1
|
Chen S, Zeng X, Wu M, Zhu J, Wu Y. Sodium Alginate Hydrogel Infusion of Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Vesicles and p38α Antagonistic Peptides in Myocardial Infarction Fibrosis Mitigation. J Am Heart Assoc 2025; 14:e036887. [PMID: 40178108 DOI: 10.1161/jaha.124.036887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/27/2024] [Indexed: 04/05/2025]
Abstract
BACKGROUND Myocardial fibrosis is a pathological hallmark of heart failure post infarction, emphasizing the need for innovative treatment strategies. This research assesses the antifibrotic potential of a sodium alginate (SA) hydrogel loaded with extracellular vesicles (EVs) from bone marrow mesenchymal stem cells and PAP (p38α antagonistic peptides), aiming to interfere with fibrosis-inducing pathways in myocardial tissue after infarction. METHODS We induced fibrosis in mouse cardiac fibroblasts through hypoxia and disrupted the Mapk14 gene to study its contribution to fibrosis. Mesenchymal stem cell-derived EVs, loaded with PAP, were encapsulated in the SA hydrogel (EVs-PAP@SA). The formulation was tested in vitro for its effect on fibrotic marker expression and cell behavior, and in vivo in a murine model of myocardial infarction for its therapeutic efficacy. RESULTS Map k14 silencing showed a decrease in the fibrotic response of cardiac fibroblasts. Treatment with the EVs-PAP@SA hydrogel notably reduced profibrotic signaling, increased cell proliferation and migration, and lowered apoptosis rates. The in vivo treatment with the hydrogel post myocardial infarction significantly diminished myocardial fibrosis and improved cardiac performance. CONCLUSIONS The study endorses the SA hydrogel as an effective vehicle for delivering mesenchymal stem cell-derived EVs and PAP to the heart post myocardial infarction, providing a novel approach for modulating myocardial fibrosis and promoting cardiac healing.
Collapse
Affiliation(s)
- Siyao Chen
- Department of Intensive Care Unit of Cardiovascular Surgery Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University Guangzhou China
| | - Xiaodong Zeng
- Department of Intensive Care Unit of Cardiovascular Surgery Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University Guangzhou China
| | - Meifeng Wu
- Department of Intensive Care Unit of Cardiovascular Surgery Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University Guangzhou China
| | - Jiade Zhu
- Department of Intensive Care Unit of Cardiovascular Surgery Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University Guangzhou China
| | - Yijin Wu
- Department of Intensive Care Unit of Cardiovascular Surgery Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University Guangzhou China
| |
Collapse
|
2
|
Zhang S, Wang H, Meng Y, Li M, Li Y, Ye X, Duan S, Xiao S, Lu H, Zhong K. Ethyl butyrate inhibits caudal fin regeneration in adult zebrafish by disrupting extracellular matrix remodeling. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107111. [PMID: 39366190 DOI: 10.1016/j.aquatox.2024.107111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Wound healing and tissue regeneration are influenced by a variety of factors. Adverse lifestyle habits, such as excessive alcohol consumption, delay wound healing and increase the risk of secondary infections. Ethyl butyrate is a common food additive widely used to enhance the aroma of alcoholic beverages. This additive is generally considered harmless to human health in both industrial and domestic settings. However, the ecotoxicity and its effects on wound healing have not been elucidated. In this study, we used zebrafish as the experimental animal, and the caudal fins were amputated to explore the effects of ethyl butyrate on wound healing and tissue regeneration. The effect of ethyl butyrate on blastema and bone regeneration and its impact on the transcriptional levels of regeneration-related genes and inflammation-related genes were evaluated. RNA-seq was conducted to determine the differentially expressed genes (DEGs) between the treatment and the control groups. KEGG and GO analysis was conducted to explore the functions of DEGs. Significantly enriched GO terms and KEGG pathways were identified to explore the molecular mechanism underlying the inhibition of zebrafish caudal fin regeneration by ethyl butyrate. The results demonstrated that ethyl butyrate significantly inhibited the regeneration of zebrafish caudal fins, including blastema and bone regeneration. Ethyl butyrate exposure significantly downregulated the expression of genes associated with bone and blastema regeneration and inflammation response. KEGG and GO functional analyses revealed that the DEGs were associated with significant enrichment of extracellular matrix-receptor interactions. Ethyl butyrate treatment downregulated the expression of most extracellular matrix-related genes. These findings indicate that ethyl butyrate potentially modulates pathways associated with the structure, adhesion, modification, and degradation of the extracellular matrix, thereby disrupting extracellular matrix remodeling, inhibiting wound inflammation, impairing blastema and bone regeneration and ultimately hindering caudal fin regeneration. In summary, the findings demonstrate that ethyl butyrate disrupts extracellular matrix remodeling and inhibits the regeneration of zebrafish caudal fins. These results provide valuable insights into the rational use of ethyl butyrate and further investigation of wound healing mechanisms.
Collapse
Affiliation(s)
- Sijie Zhang
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Shiyuan South Rd, Ganzhou, Jiangxi 341000, China
| | - Hao Wang
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Shiyuan South Rd, Ganzhou, Jiangxi 341000, China
| | - Yunlong Meng
- School of Medicine, Tongji University, Shanghai 200000, China
| | - Mijia Li
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Shiyuan South Rd, Ganzhou, Jiangxi 341000, China
| | - Yang Li
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Shiyuan South Rd, Ganzhou, Jiangxi 341000, China
| | - Xinhao Ye
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Shiyuan South Rd, Ganzhou, Jiangxi 341000, China
| | - Shiyi Duan
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Shiyuan South Rd, Ganzhou, Jiangxi 341000, China
| | - Shimei Xiao
- National Center of Quality Testing and Inspection for Tungsten and Rare Earth Products, Ganzhou 341000, China; Jiangxi Institute of Tungsten and Rare Earth, Ganzhou 341000, China
| | - Huiqiang Lu
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Shiyuan South Rd, Ganzhou, Jiangxi 341000, China
| | - Keyuan Zhong
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Shiyuan South Rd, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
3
|
Shen S, Lin Y, Sun J, Liu Y, Chen Y, Lu J. A New Tissue Engineering Strategy to Promote Tendon-bone Healing: Regulation of Osteogenic and Chondrogenic Differentiation of Tendon-derived Stem Cells. Orthop Surg 2024; 16:2311-2325. [PMID: 39043618 PMCID: PMC11456719 DOI: 10.1111/os.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
In the field of sports medicine, repair surgery for anterior cruciate ligament (ACL) and rotator cuff (RC) injuries are remarkably common. Despite the availability of relatively effective treatment modalities, outcomes often fall short of expectations. This comprehensive review aims to thoroughly examine current strategies employed to promote tendon-bone healing and analyze pertinent preclinical and clinical research. Amidst ongoing investigations, tendon-derived stem cells (TDSCs), which have comparatively limited prior exploration, have garnered increasing attention in the context of tendon-bone healing, emerging as a promising cell type for regenerative therapies. This review article delves into the potential of combining TDSCs with tissue engineering methods, with ACL reconstruction as the main focus. It comprehensively reviews relevant research on ACL and RC healing to address the issues of graft healing and bone tunnel integration. To optimize tendon-bone healing outcomes, our emphasis lies in not only reconstructing the original microstructure of the tendon-bone interface but also achieving proper bone tunnel integration, encompassing both cartilage and bone formation. In this endeavor, we thoroughly analyze the transcriptional and molecular regulatory variables governing TDSCs differentiation, incorporating a retrospective analysis utilizing single-cell sequencing, with the aim of unearthing relevant signaling pathways and processes. By presenting a novel strategy rooted in TDSCs-driven osteogenic and chondrogenic differentiation for tendon-bone healing, this study paves the way for potential future research avenues and promising therapeutic applications. It is anticipated that the findings herein will contribute to advancing the field of tendon-bone healing and foster the exploration of TDSCs as a viable option for regenerative therapies in the future.
