1
|
Sun J, Xie W, Wu Y, Li Z, Li Y. Accelerated Bone Healing via Electrical Stimulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404190. [PMID: 39115981 DOI: 10.1002/advs.202404190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Indexed: 08/10/2024]
Abstract
Piezoelectric effect produces an electrical signal when stress is applied to the bone. When the integrity of the bone is destroyed, the biopotential within the defect site is reduced and several physiological responses are initiated to facilitate healing. During the healing of the bone defect, the bioelectric potential returns to normal levels. Treatment of fractures that exceed innate regenerative capacity or exhibit delayed healing requires surgical intervention for bone reconstruction. For bone defects that cannot heal on their own, exogenous electric fields are used to assist in treatment. This paper reviews the effects of exogenous electrical stimulation on bone healing, including osteogenesis, angiogenesis, reduction in inflammation and effects on the peripheral nervous system. This paper also reviews novel electrical stimulation methods, such as small power supplies and nanogenerators, that have emerged in recent years. Finally, the challenges and future trends of using electrical stimulation therapy for accelerating bone healing are discussed.
Collapse
Affiliation(s)
- Jianfeng Sun
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuxiang Wu
- School of Kinesiology, Jianghan University, Wuhan, Hubei, 430056, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
2
|
Hao Y, Yang N, Sun M, Yang S, Chen X. The role of calcium channels in osteoporosis and their therapeutic potential. Front Endocrinol (Lausanne) 2024; 15:1450328. [PMID: 39170742 PMCID: PMC11335502 DOI: 10.3389/fendo.2024.1450328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Osteoporosis, a systemic skeletal disorder marked by diminished bone mass and compromised bone microarchitecture, is becoming increasingly prevalent due to an aging population. The underlying pathophysiology of osteoporosis is attributed to an imbalance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. Osteoclasts play a crucial role in the development of osteoporosis through various molecular pathways, including the RANK/RANKL/OPG signaling axis, cytokines, and integrins. Notably, the calcium signaling pathway is pivotal in regulating osteoclast activation and function, influencing bone resorption activity. Disruption in calcium signaling can lead to increased osteoclast-mediated bone resorption, contributing to the progression of osteoporosis. Emerging research indicates that calcium-permeable channels on the cellular membrane play a critical role in bone metabolism by modulating these intracellular calcium pathways. Here, we provide an overview of current literature on the regulation of plasma membrane calcium channels in relation to bone metabolism with particular emphasis on their dysregulation during the progression of osteoporosis. Targeting these calcium channels may represent a potential therapeutic strategy for treating osteoporosis.
Collapse
Affiliation(s)
- Ying Hao
- College of Sports, Northwest Normal University, Lanzhou, China
| | - Ningning Yang
- College of Sports, Northwest Normal University, Lanzhou, China
| | - Mengying Sun
- College of Sports, Northwest Normal University, Lanzhou, China
| | - Shangze Yang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
3
|
Hashimoto H, Mandai S, Shikuma S, Kimura M, Toma H, Sakaguchi Y, Shiraishi S, Toshima N, Hoshino M, Kimura M, Ota J, Horiuchi S, Adachi S, Uchida S. The Effect of Antihypertensive Therapy on Skeletal Muscle Mass and Bone Mineral Density in Patients With End-Stage Kidney Disease. J Ren Nutr 2024; 34:223-234. [PMID: 37918643 DOI: 10.1053/j.jrn.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/12/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
OBJECTIVE Sarcopenia and osteoporosis substantially influence health and lifespan. However, the variables affecting skeletal muscle mass (SMM) or bone mineral density (BMD) remain unknown. DESIGN AND METHODS From August 1, 2018 to July 31, 2019, we conducted a single-center, observational cohort study with 291 Japanese adult patients on maintenance hemodialysis due to end-stage kidney disease, who had their femoral neck BMD measured using dual-energy X-ray absorptiometry. After 1-year follow-up, we measured annual changes of BMD (ΔBMD) and SMM (ΔSMM), which were calculated through a modified creatinine index (mg/kg/day) using age, sex, serum creatinine, and single-pooled Kt/V for urea. The factors associated with ΔSMM/ΔBMD or progressive loss of SMM/BMD, defined as ΔSMM/ΔBMD < 0 per year, respectively, were analyzed with multivariable, linear regression or logistic regression models. RESULTS The median age of the patients was 66 years and 33% were female. Dialysis vintage and β-blocker-use were inversely correlated to ΔSMM. In comparison to nonusers, β-blockers users had 2.5-fold higher SMM loss odd ratios [95% confidence interval, 1.3-4.8]. The risk for SMM loss caused by β-blockers was not increased in users of renin-angiotensin system inhibitors. The ΔBMD was negatively correlated to the usage of calcium channel blockers. The risk of developing osteosarcopenia, which was defined as annual loss of both SMM and BMD, increased in calcium channel blockers users. CONCLUSIONS The use of β-blockers is associated with an elevated risk of developing sarcopenia, whereas renin-angiotensin system inhibitors may minimize this effect in patients with end-stage kidney disease. Use of calcium channel blocker therapy was associated with a faster decline of BMD.
