1
|
Amirfiroozy A, Naghinejad M, Rezamand A, Farhangi H, Golchehre Z, Jalali H, Taheri M, Keramatipour M. A comprehensive report of the clinical and mutational profiles of 30 Iranian malignant infantile osteopetrosis patients. Mol Cell Probes 2025; 79:102014. [PMID: 39875016 DOI: 10.1016/j.mcp.2025.102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Osteopetrosis is a group of genetically and clinically diverse inherited disorders characterized by an increase in bone density. The main known cause is an abnormality in the development or function of osteoclasts. Hence, the process of bone resorption is impaired, resulting in: 1- a reduction in bone marrow volume and, subsequently, a decrement in the hematopoietic capacity of bone marrow, which leads to anemia and compromised immunological function; 2- improper bone development, which leads to pressure on peripheral nerves, causing auditory, visual, and movement impairments; and 3- disturbance in the formation of bone microstructure that leads to susceptibility to bone fracture. This study aimed to evaluate the clinical symptoms and genetic causes of 30 patients (probands) who suffered from malignant infantile osteopetrosis, a subtype of this disorder. The Sanger sequencing technique was used to sequence four common genes (TCIRG1, CLCN7, SNX10, and OSTM1) in osteopetrosis. Subsequently, the selected variants were subjected to segregation analysis between the probands and their parents. Consequently, the sequencing of these four genes in probands revealed 16 pathogenic and likely pathogenic mutations, five of which had never been reported before. The TCIRG1 gene has three novel splice site variations and one frameshift variant. The CLCN7 gene had a novel missense variant. Also, a total of five variants of uncertain significance (VUSs) were identified in the analyzed sequences, of which three haven't been reported to date, and two were observed in osteopetrosis patients. Therefore, by documenting these novel likely pathogenic variants and VUS in known genes associated with this disease in patients, specialists can conduct more accurate genetic analysis and counseling when encountering these variants. Additionally, this documentation will facilitate the reclassification of these variants.
Collapse
Affiliation(s)
- Akbar Amirfiroozy
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Naghinejad
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azim Rezamand
- Department of Pediatrics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Farhangi
- Department of Pediatrics Hematology and Oncology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Golchehre
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Jalali
- Thalassemia Research Center, Hemoglobinopathies Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Keramatipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Wang L, Minocha T, Das BK, Kunika MD, Kannan A, Gao L, Mohan S, Xing W, Varughese KI, Zhao H. FAM98 Family Proteins Play Distinct Roles in Osteoclastogenesis and Bone Resorption. BIOLOGY 2025; 14:45. [PMID: 39857276 PMCID: PMC11762708 DOI: 10.3390/biology14010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
There are three FAM98 family proteins (FAM98A/B/C) in humans and mice. Their physiological functions remain largely unknown. We have previously reported that Fam98a interacts with Plekhm1 in murine osteoclasts and functions in lysosome trafficking/secretion and bone resorption in osteoclasts in vitro. In this study, we found that all three Fam98 genes were expressed in precursor and mature osteoclasts. While the knockdown of Fam98c by a specific short-hairpin RNA (shRNA) in osteoclast precursors attenuated osteoclastogenesis, depletion of Fam98b by an shRNA specifically disrupted osteoclast lysosome trafficking and bone resorption with phenotypes similar to Fam98a shRNA-knockdown in our previous study. Loss of Fam98a in myeloid osteoclast precursors was dispensable for trabecular and cortical bone mass in mice, as well as osteoclastogenesis/bone resorption in vitro, possibly due to compensation by increased Fam98b expression in Fam98a-null osteoclasts. These findings indicate that the three Fam98 proteins play distinct roles in osteoclastogenesis and osteoclast function and need further investigation in future studies.
Collapse
Affiliation(s)
- Lei Wang
- Department of Orthopedics, The Third People’s Hospital of Hefei, Third Clinical College, Anhui Medical University, Hefei 230032, China;
| | - Tarun Minocha
- Southern California Institute for Research and Education, VA Long Beach Medical Center, Long Beach, CA 90822, USA; (T.M.); (B.K.D.); (M.D.K.); (A.K.); (L.G.); (K.I.V.)
| | - Bhaba K. Das
- Southern California Institute for Research and Education, VA Long Beach Medical Center, Long Beach, CA 90822, USA; (T.M.); (B.K.D.); (M.D.K.); (A.K.); (L.G.); (K.I.V.)
| | - Mikaela D. Kunika
- Southern California Institute for Research and Education, VA Long Beach Medical Center, Long Beach, CA 90822, USA; (T.M.); (B.K.D.); (M.D.K.); (A.K.); (L.G.); (K.I.V.)
| | - Aarthi Kannan
- Southern California Institute for Research and Education, VA Long Beach Medical Center, Long Beach, CA 90822, USA; (T.M.); (B.K.D.); (M.D.K.); (A.K.); (L.G.); (K.I.V.)
| | - Ling Gao
- Southern California Institute for Research and Education, VA Long Beach Medical Center, Long Beach, CA 90822, USA; (T.M.); (B.K.D.); (M.D.K.); (A.K.); (L.G.); (K.I.V.)
- Department of Dermatology, University of California-Irvine, Irvine, CA 92617, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (S.M.); (W.X.)
| | - Weirong Xing
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (S.M.); (W.X.)
| | - Kottayil I. Varughese
- Southern California Institute for Research and Education, VA Long Beach Medical Center, Long Beach, CA 90822, USA; (T.M.); (B.K.D.); (M.D.K.); (A.K.); (L.G.); (K.I.V.)
| | - Haibo Zhao
- Southern California Institute for Research and Education, VA Long Beach Medical Center, Long Beach, CA 90822, USA; (T.M.); (B.K.D.); (M.D.K.); (A.K.); (L.G.); (K.I.V.)
| |
Collapse
|
3
|
Zhang J, Liu H, Liu Y, Luo E, Liu S. Unlocking the potential of histone modification in regulating bone metabolism. Biochimie 2024; 227:286-298. [PMID: 39154977 DOI: 10.1016/j.biochi.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
Bone metabolism plays a crucial role in maintaining normal bone tissue homeostasis and function. Imbalances between bone formation and resorption can lead to osteoporosis, osteoarthritis, and other bone diseases. The dynamic and complex process of bone remodeling is driven by various factors, including epigenetics. Histone modification, one of the most important and well-studied components of epigenetic regulation, has emerged as a promising area of research in bone metabolism. Different histone proteins and modification sites exert diverse effects on osteogenesis and osteoclastogenesis. In this review, we summarize recent progress in understanding histone modifications in bone metabolism, including specific modification sites and potential regulatory enzymes. Comprehensive knowledge of histone modifications in bone metabolism could reveal new therapeutic targets and treatment strategies for bone diseases.
Collapse
Affiliation(s)
- Jiayuan Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
4
|
Barnea-Zohar M, Stein M, Reuven N, Winograd-Katz S, Lee S, Addadi Y, Arman E, Tuckermann J, Geiger B, Elson A. SNX10 regulates osteoclastogenic cell fusion and osteoclast size in mice. J Bone Miner Res 2024; 39:1503-1517. [PMID: 39095084 DOI: 10.1093/jbmr/zjae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Bone-resorbing osteoclasts (OCLs) are formed by differentiation and fusion of monocyte precursor cells, generating large multinucleated cells. Tightly regulated cell fusion during osteoclastogenesis leads to formation of resorption-competent OCLs, whose sizes fall within a predictable physiological range. The molecular mechanisms that regulate the onset of OCL fusion and its subsequent arrest are, however, largely unknown. We have previously shown that OCLs cultured from mice homozygous for the R51Q mutation in the vesicle trafficking-associated protein sorting nexin 10, a mutation that induces autosomal recessive osteopetrosis in humans and in mice, display deregulated and continuous fusion that generates gigantic, inactive OCLs. Fusion of mature OCLs is therefore arrested by an active, genetically encoded, cell-autonomous, and SNX10-dependent mechanism. To directly examine whether SNX10 performs a similar role in vivo, we generated SNX10-deficient (SKO) mice and demonstrated that they display massive osteopetrosis and that their OCLs fuse uncontrollably in culture, as do homozygous R51Q SNX10 (RQ/RQ) mice. OCLs that lack SNX10 exhibit persistent presence of DC-STAMP protein at their periphery, which may contribute to their uncontrolled fusion. To visualize endogenous SNX10-mutant OCLs in their native bone environment, we genetically labeled the OCLs of WT, SKO, and RQ/RQ mice with enhanced Green Fluorescent Protein (EGFP), and then visualized the 3D organization of resident OCLs and the pericellular bone matrix by 2-photon, confocal, and second harmonics generation microscopy. We show that the volumes, surface areas and, in particular, the numbers of nuclei in the OCLs of both mutant strains were on average 2-6-fold larger than those of OCLs from WT mice, indicating that deregulated, excessive fusion occurs in the mutant mice. We conclude that the fusion of OCLs, and consequently their size, is regulated in vivo by SNX10-dependent arrest of fusion of mature OCLs.
Collapse
Affiliation(s)
- Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Merle Stein
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm 89081, Germany
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sabina Winograd-Katz
- Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sooyeon Lee
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm 89081, Germany
| | - Yoseph Addadi
- Department of Life Sciences Core Facilities, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Esther Arman
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm 89081, Germany
| | - Benjamin Geiger
- Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
5
|
Schiavone ML, Crisafulli L, Camisaschi C, De Simone G, Liberati FR, Palagano E, Rucci N, Ficara F, Sobacchi C. Rankl genetic deficiency and functional blockade undermine skeletal stem and progenitor cell differentiation. Stem Cell Res Ther 2024; 15:203. [PMID: 38971808 PMCID: PMC11227705 DOI: 10.1186/s13287-024-03803-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/16/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Skeletal Stem Cells (SSCs) are required for skeletal development, homeostasis, and repair. The perspective of their wide application in regenerative medicine approaches has supported research in this field, even though so far results in the clinic have not reached expectations, possibly due also to partial knowledge of intrinsic, potentially actionable SSC regulatory factors. Among them, the pleiotropic cytokine RANKL, with essential roles also in bone biology, is a candidate deserving deep investigation. METHODS To dissect the role of the RANKL cytokine in SSC biology, we performed ex vivo characterization of SSCs and downstream progenitors (SSPCs) in mice lacking Rankl (Rankl-/-) by means of cytofluorimetric sorting and analysis of SSC populations from different skeletal compartments, gene expression analysis, and in vitro osteogenic differentiation. In addition, we assessed the effect of the pharmacological treatment with the anti-RANKL blocking antibody Denosumab (approved for therapy in patients with pathological bone loss) on the osteogenic potential of bone marrow-derived stromal cells from human healthy subjects (hBMSCs). RESULTS We found that, regardless of the ossification type of bone, osteochondral SSCs had a higher frequency and impaired differentiation along the osteochondrogenic lineage in Rankl-/- mice as compared to wild-type. Rankl-/- mice also had increased frequency of committed osteochondrogenic and adipogenic progenitor cells deriving from perivascular SSCs. These changes were not due to the peculiar bone phenotype of increased density caused by lack of osteoclast resorption (defined osteopetrosis); indeed, they were not found in another osteopetrotic mouse model, i.e., the oc/oc mouse, and were therefore not due to osteopetrosis per se. In addition, Rankl-/- SSCs and primary osteoblasts showed reduced mineralization capacity. Of note, hBMSCs treated in vitro with Denosumab had reduced osteogenic capacity compared to control cultures. CONCLUSIONS We provide for the first time the characterization of SSPCs from mouse models of severe recessive osteopetrosis. We demonstrate that Rankl genetic deficiency in murine SSCs and functional blockade in hBMSCs reduce their osteogenic potential. Therefore, we propose that RANKL is an important regulatory factor of SSC features with translational relevance.
Collapse
Affiliation(s)
- M L Schiavone
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy
| | - L Crisafulli
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy
- Institute for Genetic and Biomedical Research, Milan Unit, CNR, via Fantoli 16/15, Milan, 20138, Italy
| | - C Camisaschi
- Flow Cytometry Core, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy
| | - G De Simone
- Flow Cytometry Core, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy
| | - F R Liberati
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy
| | - E Palagano
- Institute of Biosciences and Bioresources, CNR, via Madonna Del Piano 10, Sesto Fiorentino, 50019, FI, Italy
| | - N Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio - Coppito 2, L'Aquila, 67100, Italy
| | - F Ficara
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy
- Institute for Genetic and Biomedical Research, Milan Unit, CNR, via Fantoli 16/15, Milan, 20138, Italy
| | - Cristina Sobacchi
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy.