Collapse
Affiliation(s)
- Sinuo Shen
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yucheng Lin
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Jiachen Sun
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yuanhao Liu
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yuzhi Chen
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Jun Lu
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| |
Collapse
|
4
|
Wei X, Xiong X, Wang P, Zhang S, Peng D. SIRT1-mediated deacetylation of FOXO3 enhances mitophagy and drives hormone resistance in endometrial cancer. Mol Med 2024; 30:147. [PMID: 39266959 PMCID: PMC11391609 DOI: 10.1186/s10020-024-00915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND The complex interplay between Sirtuin 1 (SIRT1) and FOXO3 in endometrial cancer (EC) remains understudied. This research aims to unravel the interactions of deacetylase SIRT1 and transcription factor FOXO3 in EC, focusing on their impact on mitophagy and hormone resistance. METHODS High-throughput sequencing, cell experiments, and bioinformatics tools were employed to investigate the roles and interactions of SIRT1 and FOXO3 in EC. Co-immunoprecipitation (Co-IP) assay was used to assess the interaction between SIRT1 and FOXO3 in RL95-2 cells. Functional assays were used to assess cell viability, proliferation, migration, invasion, apoptosis, and the expression of related genes and proteins. A mouse model of EC was established to evaluate tumor growth and hormone resistance under different interventions. Immunohistochemistry and TUNEL assays were used to assess protein expression and apoptosis in tumor tissues. RESULTS High-throughput transcriptome sequencing revealed a close association between SIRT1, FOXO3, and EC development. Co-IP showed a protein-protein interaction between SIRT1 and FOXO3. Overexpression of SIRT1 enhanced FOXO3 deacetylation and activity, promoting BNIP3 transcription and PINK1/Parkin-mediated mitophagy, which in turn promoted cell proliferation, migration, invasion, and inhibited apoptosis in vitro, as well as increased tumor growth and hormone resistance in vivo. These findings highlighted SIRT1 as an upstream regulator and potential therapeutic target in EC. CONCLUSION This study reveals a novel molecular mechanism underlying the functional relevance of SIRT1 in regulating mitophagy and hormone resistance through the deacetylation of FOXO3 in EC, thereby providing valuable insights for new therapeutic strategies.
Collapse
Affiliation(s)
- Xuehua Wei
- Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, No. 253, Industry Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China
| | - Xiangpeng Xiong
- Department of Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, 336000, China
| | - Pingping Wang
- Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, No. 253, Industry Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China
| | - Shufang Zhang
- Department of Gynecology, Southern University of Science and Technology Hospital, Shenzhen, 518000, China
| | - Dongxian Peng
- Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, No. 253, Industry Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
5
|
Yu XJ, Zhao YT, Abudouaini H, Zou P, Li TQ, Bai XF, Wang SX, Guan JB, Li MW, Wang XD, Wang YG, Hao DJ. A novel spherical GelMA-HAMA hydrogel encapsulating APET×2 polypeptide and CFIm25-targeting sgRNA for immune microenvironment modulation and nucleus pulposus regeneration in intervertebral discs. J Nanobiotechnology 2024; 22:556. [PMID: 39267105 PMCID: PMC11391743 DOI: 10.1186/s12951-024-02783-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/16/2024] [Indexed: 09/14/2024] Open
Abstract
METHODS Single-cell transcriptomics and high-throughput transcriptomics were used to screen factors significantly correlated with intervertebral disc degeneration (IDD). Expression changes of CFIm25 were determined via RT-qPCR and Western blot. NP cells were isolated from mouse intervertebral discs and induced to degrade with TNF-α and IL-1β. CFIm25 was knocked out using CRISPR-Cas9, and CFIm25 knockout and overexpressing nucleus pulposus (NP) cell lines were generated through lentiviral transfection. Proteoglycan expression, protein expression, inflammatory factor expression, cell viability, proliferation, migration, gene expression, and protein expression were analyzed using various assays (alcian blue staining, immunofluorescence, ELISA, CCK-8, EDU labeling, transwell migration, scratch assay, RT-qPCR, Western blot). The GelMA-HAMA hydrogel loaded with APET×2 polypeptide and sgRNA was designed, and its effects on NP regeneration were assessed through in vitro and mouse model experiments. The progression of IDD in mice was evaluated using X-ray, H&E staining, and Safranin O-Fast Green staining. Immunohistochemistry was performed to determine protein expression in NP tissue. Proteomic analysis combined with in vitro and in vivo experiments was conducted to elucidate the mechanisms of hydrogel action. RESULTS CFIm25 was upregulated in IDD NP tissue and significantly correlated with disease progression. Inhibition of CFIm25 improved NP cell degeneration, enhanced cell proliferation, and migration. The hydrogel effectively knocked down CFIm25 expression, improved NP cell degeneration, promoted cell proliferation and migration, and mitigated IDD progression in a mouse model. The hydrogel inhibited inflammatory factor expression (IL-6, iNOS, IL-1β, TNF-α) by targeting the p38/NF-κB signaling pathway, increased collagen COLII and proteoglycan Aggrecan expression, and suppressed NP degeneration-related factors (COX-2, MMP-3). CONCLUSION The study highlighted the crucial role of CFIm25 in IDD and introduced a promising therapeutic strategy using a porous spherical GelMA-HAMA hydrogel loaded with APET×2 polypeptide and sgRNA. This innovative approach offers new possibilities for treating degenerated intervertebral discs.
Collapse
Grants
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
Collapse
Affiliation(s)
- Xiao-Jun Yu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Yuan-Ting Zhao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Haimiti Abudouaini
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Peng Zou
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Tian-Qi Li
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Xiao-Fan Bai
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Shan-Xi Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Jian-Bin Guan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Meng-Wei Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Dong Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Ying-Guang Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China.
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China.
| | - Ding-Jun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China.
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Jiang D, Song X, Yang L, Zheng L, Niu K, Niu H. Screening of mRNA markers in early bovine tuberculosis blood samples. Front Vet Sci 2024; 11:1330693. [PMID: 38645645 PMCID: PMC11026862 DOI: 10.3389/fvets.2024.1330693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Bovine tuberculosis (bTB) is a chronic zoonotic disease caused by Mycobacterium bovis. A large number of cattle are infected with bTB every year, resulting in huge economic losses. How to control bTB is an important issue in the current global livestock economy. In this study, the original transcriptome sequences related to this study were obtained from the dataset GSE192537 by searching the Gene Expression Omnibus (GEO) database. Our differential gene analysis showed that there were obvious biological activities related to immune activation and immune regulation in the early stage of bTB. Immune-related biological processes were more active in the early stage of bTB than in the late. There were obvious immune activation and immune cell recruitment in the early stage of bTB. Regulations in immune receptors are associated with pathophysiological processes of the early stage of bTB. A gene module consisting of 236 genes significantly related to the early stage of bTB was obtained by weighted gene co-expression network analysis, and 18 hub genes were further identified as potential biomarkers or therapeutic targets. Finally, by random forest algorithm and logistic regression modeling, FCRL1 was identified as a representative mRNA marker in early bTB blood. FCRL1 has the potential to be a diagnostic biomarker in early bTB.