Collapse
Affiliation(s)
- Hiroko Hashimoto
- Department of Nephrology, Shuuwa General Hospital, Kasukabe, Saitama, Japan; Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Shintaro Mandai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan.
| | - Satomi Shikuma
- Department of Nephrology, Shuuwa General Hospital, Kasukabe, Saitama, Japan
| | - Mai Kimura
- Department of Nephrology, Shuuwa General Hospital, Kasukabe, Saitama, Japan
| | - Hayato Toma
- Department of Nephrology, Shuuwa General Hospital, Kasukabe, Saitama, Japan
| | - Yuki Sakaguchi
- Department of Nephrology, Shuuwa General Hospital, Kasukabe, Saitama, Japan
| | - Sayuka Shiraishi
- Department of Nephrology, Shuuwa General Hospital, Kasukabe, Saitama, Japan
| | - Noriyuki Toshima
- Department of Nephrology, Shuuwa General Hospital, Kasukabe, Saitama, Japan
| | - Motoki Hoshino
- Department of Nephrology, Shuuwa General Hospital, Kasukabe, Saitama, Japan
| | - Moe Kimura
- Department of Nephrology, Shuuwa General Hospital, Kasukabe, Saitama, Japan
| | - Jun Ota
- Department of Nephrology, Shuuwa General Hospital, Kasukabe, Saitama, Japan
| | - Susumu Horiuchi
- Department of Urology, Shuuwa General Hospital, Kasukabe, Saitama, Japan
| | - Susumu Adachi
- Department of Cardiology, Shuuwa General Hospital, Kasukabe, Saitama, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| |
Collapse
|
4
|
Wright CS, Lewis KJ, Semon K, Yi X, Reyes Fernandez PC, Rust K, Prideaux M, Schneider A, Pederson M, Deosthale P, Plotkin LI, Hum JM, Sankar U, Farach-Carson MC, Robling AG, Thompson WR. Deletion of the auxiliary α2δ1 voltage sensitive calcium channel subunit in osteocytes and late-stage osteoblasts impairs femur strength and load-induced bone formation in male mice. J Bone Miner Res 2024; 39:298-314. [PMID: 38477790 DOI: 10.1093/jbmr/zjae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/03/2023] [Accepted: 12/27/2023] [Indexed: 03/14/2024]
Abstract
Osteocytes sense and respond to mechanical force by controlling the activity of other bone cells. However, the mechanisms by which osteocytes sense mechanical input and transmit biological signals remain unclear. Voltage-sensitive calcium channels (VSCCs) regulate calcium (Ca2+) influx in response to external stimuli. Inhibition or deletion of VSCCs impairs osteogenesis and skeletal responses to mechanical loading. VSCC activity is influenced by its auxiliary subunits, which bind the channel's α1 pore-forming subunit to alter intracellular Ca2+ concentrations. The α2δ1 auxiliary subunit associates with the pore-forming subunit via a glycosylphosphatidylinositol anchor and regulates the channel's calcium-gating kinetics. Knockdown of α2δ1 in osteocytes impairs responses to membrane stretch, and global deletion of α2δ1 in mice results in osteopenia and impaired skeletal responses to loading in vivo. Therefore, we hypothesized that the α2δ1 subunit functions as a mechanotransducer, and its deletion in osteocytes would impair skeletal development and load-induced bone formation. Mice (C57BL/6) with LoxP sequences flanking Cacna2d1, the gene encoding α2δ1, were crossed with mice expressing Cre under the control of the Dmp1 promoter (10 kb). Deletion of α2δ1 in osteocytes and late-stage osteoblasts decreased femoral bone quantity (P < .05) by DXA, reduced relative osteoid surface (P < .05), and altered osteoblast and osteocyte regulatory gene expression (P < .01). Cacna2d1f/f, Cre + male mice displayed decreased femoral strength and lower 10-wk cancellous bone in vivo micro-computed tomography measurements at the proximal tibia (P < .01) compared to controls, whereas Cacna2d1f/f, Cre + female mice showed impaired 20-wk cancellous and cortical bone ex vivo micro-computed tomography measurements (P < .05) vs controls. Deletion of α2δ1 in osteocytes and late-stage osteoblasts suppressed load-induced calcium signaling in vivo and decreased anabolic responses to mechanical loading in male mice, demonstrating decreased mechanosensitivity. Collectively, the α2δ1 auxiliary subunit is essential for the regulation of osteoid-formation, femur strength, and load-induced bone formation in male mice.
