1
|
Liu X, Wang M, Qin J, Liu Y, Chai Z, Peng W, Kangzhu Y, Zhong J, Wang J. Identification of Candidate Genes Associated with Yak Body Size Using a Genome-Wide Association Study and Multiple Populations of Information. Animals (Basel) 2023; 13:ani13091470. [PMID: 37174506 PMCID: PMC10177615 DOI: 10.3390/ani13091470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Yaks have evolved several breeds or genetic resources owing to their geographical and ecological environment, and investigating the genetic construction of body size among breeds is key for breeding. Here, a genome-wide association study (GWAS) was performed for five body size traits in 31 yak breeds and genetic resources. The information from clustering individuals according to their habitats was used for kinship grouping in the compressed mixed linear model (CMLM). We named this approach the pCMLM method. A total of 3,584,464 high-quality single nucleotide polymorphisms (SNPs) were obtained, and six markers were found to be significantly associated with height by pCMLM. Four candidate genes, including FXYD6, SOHLH2, ADGRB2, and OSBPL6, were identified. Our results show that when CMLM cannot identify optimal clustering groups, pCMLM can provide sufficient associated results based on population information. Moreover, this study provides basic information on the gene localization of quantitative traits of body size among yak breeds.
Collapse
Affiliation(s)
- Xinrui Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Mingxiu Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Jie Qin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Yaxin Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Wei Peng
- Qinghai Academy of Animal Science and Veterinary Science, Qinghai University, Xining 810016, China
| | - Yixi Kangzhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
2
|
Suitability of GWAS as a Tool to Discover SNPs Associated with Tick Resistance in Cattle: A Review. Pathogens 2021; 10:pathogens10121604. [PMID: 34959558 PMCID: PMC8707706 DOI: 10.3390/pathogens10121604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding the biological mechanisms underlying tick resistance in cattle holds the potential to facilitate genetic improvement through selective breeding. Genome wide association studies (GWAS) are popular in research on unraveling genetic determinants underlying complex traits such as tick resistance. To date, various studies have been published on single nucleotide polymorphisms (SNPs) associated with tick resistance in cattle. The discovery of SNPs related to tick resistance has led to the mapping of associated candidate genes. Despite the success of these studies, information on genetic determinants associated with tick resistance in cattle is still limited. This warrants the need for more studies to be conducted. In Africa, the cost of genotyping is still relatively expensive; thus, conducting GWAS is a challenge, as the minimum number of animals recommended cannot be genotyped. These population size and genotype cost challenges may be overcome through the establishment of collaborations. Thus, the current review discusses GWAS as a tool to uncover SNPs associated with tick resistance, by focusing on the study design, association analysis, factors influencing the success of GWAS, and the progress on cattle tick resistance studies.
Collapse
|
3
|
Ma Y, Yu L, Olah M, Smith R, Oatman SR, Allen M, Pishva E, Zhang B, Menon V, Ertekin-Taner N, Lunnon K, Bennett DA, Klein HU, De Jager PL. Epigenomic features related to microglia are associated with attenuated effect of APOE ε4 on Alzheimer's disease risk in humans. Alzheimers Dement 2021; 18:688-699. [PMID: 34482628 DOI: 10.1002/alz.12425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 11/10/2022]
Abstract
Not all apolipoprotein E (APOE) ε4 carriers who survive to advanced age develop Alzheimer's disease (AD); factors attenuating the risk of ε4 on AD may exist. Guided by the top ε4-attenuating signals from methylome-wide association analyses (N = 572, ε4+ and ε4-) of neurofibrillary tangles and neuritic plaques, we conducted a meta-analysis for pathological AD within the ε4+ subgroups (N = 235) across four independent collections of brains. Cortical RNA-seq and microglial morphology measurements were used in functional analyses. Three out of the four significant CpG dinucleotides were captured by one principal component (PC1), which interacts with ε4 on AD, and is associated with expression of innate immune genes and activated microglia. In ε4 carriers, reduction in each unit of PC1 attenuated the odds of AD by 58% (odds ratio = 2.39, 95% confidence interval = [1.64,3.46], P = 7.08 × 10-6 ). An epigenomic factor associated with a reduced proportion of activated microglia (epigenomic factor of activated microglia, EFAM) appears to attenuate the risk of ε4 on AD.
Collapse
Affiliation(s)
- Yiyi Ma
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA.,Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Marta Olah
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Rebecca Smith
- College of Medicine and Health, University of Exeter Medical School, Exeter University, Exeter, UK
| | - Stephanie R Oatman
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Ehsan Pishva
- College of Medicine and Health, University of Exeter Medical School, Exeter University, Exeter, UK
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA.,Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Katie Lunnon
- College of Medicine and Health, University of Exeter Medical School, Exeter University, Exeter, UK
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA.,Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Hans-Ulrich Klein
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, New York, USA.,Cell Circuits Program, Broad Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
4
|
Ma Y, Yu L, Olah M, Smith R, Oatman SR, Allen M, Pishva E, Zhang B, Menon V, Ertekin-Taner N, Lunnon K, Bennett DA, Klein HU, De Jager PL. EPIGENOMIC FEATURES RELATED TO MICROGLIA ARE ASSOCIATED WITH ATTENUATED EFFECT OF APOE ε4 ON ALZHEIMER'S DISEASE RISK IN HUMANS. Alzheimers Dement 2020; 16. [PMID: 34393677 DOI: 10.1002/alz.043533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Not all APOE ε4 carriers who survive to advanced age develop Alzheimer's disease (AD); factors attenuating the risk of ε4 on AD may exist. Guided by the top ε4-attenuating signals from methylome-wide association analyses (N=572, ε4+ and ε4-) of neurofibrillary tangles and neuritic plaques, we conducted a meta-analysis for pathological AD within the ε4+ subgroups (N=235) across four independent collections of brains. Cortical RNA-seq and microglial morphology measurements were used in functional analyses. Three out of the four significant CpG dinucleotides were captured by one principle component (PC1), which interacts with ε4 on AD, and is associated with expression of innate immune genes and activated microglia. In ε4 carriers, reduction in each unit of PC1 attenuated the odds of AD by 58% (OR=2.39, 95%CI=[1.64,3.46], P=7.08x10-6). An epigenomic factor associated with a reduced proportion of activated microglia (microglial epigenomic factor 1) appears to attenuate the risk of ε4 on AD.