Collapse
Affiliation(s)
- Dongfeng Jiang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economics, Zhengzhou, China
| | - Xiaoyi Song
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economics, Zhengzhou, China
| | - Liyu Yang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economics, Zhengzhou, China
| | - Li Zheng
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economics, Zhengzhou, China
| | - Kaifeng Niu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economics, Zhengzhou, China
| | - Hui Niu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economics, Zhengzhou, China
- Henan Province Animal Reproductive Control Engineering Technology Research Center, Zhengzhou, China
| |
Collapse
|
7
|
Ding L, Yang Z, Sun B. Understanding blaNDM-1 gene regulation in CRKP infections: toward novel antimicrobial strategies for hospital-acquired pneumonia. Mol Med 2024; 30:29. [PMID: 38395744 PMCID: PMC10893750 DOI: 10.1186/s10020-024-00794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The escalating challenge of Carbapenem-resistant Klebsiella pneumoniae (CRKP) in hospital-acquired pneumonia (HAP) is closely linked to the blaNDM-1 gene. This study explores the regulatory mechanisms of blaNDM-1 expression and aims to enhance antibacterial tactics to counteract the spread and infection of resistant bacteria. METHODS KP and CRKP strains were isolated from HAP patients' blood samples. Transcriptomic sequencing (RNA-seq) identified significant upregulation of blaNDM-1 gene expression in CRKP strains. Bioinformatics analysis revealed blaNDM-1 gene involvement in beta-lactam resistance pathways. CRISPR-Cas9 was used to delete the blaNDM-1 gene, restoring sensitivity. In vitro and in vivo experiments demonstrated enhanced efficacy with Imipenem and Thanatin or Subatan combination therapy. RESULTS KP and CRKP strains were isolated with significant upregulation of blaNDM-1 in CRKP strains identified by RNA-seq. The Beta-lactam resistance pathway was implicated in bioinformatics analysis. Knockout of blaNDM-1 reinstated sensitivity in CRKP strains. Further, co-treatment with Imipenem, Thanatin, or Subactam markedly improved antimicrobial effectiveness. CONCLUSION Silencing blaNDM-1 in CRKP strains from HAP patients weakens their Carbapenem resistance and optimizes antibacterial strategies. These results provide new theoretical insights and practical methods for treating resistant bacterial infections.
Collapse
Affiliation(s)
- Liang Ding
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu Province, China
| | - Zheng Yang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu Province, China
| | - Baier Sun
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
8
|
Gu Y, Hu Y, Zhang H, Wang S, Xu K, Su J. Single-cell RNA sequencing in osteoarthritis. Cell Prolif 2023; 56:e13517. [PMID: 37317049 PMCID: PMC10693192 DOI: 10.1111/cpr.13517] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/30/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
Osteoarthritis is a progressive and heterogeneous joint disease with complex pathogenesis. The various phenotypes associated with each patient suggest that better subgrouping of tissues associated with genotypes in different phases of osteoarthritis may provide new insights into the onset and progression of the disease. Recently, single-cell RNA sequencing was used to describe osteoarthritis pathogenesis on a high-resolution view surpassing traditional technologies. Herein, this review summarizes the microstructural changes in articular cartilage, meniscus, synovium and subchondral bone that are mainly due to crosstalk amongst chondrocytes, osteoblasts, fibroblasts and endothelial cells during osteoarthritis progression. Next, we focus on the promising targets discovered by single-cell RNA sequencing and its potential applications in target drugs and tissue engineering. Additionally, the limited amount of research on the evaluation of bone-related biomaterials is reviewed. Based on the pre-clinical findings, we elaborate on the potential clinical values of single-cell RNA sequencing for the therapeutic strategies of osteoarthritis. Finally, a perspective on the future development of patient-centred medicine for osteoarthritis therapy combining other single-cell multi-omics technologies is discussed. This review will provide new insights into osteoarthritis pathogenesis on a cellular level and the field of applications of single-cell RNA sequencing in personalized therapeutics for osteoarthritis in the future.
Collapse
Affiliation(s)
- Yuyuan Gu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- School of MedicineShanghai UniversityShanghaiChina
| | - Yan Hu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
| | - Hao Zhang
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
| | - Sicheng Wang
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- Department of OrthopedicsShanghai Zhongye HospitalShanghaiChina
| | - Ke Xu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- Wenzhou Institute of Shanghai UniversityWenzhouChina
| | - Jiacan Su
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
| |
Collapse
|
9
|
Lu W, Yang F, Meng Y, An J, Hu B, Jian S, Yang G, Lu H, Wen C. Immunotoxicity and transcriptome analysis of zebrafish embryos exposure to Nitazoxanide. FISH & SHELLFISH IMMUNOLOGY 2023; 141:108977. [PMID: 37579811 DOI: 10.1016/j.fsi.2023.108977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
Nitazoxanide (NTZ) is a broad-spectrum immunomodulatory drug, and little information is about the immunotoxicity of aquatic organisms induced by NTZ. In the present study, reduced body length and decreased yolk sac absorption in the NTZ-treated group were observed. Meanwhile, the number of innate immune cells and adaptive immune cells was substantially reduced upon NTZ exposure, and the migration and retention of macrophages and neutrophils in the injured area were inhibited. Following NTZ stimulation, oxidative stress levels in the zebrafish increased obviously. Mechanistically, RNA-seq, a high-throughput method, was performed to analyze the global expression of differentially expressed genes (DEGs) in zebrafish embryos treated with NTZ. 531 DEGs were identified by comparative transcriptome analysis, including 121 up-regulated and 420 down-regulated genes in zebrafish embryos after NTZ exposure. The transcriptome sequences were further subjected to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) and analysis, showing phototransduction and metabolic pathway, respectively, and were most enriched. In addition, some immune-related genes were inhibited after NTZ exposure. RNA-seq results confirmed by qRT-PCR were used to verify the expression of the 6 selected genes. The other immune-related genes such as two pro-inflammatory cytokines (IL-1β, tnfα) and two chemokines (CXCL8b.3, CXCL-c1c) were further confirmed and were differentially regulated after NTZ exposure. In summary, NTZ exposure could lead to immunotoxicity and increased ROS in zebrafish embryos, this study provides valuable information for future elucidating the molecular mechanism of exogenous stimuli-induced immunotoxicity in aquatic ecosystems.
Collapse
Affiliation(s)
- Wuting Lu
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Fanhua Yang
- College of Food Science and Technology, Nanchang University, Nanchang, 330031, China
| | - Yunlong Meng
- Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jinhua An
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Baoqing Hu
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Shaoqing Jian
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Gang Yang
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, Ji'an, 343009, China.
| | - Chungen Wen
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China.
| |
Collapse
|
10
|
Rashid S, Wilson SG, Zhu K, Walsh JP, Xu J, Mullin BH. Identification of Differentially Expressed Genes and Molecular Pathways Involved in Osteoclastogenesis Using RNA-seq. Genes (Basel) 2023; 14:genes14040916. [PMID: 37107674 PMCID: PMC10137460 DOI: 10.3390/genes14040916] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Osteoporosis is a disease that is characterised by reduced bone mineral density (BMD) and can be exacerbated by the excessive bone resorption of osteoclasts (OCs). Bioinformatic methods, including functional enrichment and network analysis, can provide information about the underlying molecular mechanisms that participate in the progression of osteoporosis. In this study, we harvested human OC-like cells differentiated in culture and their precursor peripheral blood mononuclear cells (PBMCs) and characterised the transcriptome of the two cell types using RNA-sequencing in order to identify differentially expressed genes. Differential gene expression analysis was performed in RStudio using the edgeR package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to identify enriched GO terms and signalling pathways, with inter-connected regions characterised using protein-protein interaction analysis. In this study, we identified 3201 differentially expressed genes using a 5% false discovery rate; 1834 genes were upregulated, whereas 1367 genes were downregulated. We confirmed a significant upregulation of several well-established OC genes including CTSK, DCSTAMP, ACP5, MMP9, ITGB3, and ATP6V0D2. The GO analysis suggested that upregulated genes are involved in cell division, cell migration, and cell adhesion, while the KEGG pathway analysis highlighted oxidative phosphorylation, glycolysis and gluconeogenesis, lysosome, and focal adhesion pathways. This study provides new information about changes in gene expression and highlights key biological pathways involved in osteoclastogenesis.