Collapse
Affiliation(s)
- Christian S Wright
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, United States
| | - Karl J Lewis
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14850, United States
| | - Katelyn Semon
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, United States
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States
| | - Xin Yi
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, United States
| | - Perla C Reyes Fernandez
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, United States
| | - Katie Rust
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, United States
| | - Matthew Prideaux
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, United States
| | - Artur Schneider
- Department of Physiology, College of Osteopathic Medicine, Marian University, Indianapolis, IN 46202, United States
| | - Molly Pederson
- School of Science, Indiana University-Purdue University, Indianapolis, IN 46202, United States
| | - Padmini Deosthale
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States
| | - Lilian I Plotkin
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, United States
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States
| | - Julia M Hum
- Department of Physiology, College of Osteopathic Medicine, Marian University, Indianapolis, IN 46202, United States
| | - Uma Sankar
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, United States
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States
| | - Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas, Health Science Center, Houston, TX 78712, United States
| | - Alexander G Robling
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, United States
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States
| | - William R Thompson
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, United States
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States
| |
Collapse
|
5
|
Kelly MM, Sharma K, Wright CS, Yi X, Reyes Fernandez PC, Gegg AT, Gorrell TA, Noonan ML, Baghdady A, Sieger JA, Dolphin AC, Warden SJ, Deosthale P, Plotkin LI, Sankar U, Hum JM, Robling AG, Farach-Carson MC, Thompson WR. Loss of the auxiliary α 2δ 1 voltage-sensitive calcium channel subunit impairs bone formation and anabolic responses to mechanical loading. JBMR Plus 2024; 8:ziad008. [PMID: 38505532 PMCID: PMC10945727 DOI: 10.1093/jbmrpl/ziad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/31/2023] [Accepted: 11/27/2023] [Indexed: 03/21/2024] Open
Abstract
Voltage-sensitive calcium channels (VSCCs) influence bone structure and function, including anabolic responses to mechanical loading. While the pore-forming (α1) subunit of VSCCs allows Ca2+ influx, auxiliary subunits regulate the biophysical properties of the pore. The α2δ1 subunit influences gating kinetics of the α1 pore and enables mechanically induced signaling in osteocytes; however, the skeletal function of α2δ1 in vivo remains unknown. In this work, we examined the skeletal consequences of deleting Cacna2d1, the gene encoding α2δ1. Dual-energy X-ray absorptiometry and microcomputed tomography imaging demonstrated that deletion of α2δ1 diminished bone mineral content and density in both male and female C57BL/6 mice. Structural differences manifested in both trabecular and cortical bone for males, while the absence of α2δ1 affected only cortical bone in female mice. Deletion of α2δ1 impaired skeletal mechanical properties in both sexes, as measured by three-point bending to failure. While no changes in osteoblast number or activity were found for either sex, male mice displayed a significant increase in osteoclast number, accompanied by increased eroded bone surface and upregulation of genes that regulate osteoclast differentiation. Deletion of α2δ1 also rendered the skeleton insensitive to exogenous mechanical loading in males. While previous work demonstrates that VSCCs are essential for anabolic responses to mechanical loading, the mechanism by which these channels sense and respond to force remained unclear. Our data demonstrate that the α2δ1 auxiliary VSCC subunit functions to maintain baseline bone mass and strength through regulation of osteoclast activity and also provides skeletal mechanotransduction in male mice. These data reveal a molecular player in our understanding of the mechanisms by which VSCCs influence skeletal adaptation.