Collapse
Affiliation(s)
- Yiyi Ma
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168 street, New York, NY, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Marta Olah
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168 street, New York, NY, USA
| | - Rebecca Smith
- University of Exeter Medical School, College of Medicine and Health, Exeter University, Exeter, UK
| | - Stephanie R Oatman
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL 32224, USA
| | - Mariet Allen
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL 32224, USA
| | - Ehsan Pishva
- University of Exeter Medical School, College of Medicine and Health, Exeter University, Exeter, UK
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168 street, New York, NY, USA
| | - Nilüfer Ertekin-Taner
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL 32224, USA.,Mayo Clinic Florida, Department of Neurology, Jacksonville, FL 32224, USA
| | - Katie Lunnon
- University of Exeter Medical School, College of Medicine and Health, Exeter University, Exeter, UK
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Hans-Ulrich Klein
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168 street, New York, NY, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168 street, New York, NY, USA.,Cell Circuits Program, Broad Institute, 415 Main street, Cambridge MA, USA
| |
Collapse
|
5
|
Nikolac Perkovic M, Sagud M, Zivkovic M, Uzun S, Nedic Erjavec G, Kozumplik O, Svob Strac D, Mimica N, Mihaljevic Peles A, Pivac N. Catechol-O-methyltransferase rs4680 and rs4818 haplotype association with treatment response to olanzapine in patients with schizophrenia. Sci Rep 2020; 10:10049. [PMID: 32572118 PMCID: PMC7308339 DOI: 10.1038/s41598-020-67351-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/05/2020] [Indexed: 12/22/2022] Open
Abstract
Antipsychotic drugs target primarily dopaminergic system which makes catechol-O-methyltransferase (COMT) an interesting target in studies searching for treatment response predictors in schizophrenia. The study assessed the association of the COMT rs4680 and rs4818 polymorphisms with therapeutic response to olanzapine, risperidone, clozapine or other antipsychotic medication after 8 weeks of monotherapy in patients with schizophrenia. 521 Caucasian patients with schizophrenia received a monotherapy with olanzapine (10–20 mg/day; N = 190), risperidone (3–6 mg/day; N = 99), or clozapine (100–500 mg/day; N = 102). The fourth group (N = 130) consisted of patients receiving haloperidol (3–15 mg/day), fluphenazine (4–25 mg/day) or quetiapine (50–800 mg/day). Treatment response was defined as a 50% reduction from the baseline positive and negative syndrome scale (PANSS) total and subscale scores, but also as an observed percentage reduction from the initial PANSS0–6 total and subscale scores. Carriers of the COMT rs4680 A allele and carriers of the COMT rs4680–rs4818 C-A haplotype block had greater reduction in the PANSS total scores following olanzapine treatment, compared to carriers of the COMT rs4680 GG genotype and other COMT rs4680–rs4818 haplotypes. The COMT rs4680 A allele, and COMT rs4680–rs4818 C-A haplotype, were significantly associated with therapeutic response in patients treated with olanzapine, but not in patients treated with other antipsychotics.
Collapse
Affiliation(s)
- Matea Nikolac Perkovic
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000, Zagreb, Croatia
| | - Marina Sagud
- University Hospital Center Zagreb, Kispaticeva 12, 10000, Zagreb, Croatia.,School of Medicine, University of Zagreb, Salata 3, 10000, Zagreb, Croatia
| | - Maja Zivkovic
- University Hospital Center Zagreb, Kispaticeva 12, 10000, Zagreb, Croatia
| | - Suzana Uzun
- Department of General Psychiatry, University Psychiatric Hospital Vrapce, Bolnicka cesta 32, 10000, Zagreb, Croatia.,Faculty of Medicine, Josip Juraj Strossmayer University, Josipa Huttlera 4, 31000, Osijek, Croatia
| | - Gordana Nedic Erjavec
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000, Zagreb, Croatia
| | - Oliver Kozumplik
- Department of General Psychiatry, University Psychiatric Hospital Vrapce, Bolnicka cesta 32, 10000, Zagreb, Croatia.,Faculty of Medicine, Josip Juraj Strossmayer University, Josipa Huttlera 4, 31000, Osijek, Croatia
| | - Dubravka Svob Strac
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000, Zagreb, Croatia
| | - Ninoslav Mimica
- School of Medicine, University of Zagreb, Salata 3, 10000, Zagreb, Croatia.,Department of General Psychiatry, University Psychiatric Hospital Vrapce, Bolnicka cesta 32, 10000, Zagreb, Croatia
| | - Alma Mihaljevic Peles
- University Hospital Center Zagreb, Kispaticeva 12, 10000, Zagreb, Croatia.,School of Medicine, University of Zagreb, Salata 3, 10000, Zagreb, Croatia
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000, Zagreb, Croatia.
