dose RANKL induced Tc(REG) that suppressed bone resorption, decreased T(EFF) levels, and increased bone formation. High-dose RANKL had the expected osteolytic effect. Low-dose RANKL administration in ovariectomized mice lacking CD8 T cells was also osteolytic, confirming that Tc(REG) mediate this bone anabolic effect. Our results show that although RANKL directly stimulates osteoclasts to resorb bone, it also controls the osteoclasts' ability to induce regulatory T cells, engaging an important negative feedback loop. In addition to the conceivable clinical relevance to treatment of osteoporosis, these observations have potential relevance to induction of tolerance and autoimmune diseases.
Collapse
Affiliation(s)
- Zachary S. Buchwald
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine
| | - Chang Yang
- Division of Bone and Mineral Disease, Department of Medicine, Washington University in St. Louis
| | - Suman Nellore
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine
| | - Elena V. Shashkova
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine
| | - Jennifer L. Davis
- Division of Bone and Mineral Disease, Department of Medicine, Washington University in St. Louis
| | - Anna Cline
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine
| | - Je Ko
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine
| | - Deborah V. Novack
- Division of Bone and Mineral Disease, Department of Medicine, Washington University in St. Louis
| | - Richard DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine
| | - Rajeev Aurora
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine
| |
Collapse
|
44
|
Osteocyte specific responses to soluble and mechanical stimuli in a stem cell derived culture model. Sci Rep 2015; 5:11049. [PMID: 26056071 PMCID: PMC4460727 DOI: 10.1038/srep11049] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 05/07/2015] [Indexed: 11/08/2022] Open
Abstract
Studying osteocyte behavior in culture has proven difficult because these embedded cells require spatially coordinated interactions with the matrix and surrounding cells to achieve the osteocyte phenotype. Using an easily attainable source of bone marrow mesenchymal stem cells, we generated cells with the osteocyte phenotype within two weeks. These "stem cell derived-osteocytes" (SCD-O) displayed stellate morphology and lacunocanalicular ultrastructure. Osteocytic genes Sost, Dmp1, E11, and Fgf23 were maximally expressed at 15 days and responded to PTH and 1,25(OH)2D3. Production of sclerostin mRNA and protein, within 15 days of culture makes the SCD-O model ideal for elucidating regulatory mechanisms. We found sclerostin to be regulated by mechanical factors, where low intensity vibration significantly reduced Sost expression. Additionally, this model recapitulates sclerostin production in response to osteoactive hormones, as PTH or LIV repressed secretion of sclerostin, significantly impacting Wnt-mediated Axin2 expression, via β-catenin signaling. In summary, SCD-O cells produce abundant matrix, rapidly attain the osteocyte phenotype, and secrete functional factors including sclerostin under non-immortalized conditions. This culture model enables ex vivo observations of osteocyte behavior while preserving an organ-like environment. Furthermore, as marrow-derived mesenchymal stem cells can be obtained from transgenic animals; our model enables study of genetic control of osteocyte behaviors.
Collapse
|
45
|
Gomes-Filho JE, Wayama MT, Dornelles RCM, Ervolino E, Yamanari GH, Lodi CS, Sivieri-Araújo G, Dezan-Júnior E, Cintra LTA. Raloxifene modulates regulators of osteoclastogenesis and angiogenesis in an oestrogen deficiency periapical lesion model. Int Endod J 2014; 48:1059-68. [PMID: 25354165 DOI: 10.1111/iej.12403] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/24/2014] [Indexed: 01/14/2023]
Abstract
AIM To analyse the local regulatory mechanisms of osteoclastogenesis and angiogenesis during the progression of periapical lesions in female rats with oestrogen deficiency and treatment with raloxifene (RLX). METHODOLOGY Female Wistar rats were distributed into groups: SHAM-veh, subjected to sham surgery and treated with a vehicle; OVX-veh, subjected to ovary removal and treated with a vehicle; and OVX-RLX, subjected to ovary removal and treated with RLX. Vehicle or RLX was administered orally for 90 days. During treatment, the dental pulp of mandibular first molars was exposed to the oral environment for induction of periapical lesions, which were analysed after 7 and 30 days. After the experimental periods, blood samples were collected for measurement of oestradiol, calcium, phosphorus and alkaline phosphatase. The rats were euthanized and the mandibles removed and processed for immunohistochemical detection of receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG), hypoxia-inducible factor-1 alpha (HIF-1α) and bone-specific alkaline phosphatase (BALP). Data were compared using Kruskal-Wallis followed by Dunn test (nonparametric values) and anova followed by the Tukey's test (parametric values). RESULTS The plasma concentration of oestradiol showed hypo-oestrogenism in the rats subjected to ovary removal. On day 7, alkaline phosphatase activity, calcium and phosphorus were higher in the OVX-RLX group than in the OVX-veh group (P < 0.001), but immunolabelling for RANKL and HIF-1α was lower in OVX-RLX group (P < 0.001). On day 30, the OVX-veh group had higher immunolabelling for RANKL than the OVX-RLX group (P < 0.05). There were no significant differences in the immunoreactivity of OPG and BALP between any groups at either time-point (P > 0.05). CONCLUSION RLX therapy reversed the increased levels of the local regulators of both osteoclastogenesis and angiogenesis induced by oestrogen deficiency.
