1
|
Gambril JA, Chum A, Goyal A, Ruz P, Mikrut K, Simonetti O, Dholiya H, Patel B, Addison D. Cardiovascular Imaging in Cardio-Oncology: The Role of Echocardiography and Cardiac MRI in Modern Cardio-Oncology. Heart Fail Clin 2022; 18:455-478. [PMID: 35718419 PMCID: PMC9280694 DOI: 10.1016/j.hfc.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cardiovascular (CV) events are an increasingly common limitation of effective anticancer therapy. Over the last decade imaging has become essential to patients receiving contemporary cancer therapy. Herein we discuss the current state of CV imaging in cardio-oncology. We also provide a practical apparatus for the use of imaging in everyday cardiovascular care of oncology patients to improve outcomes for those at risk for cardiotoxicity, or with established cardiovascular disease. Finally, we consider future directions in the field given the wave of new anticancer therapies.
Collapse
Affiliation(s)
- John Alan Gambril
- Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, OH, USA; Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA. https://twitter.com/GambrilAlan
| | - Aaron Chum
- Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA; Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, 473 West 12th Avenue, Suite 200, Columbus, OH 43210, USA
| | - Akash Goyal
- Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA; Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, 473 West 12th Avenue, Suite 200, Columbus, OH 43210, USA. https://twitter.com/agoyalMD
| | - Patrick Ruz
- Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA; Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, 473 West 12th Avenue, Suite 200, Columbus, OH 43210, USA
| | - Katarzyna Mikrut
- Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA. https://twitter.com/KatieMikrut
| | - Orlando Simonetti
- Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA; Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, 473 West 12th Avenue, Suite 200, Columbus, OH 43210, USA; Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH, USA; Department of Radiology, The Ohio State University Medical Center, Columbus, OH, USA
| | - Hardeep Dholiya
- Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA; Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, 473 West 12th Avenue, Suite 200, Columbus, OH 43210, USA. https://twitter.com/Hardeep_10
| | - Brijesh Patel
- Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, 473 West 12th Avenue, Suite 200, Columbus, OH 43210, USA; Cardio-Oncology Program, Heart and Vascular Institute, West Virginia University, Morgantown, WV, USA
| | - Daniel Addison
- Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA; Division of Cancer Prevention and Control, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Iskander J, Kelada P, Rashad L, Massoud D, Afdal P, Abdelmassih AF. Advanced Echocardiography Techniques: The Future Stethoscope of Systemic Diseases. Curr Probl Cardiol 2022; 47:100847. [PMID: 33992429 PMCID: PMC9046647 DOI: 10.1016/j.cpcardiol.2021.100847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/11/2023]
Abstract
Cardiovascular disease (CVD) has been showing patterns of extensive rise in prevalence in the contemporary era, affecting the quality of life of millions of people and leading the causes of death worldwide. It has been a provocative challenge for modern medicine to diagnose CVD in its crib, owing to its etiological factors being attributed to a large array of systemic diseases, as well as its non-binary hideous nature that gradually leads to functional disability. Novel echocardiography techniques have enabled the cardiac ultrasound to provide a comprehensive analysis of the heart in an objective, feasible, time- and cost-effective manner. Speckle tracking echocardiography, contrast echocardiography, and 3D echocardiography have shown the highest potential for widespread use. The uses of novel modalities have been elaborately demonstrated in this study as a proof of concept that echocardiography has a place in routine general practice with supportive evidence being as recent as its role in the concurrent COVID-19 pandemic. Despite such evidence, many uses remain off-label and unexploited in practice. Generalization of echocardiography at the point of care can become a much-needed turning point in the clinical approach to case management. To actualize such aspirations, we recommend further prospective and interventional studies to examine the effect of implementing advanced techniques at the point of care on the decision-making process and evaluate their effectiveness in prevention of cardiovascular morbidities and mortalities.