| |
Collapse
|
6
|
Ma Y, Jun GR, Zhang X, Chung J, Naj AC, Chen Y, Bellenguez C, Hamilton-Nelson K, Martin ER, Kunkle BW, Bis JC, Debette S, DeStefano AL, Fornage M, Nicolas G, van Duijn C, Bennett DA, De Jager PL, Mayeux R, Haines JL, Pericak-Vance MA, Seshadri S, Lambert JC, Schellenberg GD, Lunetta KL, Farrer LA. Analysis of Whole-Exome Sequencing Data for Alzheimer Disease Stratified by APOE Genotype. JAMA Neurol 2019; 76:1099-1108. [PMID: 31180460 PMCID: PMC6563544 DOI: 10.1001/jamaneurol.2019.1456] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/22/2019] [Indexed: 12/13/2022]
Abstract
IMPORTANCE Previous genome-wide association studies of common variants identified associations for Alzheimer disease (AD) loci evident only among individuals with particular APOE alleles. OBJECTIVE To identify APOE genotype-dependent associations with infrequent and rare variants using whole-exome sequencing. DESIGN, SETTING, AND PARTICIPANTS The discovery stage included 10 441 non-Hispanic white participants in the Alzheimer Disease Sequencing Project. Replication was sought in 2 independent, whole-exome sequencing data sets (1766 patients with AD, 2906 without AD [controls]) and a chip-based genotype imputation data set (8728 patients with AD, 9808 controls). Bioinformatics and functional analyses were conducted using clinical, cognitive, neuropathologic, whole-exome sequencing, and gene expression data obtained from a longitudinal cohort sample including 402 patients with AD and 647 controls. Data were analyzed between March 2017 and September 2018. MAIN OUTCOMES AND MEASURES Score, Firth, and sequence kernel association tests were used to test the association of AD risk with individual variants and genes in subgroups of APOE ε4 carriers and noncarriers. Results with P ≤ 1 × 10-5 were further evaluated in the replication data sets and combined by meta-analysis. RESULTS Among 3145 patients with AD and 4213 controls lacking ε4 (mean [SD] age, 83.4 [7.6] years; 4363 [59.3.%] women), novel genome-wide significant associations were obtained in the discovery sample with rs536940594 in AC099552 (odds ratio [OR], 88.0; 95% CI, 9.08-852.0; P = 2.22 × 10-7) and rs138412600 in GPAA1 (OR, 1.78; 95% CI, 1.44-2.2; meta-P = 7.81 × 10-8). GPAA1 was also associated with expression in the brain of GPAA1 (β = -0.08; P = .03) and its repressive transcription factor, FOXG1 (β = 0.13; P = .003), and global cognition function (β = -0.53; P = .009). Significant gene-wide associations (threshold P ≤ 6.35 × 10-7) were observed for OR8G5 (P = 4.67 × 10-7), IGHV3-7 (P = 9.75 × 10-16), and SLC24A3 (P = 2.67 × 10-12) in 2377 patients with AD and 706 controls with ε4 (mean [SD] age, 75.2 [9.6] years; 1668 [54.1%] women). CONCLUSIONS AND RELEVANCE The study identified multiple possible novel associations for AD with individual and aggregated rare variants in groups of individuals with and without APOE ε4 alleles that reinforce known and suggest additional pathways leading to AD.
Collapse
Affiliation(s)
- Yiyi Ma
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine and Public Health, Boston, Massachusetts
- Center for Translational & Computational Neuroimmunology, Multiple Sclerosis Clinical Care and Research Center, Division of Neuroimmunology, Columbia University Medical Center, New York, New York
- Department of Neurology, Columbia University Medical Center, New York, New York
| | - Gyungah R. Jun
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine and Public Health, Boston, Massachusetts
- Department of Biostatistics, Boston University Schools of Medicine and Public Health, Boston, Massachusetts
| | - Xiaoling Zhang
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine and Public Health, Boston, Massachusetts
| | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine and Public Health, Boston, Massachusetts
| | - Adam C. Naj
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Yuning Chen
- Department of Biostatistics, Boston University Schools of Medicine and Public Health, Boston, Massachusetts
| | - Celine Bellenguez
- Universite de Lille, INSERM UMR1167, Institute Pasteur de Lille, Lille, France
| | - Kara Hamilton-Nelson
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Eden R. Martin
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Brian W. Kunkle
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle
| | - Stéphanie Debette
- Bordeaux Population Health Research Center, UMR1219, University Bordeaux, Inserm, Bordeaux, France
- Department of Neurology, Bordeaux University Hospital, Bordeaux, France
| | - Anita L. DeStefano
- Department of Biostatistics, Boston University Schools of Medicine and Public Health, Boston, Massachusetts
- Department of Neurology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts
| | - Myriam Fornage
- School of Public Health, University of Texas Health Science Center at Houston, Houston
| | - Gaël Nicolas
- UNIROUEN, Inserm U1245, Normandie University, Rouen, France
- Department of Genetics, Rouen University Hospital, Rouen, France
- Normandy Centre for Genomic and Personalized Medicine, Centre National de Référence pour les Malades Alzheimer Jeunes, Rouen, France
| | - Cornelia van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Multiple Sclerosis Clinical Care and Research Center, Division of Neuroimmunology, Columbia University Medical Center, New York, New York
- Department of Neurology, Columbia University Medical Center, New York, New York
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Richard Mayeux
- Department of Neurology, Columbia University Medical Center, New York, New York
| | - Jonathan L Haines
- Institute for Computational Biology, Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Margaret A. Pericak-Vance
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Sudha Seshadri
- Department of Neurology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio
| | | | | | - Kathryn L. Lunetta
- Department of Biostatistics, Boston University Schools of Medicine and Public Health, Boston, Massachusetts
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine and Public Health, Boston, Massachusetts
- Department of Biostatistics, Boston University Schools of Medicine and Public Health, Boston, Massachusetts
- Department of Neurology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts
