1
|
Zhou YF, Nie J, Shi C, Zheng WW, Ning K, Kang J, Sun JX, Cong X, Xie Q, Xiang H. Lysimachia christinae polysaccharide attenuates diet-induced hyperlipidemia via modulating gut microbes-mediated FXR-FGF15 signaling pathway. Int J Biol Macromol 2023; 248:125725. [PMID: 37419267 DOI: 10.1016/j.ijbiomac.2023.125725] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/09/2023]
Abstract
Polysaccharides are one of the most abundant and active components of Lysimachia christinae (L. christinae), which is widely adopted for attenuating abnormal cholesterol metabolism; however, its mechanism of action remains unclear. Therefore, we fed a natural polysaccharide (NP) purified from L. christinae to high-fat diet mice. These mice showed an altered gut microbiota and bile acid pool, which was characterized by significantly increased Lactobacillus murinus and unconjugated bile acids in the ileum. Oral administration of the NP reduced cholesterol and triglyceride levels and enhanced bile acid synthesis via cholesterol 7α-hydroxylase. Additionally, the effects of NP are microbiota-dependent, which was reconfirmed by fecal microbiota transplantation (FMT). Altered gut microbiota reshaped bile acid metabolism by modulating bile salt hydrolase (BSH) activity. Therefore, bsh genes were genetically engineered into Brevibacillus choshinensis, which was gavaged into mice to verify BSH function in vivo. Finally, adeno-associated-virus-2-mediated overexpression or inhibition of fibroblast growth factor 15 (FGF15) was used to explore the farnesoid X receptor-fibroblast growth factor 15 pathway in hyperlipidemic mice. We identified that the NP relieves hyperlipidemia by altering the gut microbiota, which is accompanied by the active conversion of cholesterol to bile acids.
Collapse
Affiliation(s)
- Yong-Fei Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Jiaojiao Nie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Chao Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Wei-Wei Zheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Ke Ning
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Jing Kang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Ji-Xiang Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Xiaoqiang Cong
- The Cardiovascular Department, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China; Institute of Changbai Mountain Resource and Health, Jilin University, Fusong, Jilin 134504, PR China.
| | - Qiuhong Xie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China; Institute of Changbai Mountain Resource and Health, Jilin University, Fusong, Jilin 134504, PR China.
| | - Hongyu Xiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China; Institute of Changbai Mountain Resource and Health, Jilin University, Fusong, Jilin 134504, PR China.
| |
Collapse
|
2
|
Sarraju A, Knowles JW. Genetic Testing and Risk Scores: Impact on Familial Hypercholesterolemia. Front Cardiovasc Med 2019; 6:5. [PMID: 30761309 PMCID: PMC6361766 DOI: 10.3389/fcvm.2019.00005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Abstract
Familial Hypercholesterolemia (FH) is an inherited lipid disorder affecting 1 in 220 individuals resulting in highly elevated low-density lipoprotein levels and risk of premature coronary disease. Pathogenic variants causing FH typically involve the LDL receptor (LDLR), apolipoprotein B-100 (APOB), and proprotein convertase subtulisin/kexin type 9 genes (PCSK9) and if identified convey a risk of early onset coronary artery disease (ASCVD) of 3- to 10-fold vs. the general population depending on the severity of the mutation. Identification of monogenic FH within a family has implications for family-based testing (cascade screening), risk stratification, and potentially management, and it has now been recommended that such testing be offered to all potential FH patients. Recently, robust genome wide association studies (GWAS) have led to the recognition that the accumulation of common, small effect alleles affecting many LDL-c raising genes can result in a clinical phenotype largely indistinguishable from monogenic FH (i.e., a risk of early onset ASCVD of ~3-fold) in those at the extreme tail of the distribution for these alleles (i.e., the top 8% of the population for a polygenic risk score). The incorporation of these genetic risk scores into clinical practice for non-FH patients may improve risk stratification but is not yet widely performed due to a less robust evidence base for utility. Here, we review the current status of FH genetic testing, potential future applications as well as challenges and pitfalls.
Collapse
Affiliation(s)
- Ashish Sarraju
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Joshua W Knowles
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, United States.,The FH Foundation, Pasadena, CA, United States.,Stanford Diabetes Research Center, Stanford University, Stanford, CA, United States
| |
Collapse
|
3
|
Ungar L, Sanders D, Becerra B, Barseghian A. Percutaneous Coronary Intervention in Familial Hypercholesterolemia Is Understudied. Front Cardiovasc Med 2018; 5:116. [PMID: 30214904 PMCID: PMC6125301 DOI: 10.3389/fcvm.2018.00116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/08/2018] [Indexed: 01/09/2023] Open
Abstract
Familial hypercholesterolemia (FH) is a common heritable condition in which mutations of genes governing cholesterol metabolism result in elevated LDL levels and accelerated atherosclerosis. The treatment of FH focuses on lipid lowering drugs to decrease patients' cholesterol levels and reduce their risk of cardiovascular events. Even with optimal medical therapy, some FH patients will develop coronary atherosclerosis, suffer myocardial infarction, and require revascularization. Yet, the revascularization of FH patients has not been widely studied. Here we review FH, identify unanswered questions in the interventional management of FH patients, and explore barriers and opportunities for answering these questions. Further research is needed in this neglected but important topic in interventional cardiology.
Collapse
Affiliation(s)
- Leo Ungar
- Department of Cardiology, University of California, Irvine, Irvine, CA, United States
| | - David Sanders
- Department of Internal Medicine, University of California, Irvine, Irvine, CA, United States
| | - Brian Becerra
- Department of Internal Medicine, University of California, Irvine, Irvine, CA, United States
| | - Ailin Barseghian
- Department of Cardiology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Genetic dyslipidemias contribute to the prevalence of ischemic heart disease. The field of genetic dyslipidemias and their influence on atherosclerotic heart disease is rapidly developing and accumulating increasing evidence. The purpose of this review is to describe the current state of knowledge in regard to inherited atherogenic dyslipidemias. The disorders of familial hypercholesterolemia (FH) and elevated lipoprotein(a) will be detailed. Genetic technology has made rapid advancements, leading to new discoveries in inherited atherogenic dyslipidemias, which will be explored in this review, as well as a description of possible future developments. Increasing attention has come upon the genetic disorders of familial hypercholesterolemia and elevated lipoprotein(a). RECENT FINDINGS This review includes new knowledge of these disorders including description of these disorders, their method of diagnosis, their prevalence, their genetic underpinnings, and their effect on the development of cardiovascular disease. In addition, it discusses major advances in genetic technology, including the completion of the human genome sequence, next-generation sequencing, and genome-wide association studies. Also discussed are rare variant studies with specific genetic mechanisms involved in inherited dyslipidemias, such as in the proprotein convertase subtilisin/kexin type 9 (PCSK9) enzyme. The field of genetics of dyslipidemia and cardiovascular disease is rapidly growing, which will result in a bright future of novel mechanisms of action and new therapeutics.
Collapse
Affiliation(s)
- Kavita Sharma
- Ohio Health Heart and Vascular Physicians, 765 North Hamilton Road, Suite 120, Gahanna, OH, 43230, USA
| | - Ragavendra R Baliga
- The Ohio State University Wexner Medical Center, Suite 200, 473 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|