- Institute for Genetic and Biomedical Research, Milan Unit, CNR, via Fantoli 16/15, Milan, 20138, Italy.
| |
Collapse
|
6
|
Arunachalam AK, Aboobacker FN, Sampath E, Devasia AJ, Korula A, George B, Edison ES. Molecular Heterogeneity of Osteopetrosis in India: Report of 17 Novel Variants. Indian J Hematol Blood Transfus 2024; 40:494-503. [PMID: 39011244 PMCID: PMC11246401 DOI: 10.1007/s12288-023-01732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/26/2023] [Indexed: 07/17/2024] Open
Abstract
Osteopetrosis is a clinically and genetically heterogeneous group of inherited bone disorders that is caused by defects in osteoclast formation or function. Treatment options vary with the disease severity and an accurate molecular diagnosis helps in prognostication and treatment decisions. We investigated the genetic causes of osteopetrosis in 31 unrelated patients of Indian origin. Screening for the genetic variants was done by Sanger sequencing or next generation sequencing in 48 samples that included 31 samples from index patients, 16 from parents' and 1 chorionic villus sample. A total of 30 variants, including 29 unique variants, were identified in 26 of the 31 patients in the study. TCIRG1 was the most involved gene (n = 14) followed by TNFRSF11A (n = 4) and CLCN7 (n = 3). A total of 17 novel variants were identified. Prenatal diagnosis was done in one family and the foetus showed homozygous c.807 + 2T > G variant in TCIRG1. Molecular diagnosis of osteopetrosis aids in therapeutic decisions including the need for a stem cell transplantation and gives a possible option of performing prenatal diagnosis in affected families. Further studies would help in understanding the genetic etiology in patients where no variants were identified. Supplementary Information The online version contains supplementary material available at 10.1007/s12288-023-01732-4.
Collapse
Affiliation(s)
| | - Fouzia N. Aboobacker
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu 632517 India
| | - Eswari Sampath
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu 632517 India
| | - Anup J. Devasia
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu 632517 India
| | - Anu Korula
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu 632517 India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu 632517 India
| | | |
Collapse
|
7
|
Funck-Brentano T, Zillikens MC, Clunie G, Siggelkow H, Appelman-Dijkstra NM, Cohen-Solal M. Osteopetrosis and related osteoclast disorders in adults: A review and knowledge gaps On behalf of the European calcified tissue society and ERN BOND. Eur J Med Genet 2024; 69:104936. [PMID: 38593953 DOI: 10.1016/j.ejmg.2024.104936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/13/2023] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Osteopetrosis refers to a group of related rare bone diseases characterized by a high bone mass due to impaired bone resorption by osteoclasts. Despite the high bone mass, skeletal strength is compromised and the risk of fracture is high, particularly in the long bones. Osteopetrosis was classically categorized by inheritance pattern into autosomal recessive forms (ARO), which are severe and diagnosed within the first years of life, an intermediate form and an autosomal dominant (ADO) form; the latter with variable clinical severity and typically diagnosed during adolescence or in young adulthood. Subsequently, the AD form was shown to be a result of mutations in the gene CLCN7 encoding for the ClC-7 chloride channel). Traditionally, the diagnosis of osteopetrosis was made on radiograph appearance alone, but recent molecular and genetic advances have enabled a greater fidelity in classification of osteopetrosis subtypes. In the more severe ARO forms (e.g., malignant infantile osteopetrosis MIOP) typical clinical features have severe consequences and often result in death in early childhood. Major complications of ADO are atypical fractures with delay or failure of repair and challenge in orthopedic management. Bone marrow failure, dental abscess, deafness and visual loss are often underestimated and neglected in relation with lack of awareness and expertise. Accordingly, the care of adult patients with osteopetrosis requires a multidisciplinary approach ideally in specialized centers. Apart from hematopoietic stem cell transplantation in certain infantile forms, the treatment of patients with osteopetrosis, has not been standardized and remains supportive. Further clinical studies are needed to improve our knowledge of the natural history, optimum management and impact of osteopetrosis on the lives of patients living with the disorder.
Collapse
Affiliation(s)
- Thomas Funck-Brentano
- Reference Center for Rare Bone Diseases and Department of Rheumatology, Hôpital Lariboisière, APHP, Université Paris Cité, Paris, France; INSERM UMR1132 BIOSCAR, Paris, France.
| | - M Carola Zillikens
- Bone Center, Department of Internal Medicine. Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Gavin Clunie
- Metabolic Bone Physician, Cambridge University Hospitals, Box 204, Hills Rd, Cambridge, CB2 0QQ, UK
| | - Heide Siggelkow
- MVZ Endokrinologikum, Göttingen, Germany; Clinic of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, 37075, Göttingen, Germany
| | - Natasha M Appelman-Dijkstra
- Center for Bone Quality, Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martine Cohen-Solal
- Reference Center for Rare Bone Diseases and Department of Rheumatology, Hôpital Lariboisière, APHP, Université Paris Cité, Paris, France; INSERM UMR1132 BIOSCAR, Paris, France.
| |
Collapse
|
8
|
Das BK, Minocha T, Kunika MD, Kannan A, Gao L, Mohan S, Xing W, Varughese KI, Zhao H. Molecular and functional mapping of Plekhm1-Rab7 interaction in osteoclasts. JBMR Plus 2024; 8:ziae034. [PMID: 38586475 PMCID: PMC10994564 DOI: 10.1093/jbmrpl/ziae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/21/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
Mutations in PLEKHM1 cause osteopetrosis in humans and rats. The germline and osteoclast conditional deletions of Plekhm1 gene in mice lead to defective osteoclast bone resorption and increased trabecular bone mass without overt abnormalities in other organs. As an adaptor protein, pleckstrin homology and RUN domain containing M1 (PLEKHM1) interacts with the key lysosome regulator small GTPase RAB7 via its C-terminal RUBICON homologous (RH) domain. In this study, we have conducted a structural-functional study of the PLEKHM1 RH domain and RAB7 interaction in osteoclasts in vitro. The single mutations of the key residues in the Plekhm1 RH predicted from the crystal structure of the RUBICON RH domain and RAB7 interface failed to disrupt the Plekhm1-Rab7 binding, lysosome trafficking, and bone resorption. The compound alanine mutations at Y949-R954 and L1011-I1018 regions decreased Plekhm1 protein stability and Rab7-binding, respectively, thereby attenuated lysosome trafficking and bone resorption in osteoclasts. In contrast, the compound alanine mutations at R1060-Q1068 region were dispensable for Rab7-binding and Plekhm1 function in osteoclasts. These results indicate that the regions spanning Y949-R954 and L1011-I1018 of Plekhm1 RH domain are functionally important for Plekhm1 in osteoclasts and offer the therapeutic targets for blocking bone resorption in treatment of osteoporosis and other metabolic bone diseases.
Collapse
Affiliation(s)
- Bhaba K Das
- Southern California Institute for Research and Education, VA Long Beach Healthcare System, Long Beach, CA 90822, United States
| | - Tarun Minocha
- Southern California Institute for Research and Education, VA Long Beach Healthcare System, Long Beach, CA 90822, United States
| | - Mikaela D Kunika
- Southern California Institute for Research and Education, VA Long Beach Healthcare System, Long Beach, CA 90822, United States
| | - Aarthi Kannan
- Southern California Institute for Research and Education, VA Long Beach Healthcare System, Long Beach, CA 90822, United States
- Department of Dermatology, University of California-Irvine, Irvine, CA 92697, United States
| | - Ling Gao
- Southern California Institute for Research and Education, VA Long Beach Healthcare System, Long Beach, CA 90822, United States
- Department of Dermatology, University of California-Irvine, Irvine, CA 92697, United States
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, United States
| | - Weirong Xing
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, United States
| | - Kottayil I Varughese
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock 72205, AR, United States
| | - Haibo Zhao
- Southern California Institute for Research and Education, VA Long Beach Healthcare System, Long Beach, CA 90822, United States
| |
Collapse
|
9
|
Pryor WW, Guimaraes CV, Donnelly LF. Osteopetrosis complicated by multilevel spondylolysis. Radiol Case Rep 2024; 19:1325-1328. [PMID: 38292800 PMCID: PMC10825917 DOI: 10.1016/j.radcr.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Osteopetrosis is a heterogenous group of inheritable disorders which manifests as increased bone density and brittleness. The most common and mildest variant typically presents in adulthood with bone pain and pathologic fractures, including spondylolysis. We present the case of an otherwise healthy, active 17-year-old male with a history of osteopetrosis and 1 year of chronic back pain, found to have multilevel (L1-L4) spondylolysis in the setting of severe diffuse bony sclerosis consistent with osteopetrosis. While single-level spondylolysis is an uncommon complication of osteopetrosis, multilevel spondylolysis in the pediatric population is extremely rare and the genetics of prior cases studies have not been reported. Spondylolysis should be considered as one of the types of fractures that may occur in patients with osteopetrosis.
Collapse
Affiliation(s)
- William W. Pryor
- Department of Radiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Carolina V. Guimaraes
- Department of Radiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Lane F. Donnelly
- Department of Radiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Iwata E, Sah SK, Chen IP, Reichenberger E. Dental abnormalities in rare genetic bone diseases: Literature review. Clin Anat 2024; 37:304-320. [PMID: 37737444 PMCID: PMC11068025 DOI: 10.1002/ca.24117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023]
Abstract
Currently, over 500 rare genetic bone disorders are identified. These diseases are often accompanied by dental abnormalities, which are sometimes the first clue for an early diagnosis. However, not many dentists are sufficiently familiar with phenotypic abnormalities and treatment approaches when they encounter patients with rare diseases. Such patients often need dental treatment but have difficulties in finding a dentist who can treat them appropriately. Herein we focus on major dental phenotypes and summarize their potential causes and mechanisms, if known. We discuss representative diseases, dental treatments, and their effect on the oral health of patients and on oral health-related quality of life. This review can serve as a starting point for dentists to contribute to early diagnosis and further investigate the best treatment options for patients with rare disorders, with the goal of optimizing treatment outcomes.
Collapse
Affiliation(s)
- Eiji Iwata
- Department of Oral and Maxillofacial Surgery, Kakogawa Central City Hospital, Kakogawa, Japan
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shyam Kishor Sah
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| | - I-Ping Chen
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| | - Ernst Reichenberger
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| |
Collapse
|
11
|
Reuven N, Barnea-Zohar M, Elson A. Osteoclast Methods in Protein Phosphatase Research. Methods Mol Biol 2024; 2743:57-79. [PMID: 38147208 DOI: 10.1007/978-1-0716-3569-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Osteoclasts are specialized cells that degrade bone and are essential for bone formation and maintaining bone homeostasis. Excess or deficient activity of these cells can significantly alter bone mass, structure, and physical strength, leading to significant morbidity, as in osteoporosis or osteopetrosis, among many other diseases. Protein phosphorylation in osteoclasts plays critical roles in the signaling pathways that govern the production of osteoclasts and regulate their bone-resorbing activity. In this chapter, we describe the isolation of mouse splenocytes and their differentiation into mature osteoclasts on resorptive (e.g., bone) and non-resorptive (e.g., plastic or glass) surfaces, examining matrix resorption by osteoclasts, immunofluorescence staining of these cells, and knocking out genes by CRISPR in the mouse osteoclastogenic cell line RAW264.7.
Collapse
Affiliation(s)
- Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
12
|
Carletti A, Gavaia PJ, Cancela ML, Laizé V. Metabolic bone disorders and the promise of marine osteoactive compounds. Cell Mol Life Sci 2023; 81:11. [PMID: 38117357 PMCID: PMC10733242 DOI: 10.1007/s00018-023-05033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/12/2023] [Accepted: 11/05/2023] [Indexed: 12/21/2023]
Abstract
Metabolic bone disorders and associated fragility fractures are major causes of disability and mortality worldwide and place an important financial burden on the global health systems. These disorders result from an unbalance between bone anabolic and resorptive processes and are characterized by different pathophysiological mechanisms. Drugs are available to treat bone metabolic pathologies, but they are either poorly effective or associated with undesired side effects that limit their use. The molecular mechanism underlying the most common metabolic bone disorders, and the availability, efficacy, and limitations of therapeutic options currently available are discussed here. A source for the unmet need of novel drugs to treat metabolic bone disorders is marine organisms, which produce natural osteoactive compounds of high pharmaceutical potential. In this review, we have inventoried the marine osteoactive compounds (MOCs) currently identified and spotted the groups of marine organisms with potential for MOC production. Finally, we briefly examine the availability of in vivo screening and validation tools for the study of MOCs.
Collapse
Affiliation(s)
- Alessio Carletti
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Paulo Jorge Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Associação Oceano Verde (GreenCoLab), Faro, Portugal
| | - Maria Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.
- Collaborative Laboratory for Sustainable and Smart Aquaculture (S2AQUAcoLAB), Olhão, Portugal.
| |
Collapse
|
13
|
Tüysüz B, Usluer E, Uludağ Alkaya D, Ocak S, Saygılı S, Şeker A, Apak H. The molecular spectrum of Turkish osteopetrosis and related osteoclast disorders with natural history, including a candidate gene, CCDC120. Bone 2023; 177:116897. [PMID: 37704070 DOI: 10.1016/j.bone.2023.116897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Osteopetrosis and related osteoclastic disorders are a heterogeneous group of inherited diseases characterized by increased bone density. The aim of this study is to investigate the molecular spectrum and natural history of the clinical and radiological features of these disorders. METHODS 28 patients from 20 families were enrolled in the study; 20 of them were followed for a period of 1-16 years. Targeted gene analysis and whole-exome sequencing (WES) were performed. RESULTS Biallelic mutations in CLCN7 and TCIRG1 were detected in three families each, in TNFRSF11A and CA2 in two families each, and in SNX10 in one family in the osteopetrosis group. A heterozygous variant in CLCN7 was also found in one family. In the osteopetrosis and related osteoclast disorders group, three different variants in CTSK were detected in five families with pycnodysostosis and a SLC29A3 variant causing dysosteosclerosis was detected in one family. In autosomal recessive osteopetrosis (ARO), a malignant infantile form, four patients died during follow-up, two of whom had undergone hematopoietic stem cell transplantation. Interestingly, all patients had osteopetrorickets of the long bone metaphyses in infancy, typical skeletal features such as Erlenmeyer flask deformity and bone-in-bone appearance that developed toward the end of early childhood. Two siblings with a biallelic missense mutation in CLCN7 and one patient with the compound heterozygous novel splicing variants in intron 15 and 17 in TCIRG1 corresponded to the intermediate form of ARO (IARO); there was intrafamilial clinical heterogeneity in the family with the CLCN7 variant. One of two patients with IARO and distal tubular acidosis was found to have a large deletion in CA2. In one family, two siblings with a heterozygous mutation in CLCN7 were affected, whereas the father with the same mutation was asymptomatic. In WES analysis of three brothers from a family without mutations in osteopetrosis genes, a hemizygous missense variant in CCDC120, a novel gene, was found to be associated with high bone mass. CONCLUSION This study extended the natural history of the different types of osteopetrosis and also introduced a candidate gene, CCDC120, potentially causing osteopetrosis.