- Department of Ophthalmology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts
- Department of Epidemiology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts
| |
Collapse
|
7
|
Kumar A, Gupta S, Sharma P, Prasad R, Pal A. In silico method for identification of novel copper and iron metabolism proteins in various neurodegenerative disorders. Neurotoxicology 2019; 73:50-57. [DOI: 10.1016/j.neuro.2019.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 12/15/2022]
|
8
|
An urgent need to assess safe levels of inorganic copper in nutritional supplements/parenteral nutrition for subset of Alzheimer’s disease patients. Neurotoxicology 2019; 73:168-174. [DOI: 10.1016/j.neuro.2019.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
|
9
|
Hampel H, Vergallo A, Aguilar LF, Benda N, Broich K, Cuello AC, Cummings J, Dubois B, Federoff HJ, Fiandaca M, Genthon R, Haberkamp M, Karran E, Mapstone M, Perry G, Schneider LS, Welikovitch LA, Woodcock J, Baldacci F, Lista S. Precision pharmacology for Alzheimer’s disease. Pharmacol Res 2018; 130:331-365. [DOI: 10.1016/j.phrs.2018.02.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
|
10
|
Zhang H, Zheng W, Hua L, Wang Y, Li J, Bai H, Wang S, Du M, Ma X, Xu C, Li X, Gong B, Wang Y. Interaction between PPAR γ and SORL1 gene with Late-Onset Alzheimer's disease in Chinese Han Population. Oncotarget 2017; 8:48313-48320. [PMID: 28427149 PMCID: PMC5564649 DOI: 10.18632/oncotarget.15691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/12/2017] [Indexed: 01/11/2023] Open
Abstract
AIMS To investigate the impact of sortilin-related receptor 1 gene 1 (SORL1) and peroxisome proliferator activated receptor gamma (PPAR G) gene single nucleotide polymorphisms (SNPs), gene- gene and gene- environment interactions and haplotype on late-onset Alzheimer's disease (LOAD) risk. METHODS Hardy-Weinberg equilibrium (HWE), haplotype analysis and pairwise linkage disequilibrium (LD) analysis were investigated by using SNPStats (available online at http://bioinfo.iconcologia.net/SNPstats). Logistic regression was performed to investigate association between SNPs and LOAD. Generalized multifactor dimensionality reduction (GMDR) was used to investigate the interaction among gene- gene and gene- environment interaction. RESULTS Logistic regression analysis showed that LOAD risk was significantly higher in carriers of the A allele of rs1784933 polymorphism than those with GG (GA+ AA versus GG), adjusted OR (95%CI) = 1.63(1.27-1.98), and higher in carriers of G allele of the rs1805192 polymorphism than those with CC (CG+ GG versus CC), adjusted OR (95%CI) = 1.70 (1.25-2.27). GMDR analysis suggested a significant two-locus model (p = 0.0010) involving rs1784933 and rs1805192, and a significant two-locus model (p = 0.0100) involving rs1784933 and alcohol drinking. Haplotype containing the rs1784933- A and rs689021- C alleles were associated with a statistically increased LOAD risk (OR = 1.86, 95%CI = 1.37- 2.52, p < 0.001). CONCLUSIONS We conclude that rs1784933 and rs1805192 minor alleles, gene- gene interaction between rs1784933 and rs1805192, gene- environment interaction between rs1784933 and alcohol drinking, and haplotype containing the rs1784933- A and rs689021- C alleles are all associated with increased LOAD risk.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Neurology, The 148 Central Hospital of PLA, Shandong, China
| | - Wei Zheng
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linlin Hua
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yutong Wang
- Medical College of Henan University, Kaifeng, China
| | - Jinfeng Li
- Department of Neurology, The 148 Central Hospital of PLA, Shandong, China
| | - Hongying Bai
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanshan Wang
- Department of Neurology, The 148 Central Hospital of PLA, Shandong, China
| | - Mingyao Du
- Department of Neurology, The 148 Central Hospital of PLA, Shandong, China
| | - Xuelian Ma
- Department of Neurology, The 148 Central Hospital of PLA, Shandong, China
| | - Chunyang Xu
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaodong Li
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Gong
- Department of Neurology, The 148 Central Hospital of PLA, Shandong, China
| | - Yunliang Wang
- Department of Neurology, The 148 Central Hospital of PLA, Shandong, China
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Wang S, Guan L, Luo D, Liu J, Lin H, Li X, Liu X. Gene- Gene Interaction between PPARG and APOE Gene on Late-Onset Alzheimer's Disease: A Case- Control Study in Chinese Han Population. J Nutr Health Aging 2017; 21:397-403. [PMID: 28346566 DOI: 10.1007/s12603-016-0794-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The aim was to investigate the impact of PPARG and APOE gene single nucleotide polymorphisms (SNPs) and additional gene- gene interaction on late-onset Alzheimer's disease (LOAD) risk based on Chinese Han population. METHODS A total of 928 participants (466 males, 462 females), with a mean age of 81.3 ± 16.4 years old, were included in the study, including 460 LOAD patients and 468 normal controls participants. Logistic regression was performed to investigate association between SNP and LOAD risk and generalized multifactor dimensionality reduction (GMDR) was used to analysis the gene-gene interaction. RESULTS Logistic regression analysis showed that LOAD risk was significantly higher in carriers of G allele of the rs405509 polymorphism than those with AA (AG+ GG versus AA, adjusted OR (95%CI) =1.54(1.20-1.89), and higher in carriers of G allele of the rs1805192 polymorphism than those with CC (CG+ GG versus CC, adjusted OR (95%CI) =1.32(1.16-2.43). We also found that there was a potential gene-gene interaction between rs405509 and rs1805192. Participants with AG or GG of rs405509 and CG or GG of rs1805192 genotype have the highest AD risk, compared to participants with AA of rs405509 and CC of rs1805192 genotype, OR (95%CI) was 2.62(1.64 -3.58), after covariates adjustment. CONCLUSIONS G allele of the rs405509 of APOE and G allele of the rs1805192 of PPAR G polymorphism were associated with increased LOAD risk, and participants with AG or GG of rs405509 and CG or GG of rs1805192 genotype have the highest AD risk.