Collapse
Affiliation(s)
- J E Gomes-Filho
- Department of Endodontics, Araçatuba School of Dentistry, Univ. Estadual Paulista, Araçatuba, Brazil
| | - M T Wayama
- Department of Endodontics, Araçatuba School of Dentistry, Univ. Estadual Paulista, Araçatuba, Brazil
| | - R C M Dornelles
- Department of Endodontics, Araçatuba School of Dentistry, Univ. Estadual Paulista, Araçatuba, Brazil
| | - E Ervolino
- Department of Endodontics, Araçatuba School of Dentistry, Univ. Estadual Paulista, Araçatuba, Brazil
| | - G H Yamanari
- Department of Endodontics, Araçatuba School of Dentistry, Univ. Estadual Paulista, Araçatuba, Brazil
| | - C S Lodi
- Department of Endodontics, Araçatuba School of Dentistry, Univ. Estadual Paulista, Araçatuba, Brazil
| | - G Sivieri-Araújo
- Department of Endodontics, Araçatuba School of Dentistry, Univ. Estadual Paulista, Araçatuba, Brazil
| | - E Dezan-Júnior
- Department of Endodontics, Araçatuba School of Dentistry, Univ. Estadual Paulista, Araçatuba, Brazil
| | - L T A Cintra
- Department of Endodontics, Araçatuba School of Dentistry, Univ. Estadual Paulista, Araçatuba, Brazil
| |
Collapse
|
46
|
Gemini-Piperni S, Takamori ER, Sartoretto SC, Paiva KBS, Granjeiro JM, de Oliveira RC, Zambuzzi WF. Cellular behavior as a dynamic field for exploring bone bioengineering: a closer look at cell-biomaterial interface. Arch Biochem Biophys 2014; 561:88-98. [PMID: 24976174 DOI: 10.1016/j.abb.2014.06.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/14/2014] [Accepted: 06/18/2014] [Indexed: 01/09/2023]
Abstract
Bone is a highly dynamic and specialized tissue, capable of regenerating itself spontaneously when afflicted by minor injuries. Nevertheless, when major lesions occur, it becomes necessary to use biomaterials, which are not only able to endure the cellular proliferation and migration, but also to substitute the original tissue or integrate itself to it. With the life expectancy growth, regenerative medicine has been gaining constant attention in the reconstructive field of dentistry and orthopedy. Focusing on broadening the therapeutic possibilities for the regeneration of injured organs, the development of biomaterials allied with the applicability of gene therapy and bone bioengineering has been receiving vast attention over the recent years. The progress of cellular and molecular biology techniques gave way to new-guided therapy possibilities. Supported by multidisciplinary activities, tissue engineering combines the interaction of physicists, chemists, biologists, engineers, biotechnologist, dentists and physicians with common goals: the search for materials that could promote and lead cell activity. A well-oriented combining of scaffolds, promoting factors, cells, together with gene therapy advances may open new avenues to bone healing in the near future. In this review, our target was to write a report bringing overall concepts on tissue bioengineering, with a special attention to decisive biological parameters for the development of biomaterials, as well as to discuss known intracellular signal transduction as a new manner to be explored within this field, aiming to predict in vitro the quality of the host cell/material and thus contributing with the development of regenerative medicine.
Collapse
Affiliation(s)
- Sara Gemini-Piperni
- Laboratório de Bioensaios e Dinâmica Celular, Depto. Química e Bioquímica, Instituto de Biociência, Universidade Estadual Paulista, UNESP, Campus Botucatu, Botucatu, SP, Brazil; Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | - Katiúcia B S Paiva
- Extracellular Matrix Biology and Cellular Interaction Group, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - José Mauro Granjeiro
- Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (INMETRO), Diretoria de Programas (DIPRO)/Bioengenharia, Xerém, RJ, Brazil
| | - Rodrigo Cardoso de Oliveira
- Department of Biological Sciences, Bauru Dental School, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla 9-75, Bauru, São Paulo, SP 17012-901, Brazil
| | - Willian Fernando Zambuzzi
- Laboratório de Bioensaios e Dinâmica Celular, Depto. Química e Bioquímica, Instituto de Biociência, Universidade Estadual Paulista, UNESP, Campus Botucatu, Botucatu, SP, Brazil.
| |
Collapse
|