Collapse
Affiliation(s)
- Beyhan Tüysüz
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pediatric Genetics, Istanbul, Turkey.
| | - Esra Usluer
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pediatric Genetics, Istanbul, Turkey
| | - Dilek Uludağ Alkaya
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pediatric Genetics, Istanbul, Turkey
| | - Süheyla Ocak
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pediatric Hematology, Istanbul, Turkey
| | - Seha Saygılı
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pediatric Nephrology, Istanbul, Turkey
| | - Ali Şeker
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Orthopedics and Traumatology, Istanbul, Turkey
| | - Hilmi Apak
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pediatric Hematology, Istanbul, Turkey
| |
Collapse
|
14
|
Kelk P, Fasth A, Holgerson PL, Sjöström M. Successful complete oral rehabilitation of a patient with osteopetrosis with extensive pre-treatments, bone grafts, dental implants and fixed bridges: a multidisciplinary case report. BMC Oral Health 2023; 23:940. [PMID: 38017429 PMCID: PMC10683162 DOI: 10.1186/s12903-023-03707-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Osteopetrosis comprises a group of inherited disorders that are rare and result in abnormal bone structure. Bone remodeling is extremely inhibited because osteoclasts are nonfunctional or lacking. This condition causes overgrowth of bone with disappearance of the bone marrow, leading to aplastic anemia; obstruction of nerve passages in the skull leads to blindness and often hearing impairment. In most cases, osteopetrosis results in oral complications such as tooth deformation, hypomineralization, and delayed or absent tooth eruption. The only curative treatment is hematopoietic stem cell transplantation (HSCT). The main treatment of the oral complications during childhood and adolescence consists in protecting the erupted teeth against caries disease through prophylactic treatment aimed at optimal oral hygiene through frequent regular dental visits throughout life. Many patients with osteopetrosis require major oral rehabilitation to treat complications of the disease. Improved results of HSCT increase the likelihood that dental professionals will encounter patients with osteopetrosis. CASE PRESENTATION In this case report, we show that individuals with osteopetrosis who have severe oral complications can be treated successfully if they are treated for osteopetrosis at an early age. The boy had his dental care in pedodontics, and regular multidisciplinary meetings were held for future treatment planning. At the age of 15, he was then referred for rehabilitation. The initial evaluations revealed no further growth in the alveolar bone. The rehabilitation was done stepwise, with extraction of malformed and malpositioned teeth. Initially, the patient received a removable partial denture followed by reconstruction of the width of the alveolar process, titanium implants, temporary fixed bridges, and finally screw-retained titanium-ceramic bridges with titanium frames for the upper and lower jaws. CONCLUSIONS The three-year follow-up after loading indicated a stable marginal bone level and optimal oral hygiene as a result of frequent professional oral hygiene care. The patient showed no signs of symptoms from the temporomandibular joint and has adapted to the new jaw relation without any functional or phonetical issues.
Collapse
Affiliation(s)
- P Kelk
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - A Fasth
- Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - PLif Holgerson
- Department of Odontology, Umeå University, Umeå, 901 85, Sweden
| | - M Sjöström
- Department of Odontology, Umeå University, Umeå, 901 85, Sweden.
| |
Collapse
|
15
|
Anuj A, Reuven N, Roberts SGE, Elson A. BASP1 down-regulates RANKL-induced osteoclastogenesis. Exp Cell Res 2023; 431:113758. [PMID: 37619639 DOI: 10.1016/j.yexcr.2023.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/03/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The cytokine RANKL (Receptor Activator of NFκB Ligand) is the key driver of differentiation of monocytes/macrophages to form multi-nucleated, bone-resorbing osteoclasts, a process that is accompanied by significant changes in gene expression. We show that exposure to RANKL rapidly down-regulates expression of Brain Acid Soluble Protein 1 (BASP1) in cultured primary mouse bone marrow macrophages (BMMs), and that this reduced expression is causally linked to the osteoclastogenic process in vitro. Knocking down BASP1 expression in BMMs or eliminating its expression in these cells or in RAW 264.7 cells enhanced RANKL-induced osteoclastogenesis, promoted cell-cell fusion, and generated cultures containing larger osteoclasts with increased mineral degrading abilities relative to controls. Expression of exogenous BASP1 in BMMs undergoing osteoclastogenic differentiation produced the opposite effects. Upon exposure to RANKL, primary mouse BMMs in which BASP1 had been knocked down exhibited increased expression of the key osteoclastogenic transcription factor Nfatc1and of its downstream target genes Dc-stamp, Ctsk, Itgb3, and Mmp9 relative to controls. The knock-down cells also exhibited increased sensitivity to the pro-osteoclastogenic effects of RANKL. We conclude that BASP1 is a negative regulator of RANKL-induced osteoclastogenesis, which down-regulates the pro-osteoclastogenic gene expression pattern induced by this cytokine. Decreased expression of BASP1 upon exposure of BMMs to RANKL removes a negative regulator of osteoclastogenesis and promotes this process.
Collapse
Affiliation(s)
- Anuj Anuj
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Stefan G E Roberts
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
16
|
Willimann R, Chougar C, Wolfe LC, Blanc L, Lipton JM. Defects in Bone and Bone Marrow in Inherited Anemias: the Chicken or the Egg. Curr Osteoporos Rep 2023; 21:527-539. [PMID: 37436584 DOI: 10.1007/s11914-023-00809-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE OF REVIEW Recently, there has been an increasing number of studies on the crosstalk between the bone and the bone marrow and how it pertains to anemia. Here, we discuss four heritable clinical syndromes contrasting those in which anemia affects bone growth and development, with those in which abnormal bone development results in anemia, highlighting the multifaceted interactions between skeletal development and hematopoiesis. RECENT FINDINGS Anemia results from both inherited and acquired disorders caused by either impaired production or premature destruction of red blood cells or blood loss. The downstream effects on bone development and growth in patients with anemia often constitute an important part of their clinical condition. We will discuss the interdependence of abnormal bone development and growth and hematopoietic abnormalities, with a focus on the erythroid lineage. To illustrate those points, we selected four heritable anemias that arise from either defective hematopoiesis impacting the skeletal system (the hemoglobinopathies β-thalassemia and sickle cell disease) versus defective osteogenesis resulting in impaired hematopoiesis (osteopetrosis). Finally, we will discuss recent findings in Diamond Blackfan anemia, an intrinsic disorder of both the erythron and the bone. By focusing on four representative hereditary hematopoietic disorders, this complex relationship between bone and blood should lead to new areas of research in the field.
Collapse
Affiliation(s)
- Rachel Willimann
- Division of Hematology Oncology and Cellular Therapy, Steven and Alexandra Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA
| | - Christina Chougar
- Division of Hematology Oncology and Cellular Therapy, Steven and Alexandra Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA
- Division of Pediatric Radiology, Steven and Alexandra Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Lawrence C Wolfe
- Division of Hematology Oncology and Cellular Therapy, Steven and Alexandra Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Lionel Blanc
- Division of Hematology Oncology and Cellular Therapy, Steven and Alexandra Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Jeffrey M Lipton
- Division of Hematology Oncology and Cellular Therapy, Steven and Alexandra Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
- The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
17
|
Nadyrshina DD, Khusainova RI. Clinical, genetic aspects and molecular pathogenesis of osteopetrosis. Vavilovskii Zhurnal Genet Selektsii 2023; 27:383-392. [PMID: 37465191 PMCID: PMC10350861 DOI: 10.18699/vjgb-23-46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 07/20/2023] Open
Abstract
Osteopetrosis ("marble bone", ICD-10-78.2) includes a group of hereditary bone disorders distinguished by clinical variability and genetic heterogeneity. The name "osteopetrosis" comes from the Greek language: 'osteo' means 'bone' and 'petrosis' means 'stone', which characterizes the main feature of the disease: increased bone density caused by imbalances in bone formation and remodeling, leading to structural changes in bone tissue, predisposition to fractures, skeletal deformities. These defects, in turn, affect other important organs and tissues, especially bone marrow and the nervous system. The disease can be autosomal recessive, autosomal dominant, X-linked or sporadic. Autosomal dominant osteopetrosis has an incidence of 1 in 20,000 newborns and autosomal recessive one has 1 in 250,000. To date, 23 genes have been described, structural changes in which lead to the development of osteopetrosis. Clinical symptoms in osteopetrosis vary greatly in their presentation and severity. The mildest skeletal abnormalities are observed in adulthood and occur in the autosomal dominant form of osteopetrosis. Severe forms, being autosomal recessive and manifesting in early childhood, are characterized by fractures, mental retardation, skin lesions, immune system disorders, renal tubular acidosis. Clinical examination and review of radiographs, bone biopsy and genetic testing provide the bases for clinical diagnosis. The early and accurate detection and treatment of the disease are important to prevent hematologic abnormalities and disease progression to irreversible neurologic consequences. Most patients die within the first decade due to secondary infections, bone marrow suppression and/or bleeding. This article summarizes the current state of the art in this field, including clinical and genetic aspects, and the molecular pathogenesis of the osteopetrosis.
Collapse
Affiliation(s)
| | - R I Khusainova
- Ufa University of Science and Technology, Ufa, Russia Saint Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
18
|
Ma Y, Xu Y, Zhang Y, Duan X. Molecular Mechanisms of Craniofacial and Dental Abnormalities in Osteopetrosis. Int J Mol Sci 2023; 24:10412. [PMID: 37373559 DOI: 10.3390/ijms241210412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Osteopetrosis is a group of genetic bone disorders characterized by increased bone density and defective bone resorption. Osteopetrosis presents a series of clinical manifestations, including craniofacial deformities and dental problems. However, few previous reports have focused on the features of craniofacial and dental problems in osteopetrosis. In this review, we go through the clinical features, types, and related pathogenic genes of osteopetrosis. Then we summarize and describe the characteristics of craniofacial and dental abnormalities in osteopetrosis that have been published in PubMed from 1965 to the present. We found that all 13 types of osteopetrosis have craniomaxillofacial and dental phenotypes. The main pathogenic genes, such as chloride channel 7 gene (CLCN7), T cell immune regulator 1 (TCIRG1), osteopetrosis-associated transmembrane protein 1 (OSTM1), pleckstrin homology domain-containing protein family member 1 (PLEKHM1), and carbonic anhydrase II (CA2), and their molecular mechanisms involved in craniofacial and dental phenotypes, are discussed. We conclude that the telltale craniofacial and dental abnormalities are important for dentists and other clinicians in the diagnosis of osteopetrosis and other genetic bone diseases.
Collapse
Affiliation(s)
- Yu Ma
- College of Life Sciences, Northwest University, Xi'an 710069, China
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yali Xu
- College of Life Sciences, Northwest University, Xi'an 710069, China
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yanli Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaohong Duan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
19
|
Doulgeraki A, Bani-Odeh L, Tramma D, Giataganas G, Kirvassilis F, Kollios K, Fotoulaki M. Severe hypophosphataemia can be an early sign of osteopetrorickets: a case report. J Pediatr Endocrinol Metab 2023:jpem-2023-0001. [PMID: 37141118 DOI: 10.1515/jpem-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023]
Abstract
Osteopetrorickets is a rare complication of autosomal recessive ("malignant") osteopetrosis. Its prompt diagnosis is essential, because early suspicion of infantile osteopetrosis enables treatment with human stem cell transplantation, depending on the gene involved. It is important to identify not only the characteristic radiological changes of rickets, but also the coexistence of increased bone density, so as not to miss this very rare entity. Herein, a brief case report is presented.