Collapse
Affiliation(s)
- S Wang
- Shuhua Wang, Center of Health Management, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwuweiqi Road, Jinan 250021, Shandong, China. Tel: +86-531-68773708, Fax: +86-531-68773708; Email address:
| | | | | | | | | | | | | |
Collapse
|
12
|
A Novel Relationship for Schizophrenia, Bipolar, and Major Depressive Disorder. Part 8: a Hint from Chromosome 8 High Density Association Screen. Mol Neurobiol 2016; 54:5868-5882. [DOI: 10.1007/s12035-016-0102-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022]
|
13
|
Shen L, Jia J. An Overview of Genome-Wide Association Studies in Alzheimer's Disease. Neurosci Bull 2016; 32:183-90. [PMID: 26810783 DOI: 10.1007/s12264-016-0011-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022] Open
Abstract
Genome-wide association studies (GWASs) have revealed a plethora of putative susceptibility genes for Alzheimer's disease (AD). With the sole exception of the APOE gene, these AD susceptibility genes have not been unequivocally validated in independent studies. No single novel functional risk genetic variant has been identified. In this review, we evaluate recent GWASs of AD, and discuss their significance, limitations, and challenges in the investigation of the genetic spectrum of AD.
Collapse
Affiliation(s)
- Luxi Shen
- Department of Neurology, Xuan Wu Hospital of the Capital Medical University, Beijing, 100053, China
| | - Jianping Jia
- Department of Neurology, Xuan Wu Hospital of the Capital Medical University, Beijing, 100053, China.
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053, China.
- Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing, 100053, China.
| |
Collapse
|
14
|
A novel Alzheimer disease locus located near the gene encoding tau protein. Mol Psychiatry 2016; 21:108-17. [PMID: 25778476 PMCID: PMC4573764 DOI: 10.1038/mp.2015.23] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/05/2014] [Accepted: 01/08/2015] [Indexed: 12/11/2022]
Abstract
APOE ɛ4, the most significant genetic risk factor for Alzheimer disease (AD), may mask effects of other loci. We re-analyzed genome-wide association study (GWAS) data from the International Genomics of Alzheimer's Project (IGAP) Consortium in APOE ɛ4+ (10 352 cases and 9207 controls) and APOE ɛ4- (7184 cases and 26 968 controls) subgroups as well as in the total sample testing for interaction between a single-nucleotide polymorphism (SNP) and APOE ɛ4 status. Suggestive associations (P<1 × 10(-4)) in stage 1 were evaluated in an independent sample (stage 2) containing 4203 subjects (APOE ɛ4+: 1250 cases and 536 controls; APOE ɛ4-: 718 cases and 1699 controls). Among APOE ɛ4- subjects, novel genome-wide significant (GWS) association was observed with 17 SNPs (all between KANSL1 and LRRC37A on chromosome 17 near MAPT) in a meta-analysis of the stage 1 and stage 2 data sets (best SNP, rs2732703, P=5·8 × 10(-9)). Conditional analysis revealed that rs2732703 accounted for association signals in the entire 100-kilobase region that includes MAPT. Except for previously identified AD loci showing stronger association in APOE ɛ4+ subjects (CR1 and CLU) or APOE ɛ4- subjects (MS4A6A/MS4A4A/MS4A6E), no other SNPs were significantly associated with AD in a specific APOE genotype subgroup. In addition, the finding in the stage 1 sample that AD risk is significantly influenced by the interaction of APOE with rs1595014 in TMEM106B (P=1·6 × 10(-7)) is noteworthy, because TMEM106B variants have previously been associated with risk of frontotemporal dementia. Expression quantitative trait locus analysis revealed that rs113986870, one of the GWS SNPs near rs2732703, is significantly associated with four KANSL1 probes that target transcription of the first translated exon and an untranslated exon in hippocampus (P ⩽ 1.3 × 10(-8)), frontal cortex (P ⩽ 1.3 × 10(-9)) and temporal cortex (P⩽1.2 × 10(-11)). Rs113986870 is also strongly associated with a MAPT probe that targets transcription of alternatively spliced exon 3 in frontal cortex (P=9.2 × 10(-6)) and temporal cortex (P=2.6 × 10(-6)). Our APOE-stratified GWAS is the first to show GWS association for AD with SNPs in the chromosome 17q21.31 region. Replication of this finding in independent samples is needed to verify that SNPs in this region have significantly stronger effects on AD risk in persons lacking APOE ɛ4 compared with persons carrying this allele, and if this is found to hold, further examination of this region and studies aimed at deciphering the mechanism(s) are warranted.