Collapse
Affiliation(s)
- Sarah Rashid
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6907, Australia
| | - Scott G Wilson
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6907, Australia
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Kun Zhu
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- Medical School, University of Western Australia, Perth, WA 6907, Australia
| | - John P Walsh
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- Medical School, University of Western Australia, Perth, WA 6907, Australia
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6907, Australia
| | - Benjamin H Mullin
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6907, Australia
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
| |
Collapse
|
11
|
Sun X, Jiao X, Wang Z, Ma J, Wang T, Zhu D, Li H, Tang L, Li H, Wang C, Li Y, Xu C, Wang J, Gan Y, Jin W. Polydopamine-coated 3D-printed β-tricalcium phosphate scaffolds to promote the adhesion and osteogenesis of BMSCs for bone-defect repair: mRNA transcriptomic sequencing analysis. J Mater Chem B 2023; 11:1725-1738. [PMID: 36723218 DOI: 10.1039/d2tb02280j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cellular bioactivity and tissue regeneration can be affected by coatings on tissue-engineered scaffolds. Using mussel-inspired polydopamine (PDA) is a convenient and effective approach to surface modification. Therefore, 3D-printed β-tricalcium phosphate (β-TCP) scaffolds were coated with PDA in this study. The effects of the scaffolds on the adhesion and osteogenic differentiation of seeded bone marrow mesenchymal stem cells (BMSCs) in vitro and on new-bone formation in vivo were investigated. The potential mechanisms and related differential genes were assessed using mRNA sequencing. It was seen that PDA coating increased the surface roughness of the 3D-printed β-TCP scaffolds. Furthermore, it prompted the adhesion and osteogenic differentiation of seeded BMSCs. mRNA sequencing analysis revealed that PDA coating might affect the osteogenic differentiation of BMSCs through the calcium signaling pathway, Wnt signaling pathway, TGF-beta signaling pathway, etc. Moreover, the expression of osteogenesis-related genes, such as R-spondin 1 and chemokine c-c-motif ligand 2, was increased. Finally, both the 3D-printed β-TCP scaffolds and PDA-coated scaffolds could significantly accelerate the formation of new bone in critical-size calvarial defects in rats compared with the control group; and the new bone formation was obviously higher in the PDA-coated scaffolds than in β-TCP scaffolds. In summary, 3D-printed β-TCP scaffolds with a PDA coating can improve the physicochemical characteristics and cellular bioactivity of the scaffold surface for bone regeneration. Potential differential genes were identified, which can be used as a foundation for further research.
Collapse
Affiliation(s)
- Xin Sun
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. No. 639 Zhizaoju Road, Shanghai 200001, China.
| | - Xin Jiao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. No. 639 Zhizaoju Road, Shanghai 200001, China.
| | - Zengguang Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. No. 639 Zhizaoju Road, Shanghai 200001, China.
| | - Jie Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. No. 639 Zhizaoju Road, Shanghai 200001, China.
| | - Tianchang Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. No. 639 Zhizaoju Road, Shanghai 200001, China.
| | - Dan Zhu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. No. 280 Mohe Road, Shanghai 201999, China
| | - Han Li
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University. No. 30 Shuangqing Road, Beijing 100084, China
| | - Liang Tang
- Department of Orthopedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine. No. 1111 Xianxia Road, Shanghai 200336, China
| | - Heyue Li
- Department of Obstetrics and Gynecology, Shanghai Seventh People's Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine. No. 358 Datong Road, Shanghai 200137, China
| | - Changde Wang
- Department of Geriatric Orthopeadics, Shenzhen Pingle Orthopaedic Hospital. No. 15 Lanjin 4th Road, Shenzhen 518000, China
| | - Yiming Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. No. 639 Zhizaoju Road, Shanghai 200001, China.
| | - Chen Xu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. No. 639 Zhizaoju Road, Shanghai 200001, China.
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. No. 639 Zhizaoju Road, Shanghai 200001, China.
| | - Yaogai Gan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. No. 639 Zhizaoju Road, Shanghai 200001, China.
| | - Wenjie Jin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. No. 639 Zhizaoju Road, Shanghai 200001, China.
| |
Collapse
|
12
|
Li H, Liu S, Miao C, Lv Y, Hu Y. Integration of metabolomics and transcriptomics provides insights into enhanced osteogenesis in Ano5Cys360Tyr knock-in mouse model. Front Endocrinol (Lausanne) 2023; 14:1117111. [PMID: 36742392 PMCID: PMC9895949 DOI: 10.3389/fendo.2023.1117111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Gnathodiaphyseal dysplasia (GDD; OMIM#166260) is a rare autosomal dominant disorder characterized by diaphyseal sclerosis of tubular bones and cemento-osseous lesions in mandibles. GDD is caused by point mutations in the ANO5 gene. However, the mechanisms underlying GDD have not been disclosed. We previously generated the first knock-in mouse model for GDD expressing a human mutation (p.Cys360Tyr) in ANO5 and homozygous Ano5 knock-in (Ano5KI/KI ) mice exhibited representative traits of human GDD especially including enhanced osteogenesis. METHODS Metabolomics and transcriptomics analyses were conducted for wildtype (Ano5+/+ ) and Ano5KI/KI mature mouse calvarial osteoblasts (mCOBs) grown in osteogenic cultures for 14 days to identify differential intracellular metabolites and genes involved in GDD. Subsequently, related differential genes were validated by qRT-PCR. Cell proliferation was confirmed by CCK8 assay and calcium content in mineral nodules was detected using SEM-EDS. RESULTS Metabolomics identified 42 differential metabolites that are primarily involved in amino acid and pyrimidine metabolism, and endocrine and other factor-regulated calcium reabsorption. Concomitantly, transcriptomic analysis revealed 407 differentially expressed genes in Ano5KI/KI osteoblasts compared with wildtype. Gene ontology and pathway analysis indicated that Ano5Cys360Tyr mutation considerably promoted cell cycle progression and perturbed calcium signaling pathway, which were confirmed by validated experiments. qRT-PCR and CCK-8 assays manifested that proliferation of Ano5KI/KI mCOBs was enhanced and the expression of cell cycle regulating genes (Mki67, Ccnb1, and Ccna2) was increased. In addition, SEM-EDS demonstrated that Ano5KI/KI mCOBs developed higher calcium contents in mineral nodules than Ano5+/+ mCOBs, while some calcium-related genes (Cacna1, Slc8a1, and Cyp27b1) were significantly up-regulated. Furthermore, osteocalcin which has been proved to be an osteoblast-derived metabolic hormone was upregulated in Ano5KI/KI osteoblast cultures. DISCUSSION Our data demonstrated that the Ano5Cys360Tyr mutation could affect the metabolism of osteoblasts, leading to unwonted calcium homeostasis and cellular proliferation that can contribute to the underlying pathogenesis of GDD disorders.
Collapse
|
13
|
Wang K, Zhao C, Xiang S, Duan K, Chen X, Guo X, Sahu SK. An optimized FACS-free single-nucleus RNA sequencing (snRNA-seq) method for plant science research. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111535. [PMID: 36400127 DOI: 10.1016/j.plantsci.2022.111535] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Recently, single-cell RNA sequencing (scRNA-seq) provides unprecedented power for accurately understanding gene expression regulatory mechanisms. However, scRNA-seq studies have limitations in plants, due to difficulty in protoplast isolation that requires enzymatic digestion of the cell walls from various plant tissues. Therefore, to overcome this problem, we developed a nuclei isolation approach that does not rely on Fluorescence Activated Cell Sorting (FACS). We validated the robustness of the FACS-free single-nucleus RNA sequencing (snRNA-seq) methodology in mature Arabidopsis plant tissue by comparing it to scRNA-seq results based on protoplasts extracted from the same batch of leaf materials. Sequencing results demonstrated the high quality of snRNA-seq data, as well as its utility in cell type classification and marker gene identification. This approach also showed several advantages, including the ability to use frozen samples, taking less suspension preparation time, and reducing biased cellular coverage and dissociation-induced transcriptional artifacts. Surprisingly, snRNA-seq detected two epidermal pavement cell clusters, while scRNA-seq only had one. Furthermore, we hypothesized that these two epidermal cells represent the top and lower epidermis based on differences in expression patterns of cluster-specific expressed genes. In summary, this study has advanced the application of snRNA-seq in Arabidopsis leaves and confirmed the advantages of snRNA-seq in plant research.