Collapse
Affiliation(s)
- Artemis Doulgeraki
- Department of Bone and Mineral Metabolism, Institute of Child Health, Athens, Greece
| | - Laura Bani-Odeh
- 4th Department of Paediatrics, Papageorgiou General Hospital, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despina Tramma
- 4th Department of Paediatrics, Papageorgiou General Hospital, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Giataganas
- Department of Radiology, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Fotis Kirvassilis
- 3rd Department of Paediatrics, Ippokratio General Hospital, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Kollios
- 3rd Department of Paediatrics, Ippokratio General Hospital, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Fotoulaki
- 4th Department of Paediatrics, Papageorgiou General Hospital, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
20
|
El-Kamah GY, Mehrez MI, Taher MB, El-Bassyouni HT, Gaber KR, Amr KS. Outlining the Clinical Profile of TCIRG1 14 Variants including 5 Novels with Overview of ARO Phenotype and Ethnic Impact in 20 Egyptian Families. Genes (Basel) 2023; 14:genes14040900. [PMID: 37107657 PMCID: PMC10137576 DOI: 10.3390/genes14040900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
TCIRG1 gene mutations underlie osteopetrosis, a rare genetic disorder impacting osteoclast function with consequent brittle bones prone to fracture, in spite of being characterized by increased bone density. The disorder is known to exhibit marked genetic heterogeneity, has no treatment, and is lethal in most instances. There are reports of ethnic variations affecting bone mineral density and variants' expression as diverse phenotypes even within individuals descending from the same pedigree. We herein focus on one of osteopetrosis's three types: the autosomal recessive malignant form (MIM 259700) (ARO) that is almost always associated with severe clinical symptoms. We reviewed the results of about 1800 Egyptian exomes and we did not detect similar variants within our Egyptian dataset and secondary neurological deficit. We studied twenty Egyptian families: sixteen ARO patients, ten carrier parents with at least one ARO affected sib, and two fetuses. They were all subjected to thorough evaluation and TCIRG1 gene sequencing. Our results of twenty-eight individuals descending from twenty Egyptian pedigrees with at least one ARO patient, expand the phenotype as well as genotype spectrum of recessive mutations in the TCIRG1 gene by five novel pathogenic variants. Identifying TCIRG1 gene mutations in Egyptian patients with ARO allowed the provision of proper genetic counseling, carrier detection, and prenatal diagnosis starting with two families included herein. It also could pave the way to modern genomic therapeutic approaches.
Collapse
Affiliation(s)
- Ghada Y El-Kamah
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Mennat I Mehrez
- Oro-Dental Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Mohamed B Taher
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Hala T El-Bassyouni
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Khaled R Gaber
- Prenatal Diagnosis and Fetal Medicine Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Khalda S Amr
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
21
|
Udupa P, Ghosh DK, Kausthubham N, Shah H, Bartakke S, Dalal A, Girisha KM, Bhavani GS. Genome sequencing identifies a large non-coding region deletion of SNX10 causing autosomal recessive osteopetrosis. J Hum Genet 2023; 68:287-290. [PMID: 36526684 PMCID: PMC10040338 DOI: 10.1038/s10038-022-01104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
Autosomal recessive osteopetrosis (ARO) is a rare genetic disorder caused by impaired osteoclast activity. In this study, we describe a 4-year-old boy with increased bone density due to osteopetrosis, autosomal recessive 8. Using genome sequencing, we identified a large deletion in the 5'-untranslated region (UTR) of SNX10 (sorting nexin 10), where the regulatory region of this gene is located. This large deletion resulted in the absence of the SNX10 transcript and led to abnormal osteoclast activity. SNX10 is one of the nine genes known to cause ARO, shown to interact with V-ATPase (vacuolar type H( + )-ATPase), as it plays an important role in bone resorption. Our study highlights the importance of regulatory regions in the 5'-UTR of SNX10 for its expression while also demonstrating the importance of genome sequencing for detecting large deletion of the regulatory region of SNX10.
Collapse
Affiliation(s)
- Prajna Udupa
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Debasish Kumar Ghosh
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Neethukrishna Kausthubham
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Hitesh Shah
- Department of Pediatric Orthopedics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Sandip Bartakke
- Department of Clinical Hematology, Aditya Birla Memorial Hospital, Pune, India
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Gandham SriLakshmi Bhavani
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
22
|
Gong HP, Ren Y, Zha PP, Zhang WY, Zhang J, Zhang ZW, Wang C. Clinical and genetic diagnosis of autosomal dominant osteopetrosis type II in a Chinese family: A case report. World J Clin Cases 2023; 11:700-708. [PMID: 36793634 PMCID: PMC9923847 DOI: 10.12998/wjcc.v11.i3.700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Osteopetrosis is a rare genetic disorder characterized by increased bone density due to defective bone resorption of osteoclasts. Approximately, 80% of autosomal dominant osteopetrosis type II (ADO-II) patients were usually affected by heterozygous dominant mutations in the chloride voltage-gated channel 7 (ClCN7) gene and present early-onset osteoarthritis or recurrent fractures. In this study, we report a case of persistent joint pain without bone injury or underlying history.
CASE SUMMARY We report a 53-year-old female with joint pain who was accidentally diagnosed with ADO-II. The clinical diagnosis was based on increased bone density and typical radiographic features. Two heterozygous mutations in the ClCN7 and T-cell immune regulator 1 (TCIRG1) genes by whole exome sequencing were identified in the patient and her daughter. The missense mutation (c.857G>A) occurred in the CLCN7 gene p. R286Q, which is highly conserved across species. The TCIRG1 gene point mutation (c.714-20G>A) in intron 7 (near the splicing site of exon 7) had no effect on subsequent transcription.
CONCLUSION This ADO-II case had a pathogenic CLCN7 mutation and late onset without the usual clinical symptoms. For the diagnosis and assessment of the prognosis for osteopetrosis, genetic analysis is advised.
Collapse
Affiliation(s)
- Hong-Ping Gong
- International Medical Center Ward, General Practice Medical Center, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
- Department of Endocrinology and Metabolism, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| | - Yan Ren
- Department of Endocrinology and Metabolism, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| | - Pan-Pan Zha
- Department of Endocrinology and Metabolism, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| | - Wen-Yan Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jin Zhang
- Department of Endocrinology and Metabolism, The People’s Hospital of Leshan, Leshan 614003, Sichuan Province, China
| | - Zhi-Wen Zhang
- Department of Endocrinology and Metabolism, The People’s Hospital of Leshan, Leshan 614003, Sichuan Province, China
| | - Chun Wang
- Department of Endocrinology and Metabolism, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
23
|
Taipaleenmäki H, Hesse E. MicroRNAs in Bone Formation and Homeostasis. MICRORNA IN REGENERATIVE MEDICINE 2023:369-394. [DOI: 10.1016/b978-0-12-820719-2.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
24
|
Huybrechts Y, Van Hul W. Osteopetrosis associated with PLEKHM1 and SNX10 genes, both involved in osteoclast vesicular trafficking. Bone 2022; 164:116520. [PMID: 35981699 DOI: 10.1016/j.bone.2022.116520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022]
Abstract
The clinical and radiological variability seen in different forms of osteopetrosis, all due to impaired osteoclastic bone resorption, reflect many causal genes. Both defective differentiation of osteoclasts from hematopoietic stem cells as well as disturbed functioning of osteoclasts can be the underlying pathogenic mechanism. Pathogenic variants in PLEKHM1 and SNX10 can be classified among the latter as they impair vesicular transport within the osteoclast and therefore result in the absence of a ruffled border. Some of the typical radiological hallmarks of osteopetrosis can be seen, and most cases present as a relatively mild form segregating in an autosomal recessive mode of inheritance.
Collapse
Affiliation(s)
- Yentl Huybrechts
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
25
|
Elson A, Anuj A, Barnea-Zohar M, Reuven N. The origins and formation of bone-resorbing osteoclasts. Bone 2022; 164:116538. [PMID: 36028118 DOI: 10.1016/j.bone.2022.116538] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Osteoclasts (OCLs) are hematopoietic cells whose physiological function is to degrade bone. OCLs are key players in the processes that determine and maintain the mass, shape, and physical properties of bone. OCLs adhere to bone tightly and degrade its matrix by secreting protons and proteases onto the underlying surface. The combination of low pH and proteases degrades the mineral and protein components of the matrix and forms a resorption pit; the degraded material is internalized by the cell and then secreted into the circulation. Insufficient or excessive activity of OCLs can lead to significant changes in bone and either cause or exacerbate symptoms of diseases, as in osteoporosis, osteopetrosis, and cancer-induced bone lysis. OCLs are derived from monocyte-macrophage precursor cells whose origins are in two distinct embryonic cell lineages - erythromyeloid progenitor cells of the yolk sac, and hematopoietic stem cells. OCLs are formed in a multi-stage process that is induced by the cytokines M-CSF and RANKL, during which the cells differentiate, fuse to form multi-nucleated cells, and then differentiate further to become mature, bone-resorbing OCLs. Recent studies indicate that OCLs can undergo fission in vivo to generate smaller cells, called "osteomorphs", that can be "re-cycled" by fusing with other cells to form new OCLs. In this review we describe OCLs and discuss their cellular origins and the cellular and molecular events that drive osteoclastogenesis.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Anuj Anuj
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
26
|
Charoenngam N, Nasr A, Shirvani A, Holick MF. Hereditary Metabolic Bone Diseases: A Review of Pathogenesis, Diagnosis and Management. Genes (Basel) 2022; 13:genes13101880. [PMID: 36292765 PMCID: PMC9601711 DOI: 10.3390/genes13101880] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 11/20/2022] Open
Abstract
Hereditary metabolic bone diseases are characterized by genetic abnormalities in skeletal homeostasis and encompass one of the most diverse groups among rare diseases. In this review, we examine 25 selected hereditary metabolic bone diseases and recognized genetic variations of 78 genes that represent each of the three groups, including sclerosing bone disorders, disorders of defective bone mineralization and disorder of bone matrix and cartilage formation. We also review pathophysiology, manifestation and treatment for each disease. Advances in molecular genetics and basic sciences has led to accurate genetic diagnosis and novel effective therapeutic strategies for some diseases. For other diseases, the genetic basis and pathophysiology remain unclear. Further researches are therefore crucial to innovate ways to overcome diagnostic challenges and develop effective treatment options for these orphan diseases.
Collapse
Affiliation(s)
- Nipith Charoenngam
- Section Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, MA 02138, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Aryan Nasr
- Section Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Arash Shirvani
- Section Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Michael F. Holick
- Section Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: ; Tel.: +1-617-358-6139
| |
Collapse
|
27
|
Duan X, Luo M, Li J, Shen Z, Xie K. Overcoming therapeutic resistance to platinum-based drugs by targeting Epithelial–Mesenchymal transition. Front Oncol 2022; 12:1008027. [PMID: 36313710 PMCID: PMC9614084 DOI: 10.3389/fonc.2022.1008027] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
Platinum-based drugs (PBDs), including cisplatin, carboplatin, and oxaliplatin, have been widely used in clinical practice as mainstay treatments for various types of cancer. Although there is firm evidence of notable achievements with PBDs in the management of cancers, the acquisition of resistance to these agents is still a major challenge to efforts at cure. The introduction of the epithelial-mesenchymal transition (EMT) concept, a critical process during embryonic morphogenesis and carcinoma progression, has offered a mechanistic explanation for the phenotypic switch of cancer cells upon PBD exposure. Accumulating evidence has suggested that carcinoma cells can enter a resistant state via induction of the EMT. In this review, we discussed the underlying mechanism of PBD-induced EMT and the current understanding of its role in cancer drug resistance, with emphasis on how this novel knowledge can be exploited to overcome PBD resistance via EMT-targeted compounds, especially those under clinical trials.
Collapse
Affiliation(s)
- Xirui Duan
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jian Li
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- *Correspondence: Ke Xie, ; Zhisen Shen,
| | - Ke Xie
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Ke Xie, ; Zhisen Shen,
| |
Collapse
|
28
|
Luong LH, Nguyen HD, Trung TN, Minh TMT, Khanh TL, Son TP, Tran TD, Nguyen TT. Case report of mild TCIRG1-associated autosomal recessive osteopetrosis in Vietnam. Am J Med Genet A 2022; 188:3096-3099. [PMID: 35915932 DOI: 10.1002/ajmg.a.62897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 01/31/2023]
Abstract
Autosomal recessive osteopetrosis (ARO) is a group of disease characterized by osteoclast dysfunction inhibiting bone resorption and bone turnover, with TCIRG1-associated ARO being more common leading to autosomal recessive infantile malignant osteopetrosis (OPTB1, MIM entry number # 259700). While most patients with TCIRG1-associated osteopetrosis present a malignant clinical course and shortened lifespan, a few cases of non-malignant TCIRG1-associated osteopetrosis have been reported. 24-year-old female patient came to us with limp gait, hip pain in both sides, and severe stiffness. She had suffered many fractures, bilateral hip osteoarthritis, right leg was 2 cm shorter compared with left leg. Whole Exome Sequencing was conducted, the result and subsequent Sanger's sequencing shown the patient had a compound heterozygous genotype at TCIRG1 (c.1194dup, p.Gly399ArgTer and c.334G>A, p.Gly112Arg), these two variants found were not previously reported. Sanger's sequencing revealed two other siblings whom suffer the same disorder had similar genotype to the proband; the parents were found to be heterozygous. This is the first case of TCIRG1-associated osteopetrosis reported in Vietnam and one of the few cases of nonmalignant TCIRG1-associated osteopetrosis, in which detailed clinical and genetic work-up were performed.