Collapse
|
15
|
Zamani M, Mohammadi M, Zamani H, Tavasoli A. Pharmacogenetic Study on the Impact of Rivastigmine Concerning Genetic Variants of A2M and IL-6 Genes on Iranian Alzheimer's Patients. Mol Neurobiol 2015; 53:4521-8. [PMID: 26289409 DOI: 10.1007/s12035-015-9387-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 08/11/2015] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is a polygenic and multifactorial disease with a complex inheritance caused by the formation of amyloid plaques and neurofibrillary tangles in the brain. Increasing evidence indicates that many genes including interleukin-6 (IL-6) and alpha 2-macroglobulin (A2M) may contribute to the pathogenesis of AD. The A2M gene encodes α2-macroglobulin which specifically binds with the beta-amyloid peptides and prevents fibril formation. Protein of the IL-6 gene linked to beta-amyloid (βA) aggregation was detected in βA plaques in the brain of AD patients. The aim of the present study is to investigate the relationship of the IL-6 and A2M gene polymorphisms with AD and also the impact of rivastigmine on AD patients regarding their genotypes on IL-6 and A2M genes in 150 Iranian AD patients under rivastigmine therapy and 150 matched healthy controls. The results indicated that IL-6 G and C alleles had significant positive and negative association with AD, respectively, (P = 0.0001, relative risks (RR) = 1.39) and frequency of AD patients carrying IL-6 GG genotype was significantly in higher proportion in familial Alzheimer's disease (FAD) patients compared to controls (P = 0.02, RR = 2.25), and the IL-6 CC genotype was significantly protective against AD (P = 0.0003, RR = 0.65). Genotype analysis of A2M gene showed a significant positive correlation between A2M AA genotype and the AD patients (sporadic Alzheimer's disease (SAD) and FAD) (P = 0.001, RR = 1.56), proposing it as a possible risk factor for AD. Drug response from pharmacogenetic viewpoint after 3-year follow-up of AD patients and Clinical Dementia Rating (CDR) analysis demonstrated that AD patients carrying bigenic genotype IL-6 CC-A2M AG (ΔCDR = 4.5) and male patients with IL-6 CC genotype (ΔCDR = 3.83) provided the best response and the A2M GG genotype (ΔCDR = 7.97) and bigenic genotype IL-6 GG-A2M GG (ΔCDR = 8.5) conferred the worst response to the rivastigmine, suggesting likely involvement of genotype-specific response to rivastigmine therapy in AD patients. The results also propose that in view of the fact that C and G alleles created by nucleotide changes in the promoter region of IL-6 gene and this may affect the expression of the IL-6 gene and, hence, susceptible and protective role of GG and CC genotype in AD might be caused by higher and lower expression of IL-6 cytokine, respectively.
Collapse
Affiliation(s)
- Mahdi Zamani
- Department of Neurogenetics, Iranian Center of Neurological Research, Tehran University of Medical Sciences, Tehran, 1417613151, Iran. .,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masomeh Mohammadi
- Department of Neurogenetics, Iranian Center of Neurological Research, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| | - Hamid Zamani
- Department of Neurogenetics, Iranian Center of Neurological Research, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| | - Alireza Tavasoli
- Department of Neurology, Children Medical Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Zhang ZG, Li Y, Ng CT, Song YQ. Inflammation in Alzheimer's Disease and Molecular Genetics: Recent Update. Arch Immunol Ther Exp (Warsz) 2015; 63:333-44. [PMID: 26232392 DOI: 10.1007/s00005-015-0351-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/03/2015] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a complex age-related neurodegenerative disorder of the central nervous system. Since the first description of AD in 1907, many hypotheses have been established to explain its causes. The inflammation theory is one of them. Pathological and biochemical studies of brains from AD individuals have provided solid evidence of the activation of inflammatory pathways. Furthermore, people with long-term medication of anti-inflammatory drugs have shown a reduced risk to develop the disease. After three decades of genetic study in AD, dozens of loci harboring genetic variants influencing inflammatory pathways in AD patients has been identified through genome-wide association studies (GWAS). The most well-known GWAS risk factor that is responsible for immune response and inflammation in AD development should be APOE ε4 allele. However, a growing number of other GWAS risk AD candidate genes in inflammation have recently been discovered. In the present study, we try to review the inflammation in AD and immunity-associated GWAS risk genes like HLA-DRB5/DRB1, INPP5D, MEF2C, CR1, CLU and TREM2.
Collapse
Affiliation(s)
- Zhi-Gang Zhang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China
| | - Yan Li
- Energy Research Institute of Shandong Academy of Sciences, Jinan, Shandong, People's Republic of China
| | - Cheung Toa Ng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China. .,State Key Laboratory for Cognitive and Brain Sciences, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China.
| |
Collapse
|
17
|
Farrer LA. Expanding the genomic roadmap of Alzheimer's disease. Lancet Neurol 2015; 14:783-785. [PMID: 26141618 DOI: 10.1016/s1474-4422(15)00146-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Lindsay A Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Epidemiology, and Biostatistics, Boston University Schools of Medicine and Public Health, Boston, MA 02118, USA.