Collapse
Affiliation(s)
- Kaimeng Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China; BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Caiyao Zhao
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Sunhuan Xiang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kunyu Duan
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China; BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaoli Chen
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China; BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xing Guo
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
14
|
Shen M, Wang L, Gao Y, Feng L, Xu C, Li S, Wang X, Wu Y, Guo Y, Pei G. 3D bioprinting of in situ vascularized tissue engineered bone for repairing large segmental bone defects. Mater Today Bio 2022; 16:100382. [PMID: 36033373 PMCID: PMC9403505 DOI: 10.1016/j.mtbio.2022.100382] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/18/2022] Open
Abstract
Large bone defects remain an unsolved clinical challenge because of the lack of effective vascularization in newly formed bone tissue. 3D bioprinting is a fabrication technology with the potential to create vascularized bone grafts with biological activity for repairing bone defects. In this study, vascular endothelial cells laden with thermosensitive bio-ink were bioprinted in situ on the inner surfaces of interconnected tubular channels of bone mesenchymal stem cell-laden 3D-bioprinted scaffolds. Endothelial cells exhibited a more uniform distribution and greater seeding efficiency throughout the channels. In vitro, the in situ bioprinted endothelial cells can form a vascular network through proliferation and migration. The in situ vascularized tissue-engineered bone also resulted in a coupling effect between angiogenesis and osteogenesis. Moreover, RNA sequencing analysis revealed that the expression of genes related to osteogenesis and angiogenesis is upregulated in biological processes. The in vivo 3D-bioprinted in situ vascularized scaffolds exhibited excellent performance in promoting new bone formation in rat calvarial critical-sized defect models. Consequently, in situ vascularized tissue-engineered bones constructed using 3D bioprinting technology have a potential of being used as bone grafts for repairing large bone defects, with a possible clinical application in the future. 3D bioprinting was used to fabricate in situ vascularized tissue engineered bone. In situ bioprinted endothelial cells exhibited uniform distribution and greater seeding efficiency. 3D-bioprinted scaffold produced coupling between angiogenesis and osteogenesis.
Collapse
Key Words
- 3D bioprinted BMSCs-laden GelMA hydrogel scaffold, (GB)
- 3D bioprinting
- 3D dual-extrusion bioprinted BMSCs-laden GelMA hydrogel and RAOECs-laden 3P hydrogel scaffold, (GB-3PR)
- 3D dual-extrusion bioprinted GelMA hydrogel and RAOECs-laden 3P hydrogel scaffold, (G-3PR)
- 3D printed GelMA hydrogel scaffold, (G)
- 4′,6-diamidino-2-phenylindole, (DAPI)
- Alizarin red S, (ARS)
- Alkaline phosphatase, (ALP)
- Dulbecco's modified Eagle's medium, (DMEM)
- Dulbecco's phosphate-buffered saline, (DPBS)
- Fourier-transform infrared, (FTIR)
- In situ vascularization
- Large segmental bone defects
- PLA-PEG-PLA, (3P)
- RNA sequencing Analysis
- Tissue engineering
- analysis of variance, (ANOVA)
- bone mesenchymal stem cells, (BMSCs)
- bone mineral density, (BMD)
- bone volume to tissue volume, (BV/TV)
- complementary DNA, (cDNA)
- differentially expressed genes, (DEGs)
- endothelial cells, (ECs)
- ethylenediamine tetraacetic acid, (EDTA)
- extracellular matrix, (ECM)
- fetal bovine serum, (FBS)
- gelatin methacryloyl, (GelMA)
- gene ontology, (GO)
- glyceraldehyde-3-phosphate dehydrogenase, (GAPDH)
- green fluorescent protein, (GFP)
- hematoxylin and eosin, (H&E)
- lithium phenyl-2,4,6-trimethylbenzoylphosphinate, (LAP)
- micro-computed tomography, (micro-CT)
- nuclear magnetic resonance, (NMR)
- optical density, (OD)
- paraformaldehyde, (PFA)
- phosphate-buffered saline, (PBS)
- polyethylene glycol, (PEG)
- polylactic acid, (PLA)
- polyvinylidene fluoride, (PVDF)
- radioimmunoprecipitation assay, (RIPA)
- rat aortic endothelial cells, (RAOECs)
- real-time polymerase chain reaction, (RT-PCR)
- standard deviation, (SD)
- tissue-engineered bone, (TEB)
- tris buffered saline with Tween-20, (TBST)
Collapse
Affiliation(s)
- Mingkui Shen
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lulu Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yi Gao
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li Feng
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chuangye Xu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sijing Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaohu Wang
- Department of Orthopedics, Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Yulan Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yao Guo
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
- Corresponding author.
| | - Guoxian Pei
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
- Corresponding author.
| |
Collapse
|
15
|
Chlebek C, Moore JA, Ross FP, van der Meulen MCH. Molecular Identification of Spatially Distinct Anabolic Responses to Mechanical Loading in Murine Cortical Bone. J Bone Miner Res 2022; 37:2277-2287. [PMID: 36054133 DOI: 10.1002/jbmr.4686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/05/2022] [Accepted: 08/20/2022] [Indexed: 11/08/2022]
Abstract
Osteoporosis affects over 200 million women worldwide, one-third of whom are predicted to suffer from an osteoporotic fracture in their lifetime. The most promising anabolic drugs involve administration of expensive antibodies. Because mechanical loading stimulates bone formation, our current data, using a mouse model, replicates the anabolic effects of loading in humans and may identify novel pathways amenable to oral treatment. Murine tibial compression produces axially varying deformations along the cortical bone, inducing highest strains at the mid-diaphysis and lowest at the metaphyseal shell. To test the hypothesis that load-induced transcriptomic responses at different axial locations of cortical bone would vary as a function of strain magnitude, we loaded the left tibias of 10-week-old female C57Bl/6 mice in vivo in compression, with contralateral limbs as controls. Animals were euthanized at 1, 3, or 24 hours post-loading or loaded for 1 week (n = 4-5/group). Bone marrow and cancellous bone were removed, cortical bone was segmented into the metaphyseal shell, proximal diaphysis, and mid-diaphysis, and load-induced differential gene expression and enriched biological processes were examined for the three segments. At each time point, the mid-diaphysis (highest strain) had the greatest transcriptomic response. Similarly, biological processes regulating bone formation and turnover increased earlier and to the greatest extent at the mid-diaphysis. Higher strain induced greater levels of osteoblast and osteocyte genes, whereas expression was lower in osteoclasts. Among the top differentially expressed genes at 24-hours post-loading, 17 had known functions in bone biology, of which 12 were present only in osteoblasts, 3 exclusively in osteoclasts, and 2 were present in both cell types. Based on these results, we conclude that murine tibial loading induces spatially unique transcriptomic responses correlating with strain magnitude in cortical bone. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Carolyn Chlebek
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jacob A Moore
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | | | - Marjolein C H van der Meulen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.,Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
16
|
Jin J, Jiang J, Wu Z, Huang R, Sun M, Bao W. Transcriptomic and chromatin accessibility dynamics of porcine alveolar macrophages in exposure to fumonisin B1. Front Cell Dev Biol 2022; 10:876247. [PMID: 36330331 PMCID: PMC9623295 DOI: 10.3389/fcell.2022.876247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jian Jin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiayao Jiang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhengchang Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ruihua Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mingan Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- *Correspondence: Wenbin Bao,
| |
Collapse
|
17
|
Song H, Li Y, Wang Z, Duan Z, Wang Y, Yang E, Que Q, Chen X, Li P. Transcriptome profiling of Toona ciliata young stems in response to Hypsipyla robusta Moore. FRONTIERS IN PLANT SCIENCE 2022; 13:950945. [PMID: 36105698 PMCID: PMC9465623 DOI: 10.3389/fpls.2022.950945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Toona ciliata is a traditional woody plant that can be used as a medicinal material in China. The extracts of its roots, stems, leaves, and flowers all have a wide range of bioactive compounds. However, T. ciliata has been facing an unresolved pest problem caused by Hypsipyla robusta Moore (HRM), which seriously affects its growth and development. In this study, the expression level of TcMYB3 gene reached the maximum (28-fold) at 12 h and transcriptome sequencing of young stems eaten by HRM for 0, 3, 12, and 21 h were performed. A large number of differentially expressed genes (DEGs) were identified including jointly up-regulated genes (263) and down-regulated genes (378). JA synthesis and signaling transduction, terpene biosynthesis, and MAPKs signaling pathway were analyzed in depth and found that TcOPR3, TcJAR1, TcJAZs, and TcTPS9 genes possessed anti-insect potential. Moreover, MYB and ERF transcription factor (TF) families were significantly strengthened to the point that they may participate in induced defense mechanisms in T. ciliata. These data not only provide insights into the molecular mechanisms in resistance of T. ciliata to HRM but also helps to explore the new biocontrol strategies against insects in eco-friendly woody plants.