Collapse
Affiliation(s)
| | - Hieu Dinh Nguyen
- National E Hospital, Hanoi, Vietnam.,VNU University of Medicine and Pharmacy, Hanoi, Vietnam
| | - Tuyen Nguyen Trung
- National E Hospital, Hanoi, Vietnam.,Hanoi Medical University, Hanoi, Vietnam
| | | | | | | | | | | |
Collapse
|
29
|
Sawamura K, Mishima K, Matsushita M, Kamiya Y, Kitoh H. A cross-sectional nationwide survey of osteosclerotic skeletal dysplasias in Japan. J Orthop Sci 2022; 27:1139-1142. [PMID: 34275722 DOI: 10.1016/j.jos.2021.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The osteosclerotic skeletal dysplasias (OSSDs) are a heterogeneous group of disorders characterized by systemic bone sclerosis. Little is known about OSSDs because of their rarity. We conducted a cross-sectional nationwide survey of OSSDs and examined the incidence, epidemiology, and therapeutic interventions on these disorders. METHODS This study consisted of a two-step survey. The number of patients with OSSDs who had visited medical institutions between April 2017 and March 2018 was reported from a total of 341 facilities (1364 departments from pediatrics, orthopaedic surgery, neurosurgery, and otolaryngology in each facility) by the first questionnaire. In the secondary survey, their clinical features were assessed by collecting demographic data, diagnostic details, current status, family histories, therapeutic interventions, histories of bone fracture and osteomyelitis, severity assessed by the modified Rankin Scale (mRS) and recent lifestyle conditions of the patient by the EQ-5D. RESULTS In the first survey, 51 facilities (56 departments) reported one or more OSSDs patients, including 50 patients with osteopetrosis and 57 patients of other OSSDs. Among 87 patients eligible for inclusion in the analysis in the secondary survey, we investigated detailed information on the 42 patients with osteopetrosis. The number of initial visits of osteopetrosis patients during the surveillance period was five per year, indicating that the estimated incidence of osteopetrosis seemed to be 0.6 per 100,000 live births. Eighty-six bone fractures were reported in 22 patients (52%), and interventions of pseudarthrosis were conducted in five patients. Nine patients (23%) showed significant disabilities with the mRS of grade 3 or higher. Neurological complications and severe anemia were the factors that deteriorate patients' quality of life. CONCLUSIONS This is the first study to examine the detailed epidemiology of OSSDs in Japan. We demonstrated that the incidence of OSSDs is extremely rare. Bone fragility and delayed fracture healing seem to be important orthopaedic problems for patients with osteopetrosis.
Collapse
Affiliation(s)
- Kenta Sawamura
- Department of Orthopaedic Surgery, Aichi Children's Health and Medical Center, 7-426 Morioka-cho, Obu, Aichi, 474-8710, Japan
| | - Kenichi Mishima
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Masaki Matsushita
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yasunari Kamiya
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hiroshi Kitoh
- Department of Orthopaedic Surgery, Aichi Children's Health and Medical Center, 7-426 Morioka-cho, Obu, Aichi, 474-8710, Japan; Department of Comprehensive Pediatric Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
30
|
Jimi E, Katagiri T. Critical Roles of NF-κB Signaling Molecules in Bone Metabolism Revealed by Genetic Mutations in Osteopetrosis. Int J Mol Sci 2022; 23:7995. [PMID: 35887342 PMCID: PMC9322175 DOI: 10.3390/ijms23147995] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/05/2023] Open
Abstract
The nuclear factor-κB (NF-κB) transcription factor family consists of five related proteins, RelA (p65), c-Rel, RelB, p50/p105 (NF-κB1), and p52/p100 (NF-κB2). These proteins are important not only for inflammation and the immune response but also for bone metabolism. Activation of NF-κB occurs via the classic and alternative pathways. Inflammatory cytokines, such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, activate the former, and cytokines involved in lymph node formation, such as receptor activator of NF-κB ligand (RANKL) and CD40L, activate the latter. p50 and p52 double-knockout mice revealed severe osteopetrosis due to the total lack of osteoclasts, which are specialized cells for bone resorption. This finding suggests that the activation of NF-κB is required for osteoclast differentiation. The NF-κB signaling pathway is controlled by various regulators, including NF-κB essential modulator (NEMO), which is encoded by the IKBKG gene. In recent years, mutant forms of the IKBKG gene have been reported as causative genes of osteopetrosis, lymphedema, hypohidrotic ectodermal dysplasia, and immunodeficiency (OL-EDA-ID). In addition, a mutation in the RELA gene, encoding RelA, has been reported for the first time in newborns with high neonatal bone mass. Osteopetrosis is characterized by a diffuse increase in bone mass, ranging from a lethal form observed in newborns to an asymptomatic form that appears in adulthood. This review describes the genetic mutations in NF-κB signaling molecules that have been identified in patients with osteopetrosis.
Collapse
Affiliation(s)
- Eijiro Jimi
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takenobu Katagiri
- Research Center for Genomic Medicine, Division of Biomedical Sciences, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan;
| |
Collapse
|
31
|
Chen C, Hu F, Miao S, Sun L, Jiao Y, Xu M, Huang X, Yang Y, Zhou R. Transcription Factor KLF7 Promotes Osteoclast Differentiation by Suppressing HO-1. Front Genet 2022; 13:798433. [PMID: 35419025 PMCID: PMC8995880 DOI: 10.3389/fgene.2022.798433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Osteoporosis is a common orthopedic disease with high prevalence in patients older than 50 years. Osteoporosis is often detected only after the fracture and is hard to treat. Therefore, it is of great significance to explore the molecular mechanism of the occurrence of osteoporosis. Methods: The expression of Heme oxygenase-1 (HO-1) in people with different bone mineral density (BMD) was analyzed based on public databases. GenHacncer and JASPAR databases were adopted to search and verify the upstream transcription factor of HO-1. qRT-PCR, western blot and tartrate-resistant acid phosphatase assays were performed to explore the impact of HO-1 and Kruppel-like factor 7 (KLF7) on osteoclast differentiation. Chromatin immunoprecipitation (ChIP) assay confirmed the binding relationship between KLF7 and HO-1. Finally, Hemin, the agonist of HO-1, was applied in rescue assays, thereby verifying the mechanism of KLF7 modulating osteoclast differentiation by HO-1. Results: Bioinformatics analysis revealed that HO-1 was highly-expressed while KLF7 lowly-expressed in people with high BMD. Besides, a potential binding site of KLF7 was found on the promoter region of HO-1. ChIP assay further manifested the targeting relationship between HO-1 and KLF7. Western blot and TRAP staining unveiled that osteoclast differentiation was suppressed by HO-1, while facilitated by KLF7. Rescue experiments indicated that over-expressed HO-1 could reverse of the promoting effect of KLF7 on osteoclast differentiation. Conclusion: The study confirmed that osteoclast differentiation was promoted by KLF7 constraining HO-1, thereby facilitating osteoporosis. The cognation of the pathogenesis of osteoporosis was further enriched. New treatment could be developed on this basis.
Collapse
Affiliation(s)
- Changhong Chen
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Fei Hu
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Shichang Miao
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Liping Sun
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Yajun Jiao
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Mingwei Xu
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Xin Huang
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Ying Yang
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Rongkui Zhou
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| |
Collapse
|
32
|
Tu Y, Liu F, Jia H, Yang J, Lv X, Li C, Wu J, Wang F, Yang Y, Wang B. The Treatment of Subtrochanteric Fracture with Reversed Contralateral Distal Femoral Locking Compression Plate (DF-LCP) Using a Progressive and Intermittent Drilling Procedure in Three Osteopetrosis Patients. Orthop Surg 2022; 14:254-263. [PMID: 34914206 PMCID: PMC8867429 DOI: 10.1111/os.13112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/20/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To describe the application of reversed contralateral distal femoral locking compression plate (DF-LCP) inserted through a progressive and intermittent drilling procedure in the treatment of osteopetrotic subtrochanteric fracture (OSF). METHODS Three patients (one male and two females with an average age of 45.33 ± 11.09 years) with OSF hospitalized between September 2015 and September 2020, were included in this present study. Lateral approach was applied in all patients who accepted open reduction and internal fixation (ORIF) with a reversed contralateral DF-LCP inserted through a progressive and intermittent drilling procedure. The operation time and intraoperative blood loss were recorded to evaluate the efficiency of this surgical method. Physical examination and imaging examination of the fracture site were used to evaluate the fracture union status, the position and stability of the implant, and the alignment of the injured limb at 1, 3, 6, and 12 months after operation, then a subsequent visit was conducted at least once a year. Harris Hip Score (HHS) was used to evaluate the hip joint function at 6 and 12 months after operation. RESULTS The average operation time was 140 ± 21.60 min (110, 160, and 150 min); The average intraoperative blood loss was about 333.33 ± 23.57 ml (300, 350, and 350 ml). The average follow-up time was 22.33 ± 7.41 months (29, 26, and 12 months). All patients achieved bone union with an average time of 6.67 ± 0.94 months (6, 8, and 6 months). At the time of 6 months after operation, case 1 and 3 were almost pain-free and could walk with full weight bearing while case 2 could walk only with partial weight bearing using a crutch. The HHS scores of cases 1, 2, and 3 were 84/100, 74/100, and 92/100, respectively. At the follow-up at 12 months after operation, the HHS score improved to 91/100, 81/100, and 96/100, respectively. The contralateral incomplete old subtrochanteric fracture was deteriorated in case 1 at 26 months after operation. After 3 months of limited weight bearing using a crutch, bone union was verified in radiograph imaging. Fresh contralateral subtrochanteric fracture occurred in case 2 at 26 months after operation, which was treated using a similar surgical approach, and its clinical outcome is under follow-up. Moreover, no perioperative complications including operation-related death, vascular/nerve injury, deep venous thrombosis, pulmonary embolism, and incision infection, and long-term complications involving malunion, nonunion, implant failure, ankylosis, heterotopic ossification, osteonecrosis, and osteomyelitis were identified. CONCLUSION The application of reversed contralateral DF-LCP in OSF is practicable and reliable. Progressive and intermittent drilling is a safe and efficient method for implant insertion in this complicated situation.
Collapse
Affiliation(s)
- Yi Tu
- Department of OrthopaedicsShandong Provincial Hospital affiliated to Shandong UniversityJinanChina
| | - Fan‐xiao Liu
- Department of OrthopaedicsShandong Provincial Hospital affiliated to Shandong UniversityJinanChina
- Department of OrthopaedicsShandong Provincial Hospital affiliated to Shandong First Medical UniversityJinanChina
| | - Hong‐lei Jia
- Department of OrthopaedicsShandong Provincial Hospital affiliated to Shandong UniversityJinanChina
- Department of OrthopaedicsShandong Provincial Hospital affiliated to Shandong First Medical UniversityJinanChina
| | - Juan‐juan Yang
- Department of RadiotherapyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Xiao‐long Lv
- Department of OrthopaedicsShandong Provincial Hospital affiliated to Shandong UniversityJinanChina
| | - Chao Li
- Department of Anesthesia SurgeryShandong Provincial Hospital affiliated to Shandong First Medical UniversityJinanChina
| | - Jun‐wei Wu
- Department of OrthopaedicsShandong Provincial Hospital affiliated to Shandong UniversityJinanChina
- Department of OrthopaedicsShandong Provincial Hospital affiliated to Shandong First Medical UniversityJinanChina
| | - Fu Wang
- Department of OrthopaedicsShandong Provincial Hospital affiliated to Shandong UniversityJinanChina
- Department of OrthopaedicsShandong Provincial Hospital affiliated to Shandong First Medical UniversityJinanChina
| | - Yong‐liang Yang
- Department of OrthopaedicsShandong Provincial Hospital affiliated to Shandong UniversityJinanChina
- Department of OrthopaedicsShandong Provincial Hospital affiliated to Shandong First Medical UniversityJinanChina
| | - Bo‐min Wang
- Department of OrthopaedicsShandong Provincial Hospital affiliated to Shandong UniversityJinanChina
- Department of OrthopaedicsShandong Provincial Hospital affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
33
|
Oton-Gonzalez L, Mazziotta C, Iaquinta MR, Mazzoni E, Nocini R, Trevisiol L, D’Agostino A, Tognon M, Rotondo JC, Martini F. Genetics and Epigenetics of Bone Remodeling and Metabolic Bone Diseases. Int J Mol Sci 2022; 23:ijms23031500. [PMID: 35163424 PMCID: PMC8836080 DOI: 10.3390/ijms23031500] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Bone metabolism consists of a balance between bone formation and bone resorption, which is mediated by osteoblast and osteoclast activity, respectively. In order to ensure bone plasticity, the bone remodeling process needs to function properly. Mesenchymal stem cells differentiate into the osteoblast lineage by activating different signaling pathways, including transforming growth factor β (TGF-β)/bone morphogenic protein (BMP) and the Wingless/Int-1 (Wnt)/β-catenin pathways. Recent data indicate that bone remodeling processes are also epigenetically regulated by DNA methylation, histone post-translational modifications, and non-coding RNA expressions, such as micro-RNAs, long non-coding RNAs, and circular RNAs. Mutations and dysfunctions in pathways regulating the osteoblast differentiation might influence the bone remodeling process, ultimately leading to a large variety of metabolic bone diseases. In this review, we aim to summarize and describe the genetics and epigenetics of the bone remodeling process. Moreover, the current findings behind the genetics of metabolic bone diseases are also reported.
Collapse
Affiliation(s)
- Lucia Oton-Gonzalez
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Riccardo Nocini
- Unit of Otolaryngology, University of Verona, 37134 Verona, Italy;
| | - Lorenzo Trevisiol
- Unit of Maxillo-Facial Surgery and Dentistry, University of Verona, 37134 Verona, Italy; (L.T.); (A.D.)
| | - Antonio D’Agostino
- Unit of Maxillo-Facial Surgery and Dentistry, University of Verona, 37134 Verona, Italy; (L.T.); (A.D.)