| |
Collapse
|
18
|
Jun G, Asai H, Zeldich E, Drapeau E, Chen C, Chung J, Park JH, Kim S, Haroutunian V, Foroud T, Kuwano R, Haines JL, Pericak-Vance MA, Schellenberg GD, Lunetta KL, Kim JW, Buxbaum JD, Mayeux R, Ikezu T, Abraham CR, Farrer LA. PLXNA4 is associated with Alzheimer disease and modulates tau phosphorylation. Ann Neurol 2014; 76:379-92. [PMID: 25043464 PMCID: PMC4830273 DOI: 10.1002/ana.24219] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 07/02/2014] [Accepted: 07/02/2014] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Much of the genetic basis for Alzheimer disease (AD) is unexplained. We sought to identify novel AD loci using a unique family-based approach that can detect robust associations with infrequent variants (minor allele frequency < 0.10). METHODS We conducted a genome-wide association study in the Framingham Heart Study (discovery) and NIA-LOAD (National Institute on Aging-Late-Onset Alzheimer Disease) Study (replication) family-based cohorts using an approach that accounts for family structure and calculates a risk score for AD as the outcome. Links between the most promising gene candidate and AD pathogenesis were explored in silico as well as experimentally in cell-based models and in human brain. RESULTS Genome-wide significant association was identified with a PLXNA4 single nucleotide polymorphism (rs277470) located in a region encoding the semaphorin-3A (SEMA3A) binding domain (meta-analysis p value [meta-P] = 4.1 × 10(-8) ). A test for association with the entire region was also significant (meta-P = 3.2 × 10(-4) ). Transfection of SH-SY5Y cells or primary rat neurons with full-length PLXNA4 (TS1) increased tau phosphorylation with stimulated by SEMA3A. The opposite effect was observed when cells were transfected with shorter isoforms (TS2 and TS3). However, transfection of any isoform into HEK293 cells stably expressing amyloid β (Aβ) precursor protein (APP) did not result in differential effects on APP processing or Aβ production. Late stage AD cases (n = 9) compared to controls (n = 5) had 1.9-fold increased expression of TS1 in cortical brain tissue (p = 1.6 × 10(-4) ). Expression of TS1 was significantly correlated with the Clinical Dementia Rating score (ρ = 0.75, p = 2.2 × 10(-4) ), plaque density (ρ = 0.56, p = 0.01), and Braak stage (ρ = 0.54, p = 0.02). INTERPRETATION Our results indicate that PLXNA4 has a role in AD pathogenesis through isoform-specific effects on tau phosphorylation.
Collapse
Affiliation(s)
- Gyungah Jun
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA,Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, USA,Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA,Corresponding Authors: Drs. Gyungah Jun and Lindsay A. Farrer, Biomedical Genetics E200, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118; tel – (617) 638-5393; fax – (617) 638-4275; or
| | - Hirohide Asai
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ella Zeldich
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Elodie Drapeau
- Department of Psychiatry and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - CiDi Chen
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jaeyoon Chung
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jong-Ho Park
- Department of Health Sciences and Technology, Graduate School, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sehwa Kim
- Department of Health Sciences and Technology, Graduate School, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Vahram Haroutunian
- Department of Psychiatry and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ryozo Kuwano
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Jonathan L. Haines
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kathryn L. Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Jong-Won Kim
- Department of Health Sciences and Technology, Graduate School, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea,Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joseph D. Buxbaum
- Department of Psychiatry and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Richard Mayeux
- Department of Neurology and the Taub Institute, Columbia University, New York, New York, USA
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Carmela R. Abraham
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA,Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Lindsay A. Farrer
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA,Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, USA,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA,Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA,Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA,Corresponding Authors: Drs. Gyungah Jun and Lindsay A. Farrer, Biomedical Genetics E200, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118; tel – (617) 638-5393; fax – (617) 638-4275; or
| |
Collapse
|
19
|
Mullane K, Williams M. Alzheimer's therapeutics: continued clinical failures question the validity of the amyloid hypothesis-but what lies beyond? Biochem Pharmacol 2012. [PMID: 23178653 DOI: 10.1016/j.bcp.2012.11.014] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The worldwide incidence of Alzheimer's disease (AD) is increasing with estimates that 115 million individuals will have AD by 2050, creating an unsustainable healthcare challenge due to a lack of effective treatment options highlighted by multiple clinical failures of agents designed to reduce the brain amyloid burden considered synonymous with the disease. The amyloid hypothesis that has been the overarching focus of AD research efforts for more than two decades has been questioned in terms of its causality but has not been unequivocally disproven despite multiple clinical failures, This is due to issues related to the quality of compounds advanced to late stage clinical trials and the lack of validated biomarkers that allow the recruitment of AD patients into trials before they are at a sufficiently advanced stage in the disease where therapeutic intervention is deemed futile. Pursuit of a linear, reductionistic amyloidocentric approach to AD research, which some have compared to a religious faith, has resulted in other, equally plausible but as yet unvalidated AD hypotheses being underfunded leading to a disastrous roadblock in the search for urgently needed AD therapeutics. Genetic evidence supporting amyloid causality in AD is reviewed in the context of the clinical failures, and progress in tau-based and alternative approaches to AD, where an evolving modus operandi in biomedical research fosters excessive optimism and a preoccupation with unproven, and often ephemeral, biomarker/genome-based approaches that override transparency, objectivity and data-driven decision making, resulting in low probability environments where data are subordinate to self propagating hypotheses.