Collapse
Affiliation(s)
- Madison M Kelly
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, United States
- College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, United States
| | - Karan Sharma
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, United States
- College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, United States
| | - Christian S Wright
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN 46202, United States
| | - Xin Yi
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN 46202, United States
| | - Perla C Reyes Fernandez
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN 46202, United States
| | - Aaron T Gegg
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, United States
| | - Taylor A Gorrell
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, United States
| | - Megan L Noonan
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, United States
| | - Ahmed Baghdady
- College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, United States
| | - Jacob A Sieger
- College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, United States
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College of London, Gower Street, London WC1E 6BT, United Kingdom
| | - Stuart J Warden
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN 46202, United States
- La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne Victoria 3086, DX 211319, Australia
| | - Padmini Deosthale
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN 46202, United States
- Department of Anatomy, Cell Biology, & Physiology, Indiana University, Indianapolis, IN 46202, United States
| | - Lilian I Plotkin
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN 46202, United States
- Department of Anatomy, Cell Biology, & Physiology, Indiana University, Indianapolis, IN 46202, United States
| | - Uma Sankar
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN 46202, United States
- Department of Anatomy, Cell Biology, & Physiology, Indiana University, Indianapolis, IN 46202, United States
| | - Julia M Hum
- College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, United States
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN 46202, United States
| | - Alexander G Robling
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN 46202, United States
- Department of Anatomy, Cell Biology, & Physiology, Indiana University, Indianapolis, IN 46202, United States
| | - Mary C Farach-Carson
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, United States
| | - William R Thompson
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, United States
- College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, United States
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN 46202, United States
- Department of Anatomy, Cell Biology, & Physiology, Indiana University, Indianapolis, IN 46202, United States
| |
Collapse
|
6
|
Reyes Fernandez PC, Wright CS, Farach-Carson MC, Thompson WR. Examining Mechanisms for Voltage-Sensitive Calcium Channel-Mediated Secretion Events in Bone Cells. Calcif Tissue Int 2023; 113:126-142. [PMID: 37261463 PMCID: PMC11008533 DOI: 10.1007/s00223-023-01097-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
In addition to their well-described functions in cell excitability, voltage-sensitive calcium channels (VSCCs) serve a critical role in calcium (Ca2+)-mediated secretion of pleiotropic paracrine and endocrine factors, including those produced in bone. Influx of Ca2+ through VSCCs activates intracellular signaling pathways to modulate a variety of cellular processes that include cell proliferation, differentiation, and bone adaptation in response to mechanical stimuli. Less well understood is the role of VSCCs in the control of bone and calcium homeostasis mediated through secreted factors. In this review, we discuss the various functions of VSCCs in skeletal cells as regulators of Ca2+ dynamics and detail how these channels might control the release of bioactive factors from bone cells. Because VSCCs are druggable, a better understanding of the multiple functions of these channels in the skeleton offers the opportunity for developing new therapies to enhance and maintain bone and to improve systemic health.
Collapse
Affiliation(s)
- Perla C Reyes Fernandez
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Christian S Wright
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Departments of BioSciences and Bioengineering, Rice University, Houston, TX, 77005, USA
| | - William R Thompson
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA.
- Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
7
|
Heng BC, Bai Y, Li X, Meng Y, Lu Y, Zhang X, Deng X. The bioelectrical properties of bone tissue. Animal Model Exp Med 2023; 6:120-130. [PMID: 36856186 PMCID: PMC10158952 DOI: 10.1002/ame2.12300] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/18/2022] [Indexed: 03/02/2023] Open
Abstract
Understanding the bioelectrical properties of bone tissue is key to developing new treatment strategies for bone diseases and injuries, as well as improving the design and fabrication of scaffold implants for bone tissue engineering. The bioelectrical properties of bone tissue can be attributed to the interaction of its various cell lineages (osteocyte, osteoblast and osteoclast) with the surrounding extracellular matrix, in the presence of various biomechanical stimuli arising from routine physical activities; and is best described as a combination and overlap of dielectric, piezoelectric, pyroelectric and ferroelectric properties, together with streaming potential and electro-osmosis. There is close interdependence and interaction of the various electroactive and electrosensitive components of bone tissue, including cell membrane potential, voltage-gated ion channels, intracellular signaling pathways, and cell surface receptors, together with various matrix components such as collagen, hydroxyapatite, proteoglycans and glycosaminoglycans. It is the remarkably complex web of interactive cross-talk between the organic and non-organic components of bone that define its electrophysiological properties, which in turn exerts a profound influence on its metabolism, homeostasis and regeneration in health and disease. This has spurred increasing interest in application of electroactive scaffolds in bone tissue engineering, to recapitulate the natural electrophysiological microenvironment of healthy bone tissue to facilitate bone defect repair.