Collapse
Affiliation(s)
- Huiyun Song
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Yue Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Zhi Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Zhihao Duan
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Yueyang Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Endian Yang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Qingmin Que
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Xiaoyang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Pei Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Vitamin K2 Improves Osteogenic Differentiation by Inhibiting STAT1 via the Bcl-6 and IL-6/JAK in C3H10 T1/2 Clone 8 Cells. Nutrients 2022; 14:nu14142934. [PMID: 35889891 PMCID: PMC9316273 DOI: 10.3390/nu14142934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 01/27/2023] Open
Abstract
Osteogenic activity of vitamin K2 (VK2), a small molecular nutrient, has been suggested. However, the underlying mechanisms have not been fully elucidated. Therefore, this study aimed to explore the mechanisms by which VK2 promotes osteogenic differentiation. The effects of VK2 on osteogenic differentiation indicators were determined in C3H10 T1/2 clone 8 cells. The RNA-seq analysis was used to explore the hypothesis that VK2 promotes osteogenic differentiation. Small interfering RNA (siRNA) assay and plasmid transfection assay were used to determine the potential role of VK2 in the modulation of Bcl-6/STAT axis and IL-6/JAK/STAT signaling pathway. VK2 significantly increased alkaline phosphatase (ALP) activity, ALP, osteocalcin (OCN), and RUNX2 abundance, and RUNX2 protein expression. RNA-seq analysis showed that there were 314 differentially expressed genes (DEGs) upregulated and 1348 DEGs downregulated by VK2. PPI analysis determined the top 10 hub genes upregulated or downregulated by VK2. Overexpression of Bcl-6 increased osteogenic differentiation and decreased expression of STAT1. Administration with VK2 restored the inhibition by siBcl-6 in osteogenic differentiation. Knockdown of IL-6 decreased the mRNA levels of genes associated with the JAK/STAT signaling pathway, and increased markers of osteoblast differentiation. Furthermore, treatment with VK2 improved inhibition in osteogenic differentiation and decreased enhancement of JAK/STAT signaling pathway related genes by overexpression of IL-6. Our study suggests that VK2 could improve osteogenic differentiation via the Bcl-6/STAT axis and IL-6/JAK/STAT signaling pathway.
Collapse
|
19
|
Qin Y, Xu Y, Zhang Y, Gu M, Cai W, Bai Z, Zhang X, Chen R, Sun Y, Wu Y, Wang Z. Transcriptomics analysis of cashmere fineness functional genes. Anim Biotechnol 2022:1-11. [PMID: 35253626 DOI: 10.1080/10495398.2022.2042306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Liaoning cashmere goat (LCG) is a famous cashmere goat breed in China. Cashmere fineness, as an important index to evaluate cashmere quality, is also one of the problems to be improved for Liaoning cashmere goats. Transcriptome studies all mRNA transcribed by a specific tissue or cell in a certain period. It is a key link in the study of gene expression regulation. It plays an important role in the analysis of biological growth and disease. Transcriptome is spatio-temporal specific, that is, gene expression varies in different tissues or at different times. Three coarser and three fine LCG skin samples were sequenced by RNA-seq technology, and a total of 427 differentially expressed genes were obtained, including 291 up-regulated genes and 136 down-regulated genes. In the experiment, we screened out 16 genes that had significant differences in the expression of coarse and fine cashmere of Liaoning cashmere goats, so it was inferred that these 16 genes might have regulatory effects on cashmere fineness. Moreover, GO gene set enrichment analysis revealed that differential genes mainly consist of immune response, MHC protein complex, Heme binding and other pathways. KEGG analysis showed that transplant-versus-host disease and allograft rejection were the main pathways of differential genes.
Collapse
Affiliation(s)
- Yuting Qin
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanan Xu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yu Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ming Gu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Weidong Cai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhixian Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xinjiang Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Rui Chen
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yinggang Sun
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanzhi Wu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zeying Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
20
|
Ji C, Qiu M, Ruan H, Li C, Cheng L, Wang J, Li C, Qi J, Cui W, Deng L. Transcriptome Analysis Revealed the Symbiosis Niche of 3D Scaffolds to Accelerate Bone Defect Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105194. [PMID: 35040587 PMCID: PMC8922091 DOI: 10.1002/advs.202105194] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/17/2021] [Indexed: 05/04/2023]
Abstract
Three dimension (3D) printed scaffolds have been shown to be superior in promoting tissue repair, but the cell-level specific regulatory network activated by 3D printing scaffolds with different material components to form a symbiosis niche have not been systematically revealed. Here, three typical 3D printed scaffolds, including natural polymer hydrogel (gelatin-methacryloyl, GelMA), synthetic polymer material (polycaprolactone, PCL), and bioceramic (β-tricalcium phosphate, β-TCP), are fabricated to explore the regulating effect of the symbiotic microenvironment during bone healing. Enrichment analysis show that hydrogel promotes tissue regeneration and reconstruction by improving blood vessel generation by enhancing oxygen transport and red blood cell development. The PCL scaffold regulates cell proliferation and differentiation by promoting cellular senescence, cell cycle and deoxyribonucleic acid (DNA) replication pathways, accelerating the process of endochondral ossification, and the formation of callus. The β-TCP scaffold can specifically enhance the expression of osteoclast differentiation and extracellular space pathway genes to promote the differentiation of osteoclasts and promote the process of bone remodeling. In these processes, specific biomaterial properties can be used to guide cell behavior and regulate molecular network in the symbiotic microenvironment to reduce the barriers of regeneration and repair.
Collapse
Affiliation(s)
- Ce Ji
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Minglong Qiu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Huitong Ruan
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Cuidi Li
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Liang Cheng
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Juan Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Changwei Li
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Jin Qi
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Lianfu Deng
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| |
Collapse
|
21
|
Zhang Y, Wang J, Yu C, Xia K, Yang B, Zhang Y, Ying L, Wang C, Huang X, Chen Q, Shen L, Li F, Liang C. Advances in single-cell sequencing and its application to musculoskeletal system research. Cell Prolif 2022; 55:e13161. [PMID: 34888976 PMCID: PMC8780907 DOI: 10.1111/cpr.13161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/30/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022] Open
Abstract
In recent years, single-cell sequencing (SCS) technologies have continued to advance with improved operating procedures and reduced cost, leading to increasing practical adoption among researchers. These emerging technologies have superior abilities to analyse cell heterogeneity at a single-cell level, which have elevated multi-omics research to a higher level. In some fields of research, application of SCS has enabled many valuable discoveries, and musculoskeletal system offers typical examples. This article reviews some major scientific issues and recent advances in musculoskeletal system. In addition, combined with SCS technologies, the research of cell or tissue heterogeneity in limb development and various musculoskeletal system clinical diseases also provides new possibilities for treatment strategies. Finally, this article discusses the challenges and future development potential of SCS and recommends the direction of future applications of SCS to musculoskeletal medicine.