Collapse
|
20
|
Jun G, Moncaster JA, Koutras C, Seshadri S, Buros J, McKee AC, Levesque G, Wolf PA, St. George-Hyslop P, Goldstein LE, Farrer LA. δ-Catenin is genetically and biologically associated with cortical cataract and future Alzheimer-related structural and functional brain changes. PLoS One 2012; 7:e43728. [PMID: 22984439 PMCID: PMC3439481 DOI: 10.1371/journal.pone.0043728] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/24/2012] [Indexed: 12/11/2022] Open
Abstract
Multiple lines of evidence suggest that specific subtypes of age-related cataract (ARC) and Alzheimer disease (AD) are related etiologically. To identify shared genetic factors for ARC and AD, we estimated co-heritability of quantitative measures of cataract subtypes with AD-related brain MRI traits among 1,249 members of the Framingham Eye Study who had a brain MRI scan approximately ten years after the eye exam. Cortical cataract (CC) was found to be co-heritable with future development of AD and with several MRI traits, especially temporal horn volume (THV, ρ = 0.24, P<10(-4)). A genome-wide association study using 187,657 single nucleotide polymorphisms (SNPs) for the bivariate outcome of CC and THV identified genome-wide significant association with CTNND2 SNPs rs17183619, rs13155993 and rs13170756 (P<2.6 × 10(-7)). These SNPs were also significantly associated with bivariate outcomes of CC and scores on several highly heritable neuropsychological tests (5.7 × 10(-9) ≤ P<3.7 × 10(-6)). Statistical interaction was demonstrated between rs17183619 and APP SNP rs2096488 on CC (P = 0.0015) and CC-THV (P = 0.038). A rare CTNND2 missense mutation (G810R) 249 base pairs from rs17183619 altered δ-catenin localization and increased secreted amyloid-β(1-42) in neuronal cell culture. Immunohistopathological analysis of lens tissue obtained from two autopsy-confirmed AD subjects and two non-AD controls revealed elevated expression of δ-catenin in epithelial and cortical regions of lenses from AD subjects compared to controls. Our findings suggest that genetic variation in delta catenin may underlie both cortical lens opacities in mid-life and subsequent MRI and cognitive changes that presage the development of AD.
Collapse
Affiliation(s)
- Gyungah Jun
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Department of Ophthalmology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Department of Biostatistics, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- * E-mail: (GJ); (LAF)
| | - Juliet A. Moncaster
- Department of Psychiatry, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
| | - Carolina Koutras
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Sudha Seshadri
- Department of Neurology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Framingham Heart Study, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
| | - Jacqueline Buros
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
| | - Ann C. McKee
- Department of Neurology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Department of Pathology & Laboratory Medicine, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Boston University Alzheimer's Disease Center, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Geriatric Research Education Clinical Center, Bedford Veterans Administration Hospital, Bedford, Massachusetts, United States of America
| | - Georges Levesque
- Neurosciences Research Centre-CHUL, Université Laval, Québec, Canada
| | - Philip A. Wolf
- Department of Neurology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Department of Epidemiology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Framingham Heart Study, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
| | - Peter St. George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Lee E. Goldstein
- Department of Psychiatry, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Department of Neurology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Department of Pathology & Laboratory Medicine, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Boston University Alzheimer's Disease Center, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Department of Ophthalmology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Department of Biostatistics, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Department of Neurology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Department of Epidemiology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Boston University Alzheimer's Disease Center, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- * E-mail: (GJ); (LAF)
| |
Collapse
|
21
|
Melville SA, Buros J, Parrado AR, Vardarajan B, Logue MW, Shen L, Risacher SL, Kim S, Jun G, DeCarli C, Lunetta KL, Baldwin CT, Saykin AJ, Farrer LA. Multiple loci influencing hippocampal degeneration identified by genome scan. Ann Neurol 2012; 72:65-75. [PMID: 22745009 DOI: 10.1002/ana.23644] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/17/2012] [Accepted: 05/09/2012] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Large genome-wide association studies (GWASs) have identified many novel genes influencing Alzheimer disease (AD) risk, but most of the genetic variance remains unexplained. We conducted a 2-stage GWAS for AD-related quantitative measures of hippocampal volume (HV), total cerebral volume (TCV), and white matter hyperintensities (WMH). METHODS Brain magnetic resonance imaging measures of HV, TCV, and WMH were obtained from 981 Caucasian and 419 African American AD cases and their cognitively normal siblings in the MIRAGE (Multi Institutional Research in Alzheimer's Genetic Epidemiology) Study, and from 168 AD cases, 336 individuals with mild cognitive impairment, and 188 controls in the Alzheimer's Disease Neuroimaging Initiative Study. A GWAS for each trait was conducted in the 2 Caucasian data sets in stage 1. Results from the 2 data sets were combined by meta-analysis. In stage 2, 1 single nucleotide polymorphism (SNP) from each region that was nominally significant in each data set (p < 0.05) and strongly associated in both data sets (p < 1.0 × 10(-5)) was evaluated in the African American data set. RESULTS Twenty-two markers (14 for HV, 3 for TCV, and 5 for WMH) from distinct regions met criteria for evaluation in stage 2. Novel genome-wide significant associations (p < 5.0 × 10(-8)) were attained for HV with SNPs in the APOE, F5/SELP, LHFP, and GCFC2 gene regions. All of these associations were supported by evidence in each data set. Associations with different SNPs in the same gene (p < 1 × 10(-5) in Caucasians and p < 2.2 × 10(-4) in African Americans) were also observed for PICALM with HV, SYNPR with TCV, and TTC27 with WMH. INTERPRETATION Our study demonstrates the efficacy of endophenotypes for broadening our understanding of the genetic basis of AD.
Collapse
Affiliation(s)
- Scott A Melville
- Department of Medicine, Boston University School of Medicine, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|