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (J.C.R.); (F.M.); Tel.: +39-0532-455536 (J.C.R.); +39-0532-455540 (F.M.)
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (J.C.R.); (F.M.); Tel.: +39-0532-455536 (J.C.R.); +39-0532-455540 (F.M.)
| |
Collapse
|
34
|
Martínez‐Gil N, Ovejero D, Garcia‐Giralt N, Bruque CD, Mellibovsky L, Nogués X, Rabionet R, Grinberg D, Balcells S. Genetic analysis in a familial case with high bone mineral density suggests additive effects at two
loci. JBMR Plus 2022; 6:e10602. [PMID: 35434450 PMCID: PMC9009133 DOI: 10.1002/jbm4.10602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 12/24/2021] [Accepted: 01/16/2022] [Indexed: 11/21/2022] Open
Abstract
Osteoporosis is the most common bone disease, characterized by a low bone mineral density (BMD) and increased risk of fracture. At the other end of the BMD spectrum, some individuals present strong, fracture‐resistant, bones. Both osteoporosis and high BMD are heritable and their genetic architecture encompasses polygenic inheritance of common variants and some cases of monogenic highly penetrant variants in causal genes. We have investigated the genetics of high BMD in a family segregating this trait in an apparently Mendelian dominant pattern. We searched for rare causal variants by whole‐exome sequencing in three affected and three nonaffected family members. Using this approach, we have identified 38 rare coding variants present in the proband and absent in the three individuals with normal BMD. Although we have found four variants shared by the three affected members of the family, we have not been able to relate any of these to the high‐BMD phenotype. In contrast, we have identified missense variants in two genes, VAV3 and ADGRE5, each shared by two of out of three affected members, whose loss of function fits with the phenotype of the family. In particular, the proband, a woman displaying the highest BMD (sum Z‐score = 7), carries both variants, whereas the other two affected members carry one each. VAV3 encodes a guanine‐nucleotide‐exchange factor with an important role in osteoclast activation and function. Although no previous cases of VAV3 mutations have been reported in humans, Vav3 knockout (KO) mice display dense bones, similarly to the high‐BMD phenotype present in our family. The ADGRE5 gene encodes an adhesion G protein‐coupled receptor expressed in osteoclasts whose KO mouse displays increased trabecular bone volume. Combined, these mouse and human data highlight VAV3 and ADGRE5 as novel putative high‐BMD genes with additive effects, and potential therapeutic targets for osteoporosis. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Núria Martínez‐Gil
- Department of Genetics, Microbiology and Statistics Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD Barcelona Spain
| | - Diana Ovejero
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII Barcelona Spain
| | - Natalia Garcia‐Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII Barcelona Spain
| | - Carlos David Bruque
- Unidad de Conocimiento Traslacional Hospitalaria Patagónica, Hospital de Alta Complejidad SAMIC El Calafate Santa Cruz Argentina
| | - Leonardo Mellibovsky
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII Barcelona Spain
| | - Xavier Nogués
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII Barcelona Spain
| | - Raquel Rabionet
- Department of Genetics, Microbiology and Statistics Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD Barcelona Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD Barcelona Spain
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD Barcelona Spain
| |
Collapse
|
35
|
Even-Or E, Schiesel G, Simanovsky N, NaserEddin A, Zaidman I, Elpeleg O, Mor-Shaked H, Stepensky P. Clinical presentation and analysis of genotype-phenotype correlations in patients with malignant infantile osteopetrosis. Bone 2022; 154:116229. [PMID: 34624559 DOI: 10.1016/j.bone.2021.116229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 11/02/2022]
Abstract
Malignant infantile osteopetrosis (MIOP) is the autosomal recessive, severe form of osteopetrosis. This rare genetic syndrome usually presents soon after birth and is often fatal if left untreated. Early diagnosis is key for proper management but clinical presentation is diverse, and oftentimes diagnosis may be challenging. In this study, we retrospectively collected data of genetic mutations and phenotypic characteristics at the initial presentation of 81 MIOP patients and analyzed genotype-phenotype correlations. The most common genetic mutation was in the TCIRG1 gene (n = 46, 56.8%), followed by SNX10 (n = 20, 25%). Other genetic mutations included RANK (n = 7, 8.7%), CLCN7 (n = 5, 6.2%) and CA2 (n = 3, 3.7%). More than half of the patients presented with growth retardation (n = 46, 56.8%). Twenty-one of the patients were blind (26%) and thirty-seven patients had other neurological deficits (45.7%) at the time of initial presentation. Most patients presented with hematological signs of bone marrow failure including anemia (n = 69, 85.2%) and thrombocytopenia (n = 33, 40.7%). Thrombocytopenia at initial presentation was significantly more prevalent in patients with mutations in the TCIRG1 gene (p = 0.036). Other phenotypic presenting features were not found to be significantly correlated to specific gene mutations. In conclusion, the initial presentation of MIOP is variable, but some features are common such as growth retardation, visual impairment, and cytopenias. High awareness of MIOP presenting signs is essential for prompt diagnosis of this challenging disease.
Collapse
Affiliation(s)
- Ehud Even-Or
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem 9112102, Israel; Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Kalman Ya'Akov Man Street, Jerusalem, Israel.
| | - Gali Schiesel
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem 9112102, Israel
| | - Natalia Simanovsky
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem 9112102, Israel; Department of Medical Imaging, Hadassah Medical Center, Kalman Ya'Akov Man Street, Jerusalem, Israel
| | - Adeeb NaserEddin
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem 9112102, Israel; Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Kalman Ya'Akov Man Street, Jerusalem, Israel
| | - Irina Zaidman
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem 9112102, Israel; Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Kalman Ya'Akov Man Street, Jerusalem, Israel
| | - Orly Elpeleg
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem 9112102, Israel; Department of Genetic and Metabolic Diseases, Hadassah Medical Center, Kalman Ya'Akov Man Street, Jerusalem, Israel
| | - Hagar Mor-Shaked
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem 9112102, Israel; Department of Genetic and Metabolic Diseases, Hadassah Medical Center, Kalman Ya'Akov Man Street, Jerusalem, Israel
| | - Polina Stepensky
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem 9112102, Israel; Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Kalman Ya'Akov Man Street, Jerusalem, Israel
| |
Collapse
|
36
|
Zeytin IC, Alkan B, Ozdemir C, Cetinkaya DU, Okur FV. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:310-321. [PMID: 35356978 PMCID: PMC8969067 DOI: 10.1093/stcltm/szab019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/07/2021] [Indexed: 11/22/2022] Open
Abstract
Osteopetrosis is a rare inherited disease characterized by impaired osteoclast activity causing defective bone resorption and bone marrow aplasia. It is fatal in early childhood unless hematopoietic stem cell transplantation is performed. But, the transplant course is complicated with engraftment failure. Recently, osteoclasts have been described as the potential regulators of hematopoietic stem cell (HSC) niche. Here we investigated the alterations in the HSC and mesenchymal stromal cell (MSC) components of osteopetrotic niche and their interactions to mimic the stem cell dynamics/trafficking in the BM niche after HSC transplantation. Induced pluripotent stem cells were generated from peripheral blood mononuclear cells of patients with osteopetrosis carrying TCIRG1 mutation. iPSC lines were differentiated into hematopoietic and myeloid progenitors, then into osteoclasts using a step-wise protocol. We first demonstrated a shift toward monocyte-macrophages lineage regarding hematopoietic differentiation potential of osteopetrotic iPSC-derived hematopoietic progenitors (HPCs) and phenotypically normal and functionally defective osteoclast formation. The expression of the genes involved in HSC homing and maintenance (Sdf-1, Jagged-1, Kit-L, and Opn) in osteopetrotic MSCs recovered significantly after coculture with healthy HPCs. Similarly, the restoration of phenotype, impaired differentiation, and migratory potential of osteopetrotic iHPCs were observed upon interaction with healthy MSCs. Our results establish significant alterations in both MSC and HPC compartments of the osteopetrotic niche, and support the impact of functionally impaired osteoclasts in defective niche formation.
Collapse
Affiliation(s)
- Inci Cevher Zeytin
- Center for Stem Cell Research and Development PEDI-STEM, Hacettepe University, Ankara, Turkey
- Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Berna Alkan
- Center for Stem Cell Research and Development PEDI-STEM, Hacettepe University, Ankara, Turkey
- Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Cansu Ozdemir
- Center for Stem Cell Research and Development PEDI-STEM, Hacettepe University, Ankara, Turkey
| | - Duygu Uckan Cetinkaya
- Center for Stem Cell Research and Development PEDI-STEM, Hacettepe University, Ankara, Turkey
- Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
- Department of Pediatrics, Division of Pediatric Hematology and Bone Marrow Transplantation Unit, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Corresponding authors: Duygu Uckan Cetinkaya and Fatma Visal Okur, Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, Ankara, Turkey, (F.V.O.), (D.U.C.)
| | - Fatma Visal Okur
- Center for Stem Cell Research and Development PEDI-STEM, Hacettepe University, Ankara, Turkey
- Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
- Department of Pediatrics, Division of Pediatric Hematology and Bone Marrow Transplantation Unit, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Corresponding authors: Duygu Uckan Cetinkaya and Fatma Visal Okur, Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, Ankara, Turkey, (F.V.O.), (D.U.C.)
| |
Collapse
|
37
|
Lee A, Cortez S, Yang P, Aum D, Singh P, Gooch C, Smyth M. Neonatal hydrocephalus: an atypical presentation of malignant infantile osteopetrosis. Childs Nerv Syst 2021; 37:3695-3703. [PMID: 34519872 DOI: 10.1007/s00381-021-05345-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/23/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE Autosomal recessive osteopetrosis has a variable presentation, most commonly including failure to thrive, hypocalcemia, seizures, hepatosplenomegaly, hydrocephalus, vision or hearing loss, and cytopenias. Multiple symptoms are usually seen at presentation. The variability of presentation often delays diagnosis and subsequent treatment. Here, we present a case of an infant with this condition who initially presented with triventricular hydrocephalus with Chiari I malformation. This alone is not a common presentation of this disease, and we present this case to highlight autosomal recessive osteopetrosis as a potential diagnosis in infants presenting with hydrocephalus and discuss the other associated symptoms, management, and prognosis of this condition. CASE REPORT The patient was a full-term infant with a routine newborn period. At 6 months, the infant had macrocephaly and frontal bossing with a bulging fontanelle. She was found to have hydrocephalus with moderate ventriculomegaly involving the third and lateral ventricles with an associated Chiari 1 malformation. The infant was asymptomatic at the time. The infant was promptly referred to neurosurgery and underwent an uncomplicated ventriculoperitoneal shunt placement. Post-operative X-rays showed increased density of the skull with other bone changes suggestive of autosomal recessive osteopetrosis. Subsequent lab work and imaging studies were consistent with this condition. The diagnosis was confirmed by genetic testing, and the patient has undergone treatment with hematopoietic stem cell transplant. CONCLUSION Hydrocephalus is a common feature of this condition, typically seen in conjunction with other systemic symptoms and laboratory findings. Our patient had a limited initial presentation of triventricular hydrocephalus with Chiari I malformation and was otherwise clinically asymptomatic. There is limited literature of such a presentation, and we highlight this case to increase awareness, as timely diagnosis of these patients is critical for treatment and future outcomes.
Collapse
Affiliation(s)
- Angela Lee
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St Louis, Saint Louis, MO, USA.
- Saint Louis Children's Hospital, One Children's Place, MO, 63110, Saint Louis, USA.
| | - Samuel Cortez
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, Washington University in St Louis, , Saint Louis, MO, USA
| | - Peter Yang
- Department of Neurological Surgery and Pediatrics, St. Louis Children's Hospital, Washington University in St. Louis, Saint Louis, MO, USA
| | - Diane Aum
- Department of Neurological Surgery and Pediatrics, St. Louis Children's Hospital, Washington University in St. Louis, Saint Louis, MO, USA
| | - Prapti Singh
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St Louis, Saint Louis, MO, USA
| | - Catherine Gooch
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St Louis, Saint Louis, MO, USA
| | - Matthew Smyth
- Department of Neurological Surgery and Pediatrics, St. Louis Children's Hospital, Washington University in St. Louis, Saint Louis, MO, USA
| |
Collapse
|
38
|
Liu C, Ajmal M, Akram Z, Ghafoor T, Farhan M, Shafique S, Wahid S, Bano S, Xiao J, Satti HS, Zhang F, Khan TN. Genetic analysis of osteopetrosis in Pakistani families identifies novel and known sequence variants. BMC Med Genomics 2021; 14:264. [PMID: 34753502 PMCID: PMC8576874 DOI: 10.1186/s12920-021-01117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/26/2021] [Indexed: 11/28/2022] Open
Abstract
Osteopetrosis is a genetically heterogenous, fatal bone disorder characterized by increased bone density. Globally, various genetic causes are reported for osteopetrosis with all forms of inheritance patterns. A precise molecular diagnosis is necessary for prognosis and for prescribing treatment paradigms in osteopetrosis. Here we report on thirteen individuals diagnosed with infantile malignant osteopetrosis coming from ten unrelated Pakistani families; nine of whom are consanguineous. We performed whole exome sequencing and Sanger sequencing in all families and identified homozygous variants in genes previously reported for autosomal recessive inheritance of osteopetrosis. All the identified variants are expected to affect the stability or length of gene products except one nonsynonymous missense variant. TCIRG1 was found as a candidate causal gene in majority of the families. We report six novel variants; four in TCIRG1 and one each in CLCN7 and OSTM1. Our combined findings will be helpful in molecular diagnosis and genetic counselling of patients with osteopetrosis particularly in populations with high consanguinity.