Collapse
Affiliation(s)
- John Iskander
- Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Peter Kelada
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Lara Rashad
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Doaa Massoud
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Peter Afdal
- Residency program, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Antoine Fakhry Abdelmassih
- Pediatric Cardiology Unit, Department of Pediatrics, Kasr AlAiny Faculty of Medicine, Cairo University, Cairo, Egypt; Consultant of Pediatric Cardiology, Children Cancer Hospital of Egypt (57357 Hospital), Cairo, Egypt
| |
Collapse
|
3
|
Stone JR, Kanneganti R, Abbasi M, Akhtari M. Monitoring for Chemotherapy-Related Cardiotoxicity in the Form of Left Ventricular Systolic Dysfunction: A Review of Current Recommendations. JCO Oncol Pract 2021; 17:228-236. [PMID: 33689453 DOI: 10.1200/op.20.00924] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cardiotoxicity is a well-established complication of multiple cancer therapeutics, and the one of the most prominent effects that limits the use of these agents is in the form of left ventricular dysfunction, otherwise known as chemotherapy-induced cardiomyopathy (CIMP). Because CIMP can worsen patient outcomes and interfere with a patient's life-saving cancer treatments, it is important to implement a monitoring strategy for patients undergoing potentially cardiotoxic treatments. Efforts have been made by multiple societies to provide recommendations for screening and monitoring for CIMP in at-risk patients, with slight variations between guideline documents and expert consensuses. Most of the recommendations for monitoring for CIMP are specific to anthracyclines and the human epidermal growth factor receptor 2-antagonist trastuzumab, with very limited guidance for other cardiotoxic agents such as Tyr kinase inhibitors and proteasome inhibitors, which we cover in this article. Echocardiography remains the mainstay for imaging surveillance because of its safety profile and widespread availability, but the accuracy of cardiac magnetic resonance imaging (CMR) makes it an important modality when there are discrepancies in left ventricular ejection fraction assessment. Subclinical cardiotoxicity may be detected using laboratory biomarkers such as cardiac troponin and brain natriuretic peptide as well as myocardial deformation (strain) imaging by echocardiography or CMR. Specific recommendations for timing and frequency of laboratory biomarker assessment remain up for debate, but myocardial deformation imaging should be performed with every echocardiogram or CMR assessment. Future studies are needed to evaluate the efficacy of established surveillance recommendations and to develop specific recommendations for novel cancer therapeutics.
Collapse
Affiliation(s)
- Jeremy R Stone
- Department of Internal Medicine, Section of Cardiology, University of Nebraska Medical Center, Omaha, NE
| | - Radha Kanneganti
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Muhannad Abbasi
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | | |
Collapse
|
4
|
Wang Z, Qin W, Zhai Z, Huang L, Feng J, Guo X, Liu K, Zhang C, Wang Z, Lu G, Dong S. Use of spectral tracking technique to evaluate the changes in left ventricular function in patients undergoing chemotherapy for colorectal cancer. Int J Cardiovasc Imaging 2020; 37:1203-1213. [PMID: 33247369 DOI: 10.1007/s10554-020-02103-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/08/2020] [Indexed: 12/21/2022]
Abstract
To evaluate the changes in left ventricular myocardial function in patients with colorectal cancer undergoing chemotherapy with mFOLFOX6 (oxaliplatin + 5-fluorouracil + calcium folinate) using three-dimensional speckle-tracking echocardiography (3D-STE). Data were collected from 30 patients diagnosed with colorectal cancer in our hospital treated with mFOLFOX6. We used 3D-STE to measure the following parameters of left ventricle function: global longitudinal strain (GLS), global area strain (GAS), global circumferential strain (GCS), global radial strain (GRS), and left ventricular twist (LVtw). Myocardial composite index (MCI) was calculated from measured values (MCI = GLS × LVtw). The above listed parameters were compared before and after chemotherapy. Receiver operating curves (ROC) were prepared for each parameter and analyzed to identify correlations among MCI, LVEF, GLS, and cTnT. Compared with the pre-chemotherapy state, the absolute values of MCI, LVtw, GLS, GAS, GCS, and GRS decreased with increasing cumulative doses of chemotherapeutic drugs. The absolute values of GAS, GLS, MCI, and LVtw decreased after the first cycle of chemotherapy (P < 0.05). The areas under the ROC curves for MCI and GLS were 0.903 and 0.838, respectively. The correlation observed between MCI and cTnT (r = - 0.7228) was found to be stronger than that between GLS and cTnT (r = - 0.6008). In conclusion, 3D-STE may help detect early changes in left ventricular myocardial function caused by mFOLFOX6 treatment in patients with colorectal cancer. MCI is a relatively sensitive index among the various measurable parameters.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Ultrasonography, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, China
| | - Wenjuan Qin
- Department of Ultrasonography, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, China
| | - Zijing Zhai
- Department of Ultrasonography, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, China
| | - Lei Huang
- Department of Ultrasonography, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, China
| | - Jia Feng
- Department of Ultrasonography, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, China
| | - Xueting Guo
- Department of Ultrasonography, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, China
| | - Kuican Liu
- Department of Ultrasonography, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, China
| | - Caiyun Zhang
- Department of Ultrasonography, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, China
| | - Zhong Wang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, China
| | - Guilin Lu
- Department of Ultrasonography, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, China.
| | - Shanshan Dong
- Department of Ultrasonography, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, China.
| |
Collapse
|