Collapse
Affiliation(s)
- Yongxiang Zhang
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Jingkai Wang
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Chao Yu
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Kaishun Xia
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Biao Yang
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Yuang Zhang
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Liwei Ying
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Chenggui Wang
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Xianpeng Huang
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Qixin Chen
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Li Shen
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouChina
- Hangzhou Innovation CenterZhejiang UniversityHangzhouChina
| | - Fangcai Li
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Chengzhen Liang
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
22
|
Atake OJ, Eames BF. Mineralized Cartilage and Bone-Like Tissues in Chondrichthyans Offer Potential Insights Into the Evolution and Development of Mineralized Tissues in the Vertebrate Endoskeleton. Front Genet 2021; 12:762042. [PMID: 35003210 PMCID: PMC8727550 DOI: 10.3389/fgene.2021.762042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
The impregnation of biominerals into the extracellular matrix of living organisms, a process termed biomineralization, gives rise to diverse mineralized (or calcified) tissues in vertebrates. Preservation of mineralized tissues in the fossil record has provided insights into the evolutionary history of vertebrates and their skeletons. However, current understanding of the vertebrate skeleton and of the processes underlying its formation is biased towards biomedical models such as the tetrapods mouse and chick. Chondrichthyans (sharks, skates, rays, and chimaeras) and osteichthyans are the only vertebrate groups with extant (living) representatives that have a mineralized skeleton, but the basal phylogenetic position of chondrichthyans could potentially offer unique insights into skeletal evolution. For example, bone is a vertebrate novelty, but the internal supporting skeleton (endoskeleton) of extant chondrichthyans is commonly described as lacking bone. The molecular and developmental basis for this assertion is yet to be tested. Subperichondral tissues in the endoskeleton of some chondrichthyans display mineralization patterns and histological and molecular features of bone, thereby challenging the notion that extant chondrichthyans lack endoskeletal bone. Additionally, the chondrichthyan endoskeleton demonstrates some unique features and others that are potentially homologous with other vertebrates, including a polygonal mineralization pattern, a trabecular mineralization pattern, and an unconstricted perichordal sheath. Because of the basal phylogenetic position of chondrichthyans among all other extant vertebrates with a mineralized skeleton, developmental and molecular studies of chondrichthyans are critical to flesh out the evolution of vertebrate skeletal tissues, but only a handful of such studies have been carried out to date. This review discusses morphological and molecular features of chondrichthyan endoskeletal tissues and cell types, ultimately emphasizing how comparative embryology and transcriptomics can reveal homology of mineralized skeletal tissues (and their cell types) between chondrichthyans and other vertebrates.
Collapse
Affiliation(s)
| | - B. Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
23
|
Rauner M, Foessl I, Formosa MM, Kague E, Prijatelj V, Lopez NA, Banerjee B, Bergen D, Busse B, Calado Â, Douni E, Gabet Y, Giralt NG, Grinberg D, Lovsin NM, Solan XN, Ostanek B, Pavlos NJ, Rivadeneira F, Soldatovic I, van de Peppel J, van der Eerden B, van Hul W, Balcells S, Marc J, Reppe S, Søe K, Karasik D. Perspective of the GEMSTONE Consortium on Current and Future Approaches to Functional Validation for Skeletal Genetic Disease Using Cellular, Molecular and Animal-Modeling Techniques. Front Endocrinol (Lausanne) 2021; 12:731217. [PMID: 34938269 PMCID: PMC8686830 DOI: 10.3389/fendo.2021.731217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
The availability of large human datasets for genome-wide association studies (GWAS) and the advancement of sequencing technologies have boosted the identification of genetic variants in complex and rare diseases in the skeletal field. Yet, interpreting results from human association studies remains a challenge. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary. Multiple unknowns exist for putative causal genes, including cellular localization of the molecular function. Intermediate traits ("endophenotypes"), e.g. molecular quantitative trait loci (molQTLs), are needed to identify mechanisms of underlying associations. Furthermore, index variants often reside in non-coding regions of the genome, therefore challenging for interpretation. Knowledge of non-coding variance (e.g. ncRNAs), repetitive sequences, and regulatory interactions between enhancers and their target genes is central for understanding causal genes in skeletal conditions. Animal models with deep skeletal phenotyping and cell culture models have already facilitated fine mapping of some association signals, elucidated gene mechanisms, and revealed disease-relevant biology. However, to accelerate research towards bridging the current gap between association and causality in skeletal diseases, alternative in vivo platforms need to be used and developed in parallel with the current -omics and traditional in vivo resources. Therefore, we argue that as a field we need to establish resource-sharing standards to collectively address complex research questions. These standards will promote data integration from various -omics technologies and functional dissection of human complex traits. In this mission statement, we review the current available resources and as a group propose a consensus to facilitate resource sharing using existing and future resources. Such coordination efforts will maximize the acquisition of knowledge from different approaches and thus reduce redundancy and duplication of resources. These measures will help to understand the pathogenesis of osteoporosis and other skeletal diseases towards defining new and more efficient therapeutic targets.
Collapse
Affiliation(s)
- Martina Rauner
- Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- University Hospital Carl Gustav Carus, Dresden, Germany
| | - Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| | - Melissa M. Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Erika Kague
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Vid Prijatelj
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nerea Alonso Lopez
- Rheumatology and Bone Disease Unit, CGEM, Institute of Genetics and Cancer (IGC), Edinburgh, United Kingdom
| | - Bodhisattwa Banerjee
- Musculoskeletal Genetics Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dylan Bergen
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ângelo Calado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Eleni Douni
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Institute for Bioinnovation, B.S.R.C. “Alexander Fleming”, Vari, Greece
| | - Yankel Gabet
- Department of Anatomy & Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natalia García Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Nika M. Lovsin
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Xavier Nogues Solan
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Barbara Ostanek
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Nathan J. Pavlos
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | | | - Ivan Soldatovic
- Institute of Medical Statistics and Informatic, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Bram van der Eerden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wim van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sjur Reppe
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
- Marcus Research Institute, Hebrew SeniorLife, Boston, MA, United States
| |
Collapse
|
24
|
Genetic variability affects the skeletal response to immobilization in founder strains of the diversity outbred mouse population. Bone Rep 2021; 15:101140. [PMID: 34761080 PMCID: PMC8566767 DOI: 10.1016/j.bonr.2021.101140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Mechanical unloading decreases bone volume and strength. In humans and mice, bone mineral density is highly heritable, and in mice the response to changes in loading varies with genetic background. Thus, genetic variability may affect the response of bone to unloading. As a first step to identify genes involved in bones' response to unloading, we evaluated the effects of unloading in eight inbred mouse strains: C57BL/6J, PWK/PhJ, WSB/EiJ, A/J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HlLtJ, and CAST/EiJ. C57BL/6J and NOD/ShiLtJ mice had the greatest unloading-induced loss of diaphyseal cortical bone volume and strength. NZO/HlLtJ mice had the greatest metaphyseal trabecular bone loss, and C57BL/6J, WSB/EiJ, NOD/ShiLtJ, and CAST/EiJ mice had the greatest epiphyseal trabecular bone loss. Bone loss in the epiphyses displayed the highest heritability. With immobilization, mineral:matrix was reduced, and carbonate:phosphate and crystallinity were increased. A/J mice displayed the greatest unloading-induced loss of mineral:matrix. Changes in gene expression in response to unloading were greatest in NOD/ShiLtJ and CAST/EiJ mice. The most upregulated genes in response to unloading were associated with increased collagen synthesis and extracellular matrix formation. Our results demonstrate a strong differential response to unloading as a function of strain. Diversity outbred (DO) mice are a high-resolution mapping population derived from these eight inbred founder strains. These results suggest DO mice will be highly suited for examining the genetic basis of the skeletal response to unloading. Mouse strain affects bone's response to immobilization. Magnitude of bone loss from immobilization is heritable. Bone transcriptomic response to immobilization is influenced by genetic variation.