Collapse
Affiliation(s)
- Chunyu Liu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Life Sciences, Fudan University, Shanghai, 200011, China
| | - Muhammad Ajmal
- Institute of Biomedical and Genetic Engineering, Islamabad, 44000, Pakistan
| | - Zaineb Akram
- Armed Forces Bone Marrow Transplant Centre, CMH Medical Complex, Rawalpindi, 46000, Pakistan
| | - Tariq Ghafoor
- Armed Forces Bone Marrow Transplant Centre, CMH Medical Complex, Rawalpindi, 46000, Pakistan
| | - Muhammad Farhan
- Armed Forces Bone Marrow Transplant Centre, CMH Medical Complex, Rawalpindi, 46000, Pakistan
| | - Sobia Shafique
- Institute of Biomedical and Genetic Engineering, Islamabad, 44000, Pakistan
| | - Sughra Wahid
- KRL General Hospital, Islamabad, 44000, Pakistan
| | - Shahar Bano
- KRL General Hospital, Islamabad, 44000, Pakistan
| | - Jianqiu Xiao
- Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Humayoon Shafique Satti
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Life Sciences, Fudan University, Shanghai, 200011, China.
| | - Tahir Naeem Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan. .,National Institute of Advance Studies and Research, National University of Medical Sciences, Rawalpindi, 46000, Pakistan.
| |
Collapse
|
39
|
Magalhães BM, Catarino L, Carreiro I, Gomes RAMP, Gaspar RR, Matos VMJ, Santos AL. Differential diagnosis of a diffuse sclerosis in an identified male skull (early 20th century Coimbra, Portugal): A multimethodological approach for the identification of osteosclerotic dysplasias in skeletonized individuals. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2021; 34:134-141. [PMID: 34243133 DOI: 10.1016/j.ijpp.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE This work aims to discuss the difficulties in diagnosing osteosclerotic changes in skeletonized individuals and to raise awareness of osteosclerotic dysplasias as a group of rare ancient diseases. MATERIALS The skull of a 62-year-old male individual from the International Exchange Skull Collection, curated by the University of Coimbra, who died in 1928 presenting albuminous nephritis (Bright disease)/uraemia as the registered cause of death. METHODS The skull was macroscopically and radiologically examined and bone elemental analysis was investigated. The genealogy and medical records of the individual were also searched. RESULTS The lesions are in accordance with an osteosclerotic process possibly pointing to osteosclerosis, osteosclerotic metaphyseal dysplasia, or dysosteosclerosis, but osteoclasia with hyperphosphatasia, endosteal hyperostosis, sclerosteosis, or osteopathia striata with cranial sclerosis cannot be ruled out. CONCLUSIONS Representativeness of the skeleton is a crucial feature in diagnosing rare diseases and, to avoid a misdiagnosis, the final diagnosis should include a group of diseases rather than a definite disease. SIGNIFICANCE Difficulties in diagnosing rare diseases are discussed and best approaches in the study osteosclerotic dysplasias in skeletonized individuals are offered in the light of current clinical knowledge. LIMITATIONS The absence of the postcranial skeleton and of pathognomonic lesions associated with osteosclerotic dysplasias limits diagnosis. Although rare diseases often have a genetic basis, specific genetic testing for the diagnosis of rare diseases in paleopathological cases are not yet available. SUGGESTIONS FOR FURTHER RESEARCH Future genetic studies might help narrow down the diagnosis.
Collapse
Affiliation(s)
- Bruno M Magalhães
- University of Coimbra, Research Centre for Anthropology and Health, Department of Life Sciences, Calçada Martim de Freitas, Coimbra, 3000-456, Portugal.
| | - Lidia Catarino
- University of Coimbra, Geosciences Centre, Department of Earth Sciences, Portugal
| | - Inês Carreiro
- Medical Imaging Department, Centro Hospitalar e Universitário de Coimbra, Portugal
| | - Ricardo A M P Gomes
- University of Coimbra, Research Centre for Anthropology and Health, Department of Life Sciences, Calçada Martim de Freitas, Coimbra, 3000-456, Portugal
| | - Rosa Ramos Gaspar
- University of Coimbra, Research Centre for Anthropology and Health, Department of Life Sciences, Calçada Martim de Freitas, Coimbra, 3000-456, Portugal; Medical Imaging Department, Centro Hospitalar e Universitário de Coimbra, Portugal
| | - Vitor M J Matos
- University of Coimbra, Research Centre for Anthropology and Health, Department of Life Sciences, Calçada Martim de Freitas, Coimbra, 3000-456, Portugal
| | - Ana Luisa Santos
- University of Coimbra, Research Centre for Anthropology and Health, Department of Life Sciences, Calçada Martim de Freitas, Coimbra, 3000-456, Portugal
| |
Collapse
|
40
|
Lertwilaiwittaya P, Suktitipat B, Khongthon P, Pongsapich W, Limwongse C, Pithukpakorn M. Identification of novel mutation in RANKL by whole-exome sequencing in a Thai family with osteopetrosis; a case report and review of RANKL osteopetrosis. Mol Genet Genomic Med 2021; 9:e1727. [PMID: 34056870 PMCID: PMC8372087 DOI: 10.1002/mgg3.1727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 01/08/2023] Open
Abstract
Background Osteopetrosis is a rare form of skeletal dysplasia characterized by increased bone density that leads to bone marrow failure, compressive neuropathy, and skeletal dysmorphism. Molecular diagnosis is essential as it guides treatment and prognosis. We report Thai siblings with an ultra‐rare form of osteopetrosis. Methods The older brother and the younger sister presented with chronic mandibular osteomyelitis in their 20s. Since childhood, they had visual impairment, pathological fracture, and skeletal dysmorphism. Quadruplet whole‐exome sequencing was performed and confirmed with Sanger sequencing. Novel mutation in TNFSF11 (RANKL) c.842T>G, p.Phe281Cys was identified in a homozygous state in both siblings. Results Surgical debridement, antibiotic, and hyperbaric oxygen therapy were used and discontinued over a 6‐month period with normalization of C‐reactive protein. Hematopoietic stem cell transplantation candidacy was excluded by molecular diagnosis. Conclusion We report a novel mutation in an ultra‐rare form of osteopetrosis. Our siblings manifested with a milder phenotype in comparison with nine cases previously published.
Collapse
Affiliation(s)
| | - Bhoom Suktitipat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Integrative Computational BioScience Center, Mahidol University, Bangkok, Thailand
| | - Phongphak Khongthon
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Warut Pongsapich
- Department of Otorhinolaryngology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanin Limwongse
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Manop Pithukpakorn
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Siriraj Center of Research Excellence in Precision Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
41
|
Xu Y, Yu X, Huang M. A novel mutation in TNFRSF11A gene causes pediatric osteopetrosis: case report. BMC Surg 2021; 21:269. [PMID: 34049530 PMCID: PMC8162000 DOI: 10.1186/s12893-021-01266-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 05/23/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Osteopetrosis is a rare inherited bone disorder affected individual by osteoclast disfunction and increasing bone density. Surgery was taken for histological examination of the specimen and evidence of malignancy was not found. Finally, X-ray and gene detection lead to the diagnosis. CASE PRESENTATION We report a 10-year-old girl with two years history of pus rhinorrhea, nasal obstruction and smelly nose. She was diagnosed and treated as sinusitis. But the symptoms were recurrent. Ten months ago, she was afflicted with persistent swelling and broken skin on the right cheek. All the laboratory findings showed normal. During surgery, we resected the right gingiva, the right nasal mucosa and the right facial tissue for biopsies. Histological examination showed proliferation of granulation tissue in chronic inflammatory mucosa. X-rays showed generalized sclerosis. Genetic analysis strongly supported a novel mutation of TNFRSF11A gene which caused osteoporosis. We found a novel mutation of the c.1196C > G (p.S399X) in exon 9 of TNFRSF11A. The TNFRSF11A gene encodes RANK, which is fundamental for osteoclast formation. CONCLUSION Osteopetrosis is a rare genetic bone disease characterized by increased bone density because of bone resorption failure. Diagnosis is based on X-ray and gene analyze. Osteoclasts are bone-related cells derived from hematopoietic cell lines. Since osteoclasts arise from a hematopoietic progenitor cell of the monocytic lineage, the defect can be corrected by hematopoietic stem cell transplantation (HSCT). Better understanding of this pathological situation and pathogenesis is so important to plan appropriate immunotherapy to benefit.
Collapse
Affiliation(s)
- You Xu
- Department of Otolaryngology, Head & Neck Surgery, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610091, China
| | - Xiaoyan Yu
- Department of Otolaryngology, Head & Neck Surgery, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610091, China
| | - Mengjie Huang
- Department of Otolaryngology, Head & Neck Surgery, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610091, China.
| |
Collapse
|
42
|
Elson A, Stein M, Rabie G, Barnea-Zohar M, Winograd-Katz S, Reuven N, Shalev M, Sekeres J, Kanaan M, Tuckermann J, Geiger B. Sorting Nexin 10 as a Key Regulator of Membrane Trafficking in Bone-Resorbing Osteoclasts: Lessons Learned From Osteopetrosis. Front Cell Dev Biol 2021; 9:671210. [PMID: 34095139 PMCID: PMC8173195 DOI: 10.3389/fcell.2021.671210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/23/2021] [Indexed: 12/30/2022] Open
Abstract
Bone homeostasis is a complex, multi-step process, which is based primarily on a tightly orchestrated interplay between bone formation and bone resorption that is executed by osteoblasts and osteoclasts (OCLs), respectively. The essential physiological balance between these cells is maintained and controlled at multiple levels, ranging from regulated gene expression to endocrine signals, yet the underlying cellular and molecular mechanisms are still poorly understood. One approach for deciphering the mechanisms that regulate bone homeostasis is the characterization of relevant pathological states in which this balance is disturbed. In this article we describe one such “error of nature,” namely the development of acute recessive osteopetrosis (ARO) in humans that is caused by mutations in sorting nexin 10 (SNX10) that affect OCL functioning. We hypothesize here that, by virtue of its specific roles in vesicular trafficking, SNX10 serves as a key selective regulator of the composition of diverse membrane compartments in OCLs, thereby affecting critical processes in the sequence of events that link the plasma membrane with formation of the ruffled border and with extracellular acidification. As a result, SNX10 determines multiple features of these cells either directly or, as in regulation of cell-cell fusion, indirectly. This hypothesis is further supported by the similarities between the cellular defects observed in OCLs form various models of ARO, induced by mutations in SNX10 and in other genes, which suggest that mutations in the known ARO-associated genes act by disrupting the same plasma membrane-to-ruffled border axis, albeit to different degrees. In this article, we describe the population genetics and spread of the original arginine-to-glutamine mutation at position 51 (R51Q) in SNX10 in the Palestinian community. We further review recent studies, conducted in animal and cellular model systems, that highlight the essential roles of SNX10 in critical membrane functions in OCLs, and discuss possible future research directions that are needed for challenging or substantiating our hypothesis.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Merle Stein
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Grace Rabie
- Hereditary Research Laboratory and Department of Life Sciences, Bethlehem University, Bethlehem, Palestine
| | - Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Moran Shalev
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Juraj Sekeres
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Moien Kanaan
- Hereditary Research Laboratory and Department of Life Sciences, Bethlehem University, Bethlehem, Palestine
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Benjamin Geiger
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
43
|
Barnea-Zohar M, Winograd-Katz SE, Shalev M, Arman E, Reuven N, Roth L, Golani O, Stein M, Thalji F, Kanaan M, Tuckermann J, Geiger B, Elson A. An SNX10-dependent mechanism downregulates fusion between mature osteoclasts. J Cell Sci 2021; 134:261809. [PMID: 33975343 PMCID: PMC8182410 DOI: 10.1242/jcs.254979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/19/2021] [Indexed: 01/13/2023] Open
Abstract
Homozygosity for the R51Q mutation in sorting nexin 10 (SNX10) inactivates osteoclasts (OCLs) and induces autosomal recessive osteopetrosis in humans and in mice. We show here that the fusion of wild-type murine monocytes to form OCLs is highly regulated, and that its extent is limited by blocking fusion between mature OCLs. In contrast, monocytes from homozygous R51Q SNX10 mice fuse uncontrollably, forming giant dysfunctional OCLs that can become 10- to 100-fold larger than their wild-type counterparts. Furthermore, mutant OCLs display reduced endocytotic activity, suggesting that their deregulated fusion is due to alterations in membrane homeostasis caused by loss of SNX10 function. This is supported by the finding that the R51Q SNX10 protein is unstable and exhibits altered lipid-binding properties, and is consistent with a key role for SNX10 in vesicular trafficking. We propose that OCL size and functionality are regulated by a cell-autonomous SNX10-dependent mechanism that downregulates fusion between mature OCLs. The R51Q mutation abolishes this regulatory activity, leading to excessive fusion, loss of bone resorption capacity and, consequently, to an osteopetrotic phenotype in vivo. This article has an associated First Person interview with the joint first authors of the paper. Summary: Fusion of monocytes to become bone-resorbing osteoclasts is limited by an SNX10-dependent cell-autonomous mechanism. Loss of SNX10 function deregulates fusion and generates giant inactive osteoclasts.