Collapse
Affiliation(s)
- Boon Chin Heng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, PR China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China.,School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Yanze Meng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Yanhui Lu
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, PR China.,National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, PR China.,National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| |
Collapse
|
8
|
Reyes Fernandez PC, Wright CS, Masterson AN, Yi X, Tellman TV, Bonteanu A, Rust K, Noonan ML, White KE, Lewis KJ, Sankar U, Hum JM, Bix G, Wu D, Robling AG, Sardar R, Farach-Carson MC, Thompson WR. Gabapentin Disrupts Binding of Perlecan to the α 2δ 1 Voltage Sensitive Calcium Channel Subunit and Impairs Skeletal Mechanosensation. Biomolecules 2022; 12:biom12121857. [PMID: 36551284 PMCID: PMC9776037 DOI: 10.3390/biom12121857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Our understanding of how osteocytes, the principal mechanosensors within bone, sense and perceive force remains unclear. Previous work identified "tethering elements" (TEs) spanning the pericellular space of osteocytes and transmitting mechanical information into biochemical signals. While we identified the heparan sulfate proteoglycan perlecan (PLN) as a component of these TEs, PLN must attach to the cell surface to induce biochemical responses. As voltage-sensitive calcium channels (VSCCs) are critical for bone mechanotransduction, we hypothesized that PLN binds the extracellular α2δ1 subunit of VSCCs to couple the bone matrix to the osteocyte membrane. Here, we showed co-localization of PLN and α2δ1 along osteocyte dendritic processes. Additionally, we quantified the molecular interactions between α2δ1 and PLN domains and demonstrated for the first time that α2δ1 strongly associates with PLN via its domain III. Furthermore, α2δ1 is the binding site for the commonly used pain drug, gabapentin (GBP), which is associated with adverse skeletal effects when used chronically. We found that GBP disrupts PLN::α2δ1 binding in vitro, and GBP treatment in vivo results in impaired bone mechanosensation. Our work identified a novel mechanosensory complex within osteocytes composed of PLN and α2δ1, necessary for bone force transmission and sensitive to the drug GBP.
Collapse
Affiliation(s)
- Perla C. Reyes Fernandez
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
| | - Christian S. Wright
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
| | - Adrianna N. Masterson
- Department of Chemistry and Chemical Biology, School of Science, Indiana University, Indianapolis, IN 46202, USA
| | - Xin Yi
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
| | - Tristen V. Tellman
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Andrei Bonteanu
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX 77005, USA
| | - Katie Rust
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
| | - Megan L. Noonan
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Kenneth E. White
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Karl J. Lewis
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Uma Sankar
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Julia M. Hum
- Division of Biomedical Science, College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA
| | - Gregory Bix
- Departments of Neurosurgery and Neurology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Danielle Wu
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX 77005, USA
| | - Alexander G. Robling
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology, School of Science, Indiana University, Indianapolis, IN 46202, USA
| | - Mary C. Farach-Carson
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX 77005, USA
| | - William R. Thompson
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Division of Biomedical Science, College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA
- Correspondence:
| |
Collapse
|
9
|
Reyes Fernandez PC, Wright CS, Warden SJ, Hum J, Farach-Carson MC, Thompson WR. Effects of Gabapentin and Pregabalin on Calcium Homeostasis: Implications for Physical Rehabilitation of Musculoskeletal Tissues. Curr Osteoporos Rep 2022; 20:365-378. [PMID: 36149592 PMCID: PMC10108402 DOI: 10.1007/s11914-022-00750-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW In this review, we discuss the mechanism of action of gabapentinoids and the potential consequences of long-term treatment with these drugs on the musculoskeletal system. RECENT FINDINGS Gabapentinoids, such as gabapentin (GBP) and pregabalin (PGB) were designed as antiepileptic reagents and are now commonly used as first-line treatment for neuropathic pain and increasingly prescribed off-label for other pain disorders such as migraines and back pain. GBP and PGB exert their analgesic actions by selectively binding the α2δ1 auxiliary subunit of voltage-sensitive calcium channels, thereby inhibiting channel function. Numerous tissues express the α2δ1 subunit where GBP and PGB can alter calcium-mediated signaling events. In tissues such as bone, muscle, and cartilage, α2δ1 has important roles in skeletal formation, mechanosensation, and normal tissue function/repair that may be affected by chronic use of gabapentinoids. Long-term use of gabapentinoids is associated with detrimental musculoskeletal outcomes, including increased fracture risk. Therefore, understanding potential complications is essential for clinicians to guide appropriate treatments.
Collapse
Affiliation(s)
- Perla C Reyes Fernandez
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Christian S Wright
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Stuart J Warden
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Julia Hum
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
- College of Osteopathic Medicine, Marian University, Indianapolis, IN, 4622, USA
| | - Mary C Farach-Carson
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA
| | - William R Thompson
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA.
- College of Osteopathic Medicine, Marian University, Indianapolis, IN, 4622, USA.
- Department of Anatomy and Cell Biology, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|