Collapse
|
25
|
The Aqueous Extract of Eucommia Leaves Promotes Proliferation, Differentiation, and Mineralization of Osteoblast-Like MC3T3-E1 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3641317. [PMID: 34249129 PMCID: PMC8238580 DOI: 10.1155/2021/3641317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 01/01/2023]
Abstract
Eucommia leaves are dry leaves of Eucommia ulmoides which have long been considered as a functional health food for the treatment of hypertension, hypercholesterolemia, fatty liver, and osteoporosis. With the recent development of Chinese medicine, Eucommia leaves are widely used for tonifying the kidneys and strengthening bone. However, the specific molecular mechanism of Eucommia leaves for strengthening bone remains largely unknown. Osteoblasts are the main functional cells of bone formation; thus, it is essential to study the effect of Eucommia leaves on osteoblasts to better understand their mechanism of action. In the present study, we prepared an aqueous extract of Eucommia leaves (ELAE) and determined its content by high-performance liquid chromatography (HPLC). The effects of ELAE on MC3T3-E1 cells were investigated by CCK-8 assay, alkaline phosphatase (ALP), and Alizarin red S staining assays, combined with RNA sequencing (RNA-seq) and qRT-PCR validation. We demonstrated that ELAE had a significant promoting effect on the proliferation of MC3T3-E1 cells and significantly enhanced extracellular matrix synthesis and mineralization, which were achieved by regulating various functional genes and related signaling pathways. ELAE significantly increased the expression level of genes promoting cell proliferation, such as Rpl10a, Adnp, Pex1, Inpp4a, Frat2, and Pcdhga1, and reduced the expression level of genes inhibiting cell proliferation, such as Npm1, Eif3e, Cbx3, Psmc6, Fgf7, Fxr1, Ddx3x, Mbnl1, and Cdc27. In addition, ELAE increased the expression level of gene markers in osteoblasts, such as Col5a2, Ubap2l, Dkk3, Foxm1, Col16a1, Col12a1, Usp7, Col4a6, Runx2, Sox4, and Bmp4. Taken together, our results suggest that ELAE could promote osteoblast proliferation, differentiation, and mineralization and prevent osteoblast apoptosis. These findings not only increase our understanding of ELAE on the regulation of bone development but also provide a possible strategy to further study the prevention and treatment of osteogenic related diseases by ELAE.
Collapse
|
26
|
Zhou Z, Zhao D, Zhang P, Zhang M, Leng X, Yao B. The enzymatic hydrolysates from deer sinew promote MC3T3-E1 cell proliferation and extracellular matrix synthesis by regulating multiple functional genes. BMC Complement Med Ther 2021; 21:59. [PMID: 33568122 PMCID: PMC7877118 DOI: 10.1186/s12906-021-03240-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/02/2021] [Indexed: 12/29/2022] Open
Abstract
Background Deer Sinew serves as a medicinal food, and has been used for treating skeletal diseases, especially bone diseases in a long history. Thus, it could become an alternative option for the prevention and therapeutic remedy of bone-related diseases. In our previous study, we established an optimal extraction process of the enzymatic hydrolysates from Chinese Sika deer sinews (DSEH), and we demonstrated that DSEH significantly promoted the proliferation of MC3T3-E1 cells (an osteoblast-like cell line) with a certain dose-effect relationship. However, the precise molecular mechanism of deer sinew in regulating bone strength is still largely unknown. The aim of this study was to explore the underlying molecular mechanism of DSEH on MC3T3-E1 cells proliferation and extracellular matrix synthesis. Methods Preparation and quality control were performed as previously described. The effect of DSEH at different administrated concentrations on cell proliferation was measured using both CCK-8 and MTT assays, and the capacity of DSEH on extracellular matrix synthesis was detected by Alizarin red staining and quantification. The gene expression pattern change of MC3T3-E1 cells under the treatment of DSEH was investigated by RNA-seq analysis accompanied with validation methods. Results We demonstrated that DSEH promoted MC3T3-E1 cell proliferation and extracellular matrix synthesis by regulating multiple functional genes. DSEH significantly increased the expression levels of genes that promoted cell proliferation such as Gstp1, Timp1, Serpine1, Cyr61, Crlf1, Thbs1, Ctgf, P4ha2, Sod3 and Nqo1. However, DSEH significantly decreased the expression levels of genes that inhibited cell proliferation such as Mt1, Cdc20, Gas1, Nrp2, Cmtm3, Dlk2, Sema3a, Rbm25 and Hspb6. Furthermore, DSEH mildly increased the expression levels of osteoblast gene markers. Conclusions Our findings suggest that DSEH facilitate MC3T3-E1 cell proliferation and extracellular matrix synthesis to consolidate bone formation and stability, but prevent MC3T3-E1 cells from oxidative stress-induced damage, apoptosis and further differentiation. These findings deepened the current understanding of DSEH on regulating bone development, and provided theoretical support for the discovery of optional prevention and treatment for bone-related diseases.
Collapse
Affiliation(s)
- Zhenwei Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Pengcheng Zhang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mei Zhang
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiangyang Leng
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
27
|
Abstract
The 11 existing FDA-approved osteoporosis drug treatments include hormone replacement therapy, 2 SERMs (raloxifene and bazedoxifene), 5 inhibitors of bone-resorbing osteoclasts (4 bisphosphonates and anti-RANKL denosumab), 2 parathyroid hormone analogues (teriparatide and abaloparatide), and 1 WNT signaling enhancer (romosozumab). These therapies are effective and provide multiple options for patients and physicians. As the genomic revolution continues, potential novel targets for future drug development are identified. This review takes a wide perspective to describe potentially rewarding topics to explore, including knowledge of genes and pathways involved in bone cell metabolism, the utility of animal models, targeting drugs to bone, and ongoing advances in drug design and delivery.
Collapse
|
28
|
Brommage R, Ohlsson C. High Fidelity of Mouse Models Mimicking Human Genetic Skeletal Disorders. Front Endocrinol (Lausanne) 2019; 10:934. [PMID: 32117046 PMCID: PMC7010808 DOI: 10.3389/fendo.2019.00934] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The 2019 International Skeletal Dysplasia Society nosology update lists 441 genes for which mutations result in rare human skeletal disorders. These genes code for enzymes (33%), scaffolding proteins (18%), signal transduction proteins (16%), transcription factors (14%), cilia proteins (8%), extracellular matrix proteins (5%), and membrane transporters (4%). Skeletal disorders include aggrecanopathies, channelopathies, ciliopathies, cohesinopathies, laminopathies, linkeropathies, lysosomal storage diseases, protein-folding and RNA splicing defects, and ribosomopathies. With the goal of evaluating the ability of mouse models to mimic these human genetic skeletal disorders, a PubMed literature search identified 260 genes for which mutant mice were examined for skeletal phenotypes. These mouse models included spontaneous and ENU-induced mutants, global and conditional gene knockouts, and transgenic mice with gene over-expression or specific base-pair substitutions. The human X-linked gene ARSE and small nuclear RNA U4ATAC, a component of the minor spliceosome, do not have mouse homologs. Mouse skeletal phenotypes mimicking human skeletal disorders were observed in 249 of the 260 genes (96%) for which comparisons are possible. A supplemental table in spreadsheet format provides PubMed weblinks to representative publications of mutant mouse skeletal phenotypes. Mutations in 11 mouse genes (Ccn6, Cyp2r1, Flna, Galns, Gna13, Lemd3, Manba, Mnx1, Nsd1, Plod1, Smarcal1) do not result in similar skeletal phenotypes observed with mutations of the homologous human genes. These discrepancies can result from failure of mouse models to mimic the exact human gene mutations. There are no obvious commonalities among these 11 genes. Body BMD and/or radiologic dysmorphology phenotypes were successfully identified for 28 genes by the International Mouse Phenotyping Consortium (IMPC). Forward genetics using ENU mouse mutagenesis successfully identified 37 nosology gene phenotypes. Since many human genetic disorders involve hypomorphic, gain-of-function, dominant-negative and intronic mutations, future studies will undoubtedly utilize CRISPR/Cas9 technology to examine transgenic mice having genes modified to exactly mimic variant human sequences. Mutant mice will increasingly be employed for drug development studies designed to treat human genetic skeletal disorders. SIGNIFICANCE Great progress is being made identifying mutant genes responsible for human rare genetic skeletal disorders and mouse models for genes affecting bone mass, architecture, mineralization and strength. This review organizes data for 441 human genetic bone disorders with regard to heredity, gene function, molecular pathways, and fidelity of relevant mouse models to mimic the human skeletal disorders. PubMed weblinks to citations of 249 successful mouse models are provided.
Collapse
Affiliation(s)
- Robert Brommage
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Robert Brommage
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|