Collapse
Affiliation(s)
- Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Moran Shalev
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Esther Arman
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lee Roth
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Merle Stein
- Department of Biology, Institute of Comparative Molecular Endocrinology, University of Ulm, 89081 Ulm, Germany
| | - Fadi Thalji
- Department of Orthopedics, Istishari Arab Hospital, Ramallah, Palestine
| | - Moien Kanaan
- Hereditary Research Laboratory and Department of Life Sciences, Bethlehem University, Bethlehem 0045866, Palestine
| | - Jan Tuckermann
- Department of Biology, Institute of Comparative Molecular Endocrinology, University of Ulm, 89081 Ulm, Germany
| | - Benjamin Geiger
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
44
|
Penna S, Villa A, Capo V. Autosomal recessive osteopetrosis: mechanisms and treatments. Dis Model Mech 2021; 14:261835. [PMID: 33970241 PMCID: PMC8188884 DOI: 10.1242/dmm.048940] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Autosomal recessive osteopetrosis (ARO) is a severe inherited bone disease characterized by defective osteoclast resorption or differentiation. Clinical manifestations include dense and brittle bones, anemia and progressive nerve compression, which hamper the quality of patients' lives and cause death in the first 10 years of age. This Review describes the pathogenesis of ARO and highlights the strengths and weaknesses of the current standard of care, namely hematopoietic stem cell transplantation (HSCT). Despite an improvement in the overall survival and outcomes of HSCT, transplant-related morbidity and the pre-existence of neurological symptoms significantly limit the success of HSCT, while the availability of human leukocyte antigen (HLA)-matched donors still remains an open issue. Novel therapeutic approaches are needed for ARO patients, especially for those that cannot benefit from HSCT. Here, we review preclinical and proof-of-concept studies, such as gene therapy, systematic administration of deficient protein, in utero HSCT and gene editing. Summary: Autosomal recessive osteopetrosis is a heterogeneous and rare bone disease for which effective treatments are still lacking for many patients. Here, we review the literature on clinical, preclinical and proof-of-concept studies.
Collapse
Affiliation(s)
- Sara Penna
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza 20900, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan 20090, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan 20090, Italy
| |
Collapse
|
45
|
Nedeva IR, Vitale M, Elson A, Hoyland JA, Bella J. Role of OSCAR Signaling in Osteoclastogenesis and Bone Disease. Front Cell Dev Biol 2021; 9:641162. [PMID: 33912557 PMCID: PMC8072347 DOI: 10.3389/fcell.2021.641162] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Formation of mature bone-resorbing cells through osteoclastogenesis is required for the continuous remodeling and repair of bone tissue. In aging and disease this process may become aberrant, resulting in excessive bone degradation and fragility fractures. Interaction of receptor-activator of nuclear factor-κB (RANK) with its ligand RANKL activates the main signaling pathway for osteoclastogenesis. However, compelling evidence indicates that this pathway may not be sufficient for the production of mature osteoclast cells and that co-stimulatory signals may be required for both the expression of osteoclast-specific genes and the activation of osteoclasts. Osteoclast-associated receptor (OSCAR), a regulator of osteoclast differentiation, provides one such co-stimulatory pathway. This review summarizes our present knowledge of osteoclastogenesis signaling and the role of OSCAR in the normal production of bone-resorbing cells and in bone disease. Understanding the signaling mechanism through this receptor and how it contributes to the production of mature osteoclasts may offer a more specific and targeted approach for pharmacological intervention against pathological bone resorption.
Collapse
Affiliation(s)
- Iva R Nedeva
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Mattia Vitale
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Jordi Bella
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
46
|
Ding H, Chen H, Lin H, Xu J, Huang Z, Li W, Hu J. Further understanding on osteopetrotic femoral fractures: a case report and literature review. BMC Surg 2021; 21:117. [PMID: 33676461 PMCID: PMC7937202 DOI: 10.1186/s12893-021-01107-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/16/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Osteopetrosis is a genetic disease characterized by defects in osteoclast formation and function. There were a few cases of subtrochanteric femur fractures treated with dynamic hip screw (DHS) in patients with osteopetrosis, but unfortunately the healing outcome was rather poor. CASE PRESENTATION We present our experience for treating a patient with intermediate autosomal recessive osteopetrosis (IRO) suffering from subtrochanteric femur fracture. In this case, we successfully used dynamic hip screw (DHS) internal fixation through meticulous preoperative planning and postoperative care, as well as application of surgical techniques. The patient displayed stable internal fixation with no limitation of activities during follow-up for 15 months. In addition to this case, a review of previous case reports showed an increasing number of case reports demonstrating that surgical treatment-related complications could be avoided preoperatively, intraoperatively, and postoperatively. CONCLUSION DHS for this patient, who suffered from subtrochanteric fractures with osteopetrosis, was successfully implemented. In the light of a comprehensive literature review, preoperative planning, surgical techniques, and postoperative rehabilitation care can significantly reduce the complications.
Collapse
Affiliation(s)
- Haiqi Ding
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Hongjiang Chen
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Haiming Lin
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Jiankun Xu
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Zhonglian Huang
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Wensheng Li
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Jun Hu
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People's Republic of China.
| |
Collapse
|
47
|
Even-Or E, Stepensky P. How we approach malignant infantile osteopetrosis. Pediatr Blood Cancer 2021; 68:e28841. [PMID: 33314591 DOI: 10.1002/pbc.28841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Abstract
Malignant infantile osteopetrosis (MIOP) is a rare hereditary disorder characterized by excessive bone overgrowth due to a defect in bone marrow resorption by osteoclasts. In most cases, hematopoietic stem cell transplantation (HSCT) may correct bone metabolism but the rapidly progressing nature of this condition necessitates early diagnosis and prompt treatment to minimize irreversible cranial nerve damage. The management of patients with MIOP presents many unique challenges. In this review, the clinical management of patients with MIOP is discussed, including diagnosis, preparation for HSCT and special transplant considerations, management of unique HSCT complications, and long-term follow-up.
Collapse
Affiliation(s)
- Ehud Even-Or
- Faculty of Medicine, Hebrew University of Jerusalem, Israel, Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel
| | - Polina Stepensky
- Faculty of Medicine, Hebrew University of Jerusalem, Israel, Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
48
|
Di Zanni E, Palagano E, Lagostena L, Strina D, Rehman A, Abinun M, De Somer L, Martire B, Brown J, Kariminejad A, Balasubramaniam S, Baynam G, Gurrieri F, Pisanti MA, De Maggio I, Abboud MR, Chiesa R, Burren CP, Villa A, Sobacchi C, Picollo A. Pathobiologic Mechanisms of Neurodegeneration in Osteopetrosis Derived From Structural and Functional Analysis of 14 ClC-7 Mutants. J Bone Miner Res 2021; 36:531-545. [PMID: 33125761 DOI: 10.1002/jbmr.4200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022]
Abstract
ClC-7 is a chloride-proton antiporter of the CLC protein family. In complex with its accessory protein Ostm-1, ClC-7 localizes to lysosomes and to the osteoclasts' ruffled border, where it plays a critical role in acidifying the resorption lacuna during bone resorption. Gene inactivation in mice causes severe osteopetrosis, neurodegeneration, and lysosomal storage disease. Mutations in the human CLCN7 gene are associated with diverse forms of osteopetrosis. The functional evaluation of ClC-7 variants might be informative with respect to their pathogenicity, but the cellular localization of the protein hampers this analysis. Here we investigated the functional effects of 13 CLCN7 mutations identified in 13 new patients with severe or mild osteopetrosis and a known ADO2 mutation. We mapped the mutated amino acid residues in the homology model of ClC-7 protein, assessed the lysosomal colocalization of ClC-7 mutants and Ostm1 through confocal microscopy, and performed patch-clamp recordings on plasma-membrane-targeted mutant ClC-7. Finally, we analyzed these results together with the patients' clinical features and suggested a correlation between the lack of ClC-7/Ostm1 in lysosomes and severe neurodegeneration. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eleonora Di Zanni
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica (CNR-IBF), Dulbecco Telethon Laboratory, Genoa, Italy
| | - Eleonora Palagano
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Laura Lagostena
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica (CNR-IBF), Dulbecco Telethon Laboratory, Genoa, Italy
| | - Dario Strina
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Asma Rehman
- UMB Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA
| | - Mario Abinun
- Department of Pediatric Immunology, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Lien De Somer
- Department of Pediatric Rheumatology, University Hospital Leuven, Leuven, Belgium
| | | | - Justin Brown
- Department of Pediatrics, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia.,Department of Pediatric Endocrinology and Diabetes, Monash Children's Hospital, Monash Health, Clayton, Australia
| | | | - Shanti Balasubramaniam
- Department of Metabolic Medicine and Rheumatology, Perth Children's Hospital, Perth, Australia
| | - Gareth Baynam
- Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Subiaco, Australia.,Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, Australia.,Telethon Kids Institute and Division of Pediatrics, School of Health and Medical Sciences, University of Western Australia, Perth, Australia.,Faculty of Medicine, Notre Dame University, Fremantle, Australia
| | | | - Maria A Pisanti
- Medical Genetics Unit, "Antonio Cardarelli" Hospital, Naples, Italy
| | - Ilaria De Maggio
- Medical Genetics Unit, "Antonio Cardarelli" Hospital, Naples, Italy
| | - Miguel R Abboud
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Robert Chiesa
- Bone Marrow Transplantation Department, Great Ormond Street Hospital for Children, London, UK
| | - Christine P Burren
- Department of Pediatric Endocrinology and Diabetes, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK.,Bristol Medical School, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Anna Villa
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy SR-Tiget, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Sobacchi
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Alessandra Picollo
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica (CNR-IBF), Dulbecco Telethon Laboratory, Genoa, Italy
| |
Collapse
|
49
|
Shalev M, Arman E, Stein M, Cohen-Sharir Y, Brumfeld V, Kapishnikov S, Royal I, Tuckermann J, Elson A. PTPRJ promotes osteoclast maturation and activity by inhibiting Cbl-mediated ubiquitination of NFATc1 in late osteoclastogenesis. FEBS J 2021; 288:4702-4723. [PMID: 33605542 DOI: 10.1111/febs.15778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/22/2021] [Accepted: 02/18/2021] [Indexed: 11/28/2022]
Abstract
Bone-resorbing osteoclasts (OCLs) are multinucleated phagocytes, whose central roles in regulating bone formation and homeostasis are critical for normal health and development. OCLs are produced from precursor monocytes in a multistage process that includes initial differentiation, cell-cell fusion, and subsequent functional and morphological maturation; the molecular regulation of osteoclastogenesis is not fully understood. Here, we identify the receptor-type protein tyrosine phosphatase PTPRJ as an essential regulator specifically of OCL maturation. Monocytes from PTPRJ-deficient (JKO) mice differentiate and fuse normally, but their maturation into functional OCLs and their ability to degrade bone are severely inhibited. In agreement, mice lacking PTPRJ throughout their bodies or only in OCLs exhibit increased bone mass due to reduced OCL-mediated bone resorption. We further show that PTPRJ promotes OCL maturation by dephosphorylating the M-CSF receptor (M-CSFR) and Cbl, thus reducing the ubiquitination and degradation of the key osteoclastogenic transcription factor NFATc1. Loss of PTPRJ increases ubiquitination of NFATc1 and reduces its amounts at later stages of osteoclastogenesis, thereby inhibiting OCL maturation. PTPRJ thus fulfills an essential and cell-autonomous role in promoting OCL maturation by balancing between the pro- and anti-osteoclastogenic activities of the M-CSFR and maintaining NFATc1 expression during late osteoclastogenesis.
Collapse
Affiliation(s)
- Moran Shalev
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Esther Arman
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Merle Stein
- Institute of Comparative Molecular Endocrinology, University of Ulm, Germany
| | - Yael Cohen-Sharir
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Vlad Brumfeld
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Kapishnikov
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Isabelle Royal
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, QC, Canada.,Institut du Cancer de Montréal, QC, Canada.,Department of Medicine, University of Montreal, QC, Canada
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Germany
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
50
|
Abstract
MicroRNAs (miRNAs) are a class of short RNA molecules that mediate the regulation of gene activity through interactions with target mRNAs and subsequent silencing of gene expression. It has become increasingly clear the miRNAs regulate many diverse aspects of bone biology, including bone formation and bone resorption processes. The role of miRNAs specifically in osteoclasts has been of recent investigation, due to clinical interest in discovering new paradigms to control excessive bone resorption, as is observed in multiple conditions including aging, estrogen deprivation, cancer metastases or glucocorticoid use. Therefore understanding the role that miRNAs play during osteoclastic differentiation is of critical importance. In this review, we highlight and discuss general aspects of miRNA function in osteoclasts, including exciting data demonstrating that miRNAs encapsulated in extracellular vesicles (EVs) either originating from osteoclasts, or signaling to osteoclast from divergent sites, have important roles in bone homeostasis.
Collapse
Affiliation(s)
- Megan M Weivoda
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Sun-Kyeong Lee
- Department of Medicine, UCONN Center on Aging, University Connecticut Health Center, Farmington, CT 06030, USA
| | - David G Monroe
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA.
| |
Collapse
|