1
|
Liu J, Zheng Y, Zhang R, Yu Y, Wang F, Deng L, Wu K. A novel synthesis method of medium- and long-chain triglyceride lipids from rubber seed oil catalyzed by enzymatic interesterification and its metabolism mechanism. Food Funct 2024; 15:9903-9915. [PMID: 39257163 DOI: 10.1039/d3fo05662g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Medium- and long-chain triglyceride (MLCT) is a striking structural lipid for the supply of energy and essential fatty free acids (FFAs) in the food field. This study aimed to prepare MLCT by enzymatic interesterification of rubber seed oil (RSO) and medium-chain triglyceride (MCT). Fortunately, the conversion of synthesized MLCT could reach 75.4% by the catalysis of Novozym 40086 (7 wt% to MCT) at a temperature of 40 °C with the substrate mole ratio of 1 : 0.7 (RSO : MCT). The as-synthesized MLCT contained unsaturated fatty acid (USFA, 50.13%) at the sn-2 position and exhibited superior performance on the acid value, peroxide value and iodine value in contrast to grade III soybean oil. Moreover, it exhibited the simultaneous release of LCFAs and MCFAs, extremely facilitating the reduction of body weight gain and control of the level of lipids in the blood. Finally, the preferred hepatic metabolism process of the obtained MLCT was proven to be the main cause of the reduced body weight and improved lipid levels by the in vivo deposition experiments. Therefore, our study suggested that the outstanding performance of the MLCT synthesized by RSO in foods as functional lipids.
Collapse
Affiliation(s)
- Jiahao Liu
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing, 100029, PR China.
| | - Yinghui Zheng
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing, 100029, PR China.
| | - Renwei Zhang
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing, 100029, PR China.
| | - Yue Yu
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing, 100029, PR China.
| | - Fang Wang
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing, 100029, PR China.
| | - Li Deng
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing, 100029, PR China.
| | - Kai Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| |
Collapse
|
2
|
Cheng X, Jiang C, Jin J, Jin Q, Akoh CC, Wei W, Wang X. Medium- and Long-Chain Triacylglycerol: Preparation, Health Benefits, and Food Utilization. Annu Rev Food Sci Technol 2024; 15:381-408. [PMID: 38237045 DOI: 10.1146/annurev-food-072023-034539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Medium- and long-chain triacylglycerol (MLCT) is a structured lipid with both medium- and long-chain fatty acids in one triacylglycerol molecule. Compared with long-chain triacylglycerol (LCT), which is mainly present in common edible oils, and the physical blend of medium-chain triacylglycerol with LCT (MCT/LCT), MLCT has different physicochemical properties, metabolic characteristics, and nutritional values. In this article, the recent advances in the use of MLCT in food formulations are reviewed. The natural sources and preparation of MLCT are discussed. A comprehensive summary of MLCT digestion, absorption, transport, and oxidation is provided as well as its health benefits, including reducing the risk of overweight, hypolipidemic and hypoglycemic effects, etc. The potential MLCT uses in food formulations, such as infant formulas, healthy foods for weight loss, and sports foods, are summarized. Finally, the current safety assessment and regulatory status of MLCT in food formulations are reviewed.
Collapse
Affiliation(s)
- Xinyi Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; ,
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chenyu Jiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; ,
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; ,
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; ,
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Casimir C Akoh
- Department of Food Science and Technology, University of Georgia, Athens, Georgia, USA
| | - Wei Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; ,
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; ,
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Neji SB, Chaari A, Galán ML, Frikha F, Bouaziz M. Application of Box-Behnken Design in Production of Monoglyceride with Esterification of Glycerol and Oleic Acid. ACS OMEGA 2023; 8:28813-28820. [PMID: 37576694 PMCID: PMC10413839 DOI: 10.1021/acsomega.3c03772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
Monoglyceride MG has a wide function in the food industry, in particular as a natural emulsifier, pharmaceuticals, cosmetics, antioxidant, and antibacterial. Therefore, the production of polyol ester from esterification of acid (OA) and glycerol was investigated. The process optimization was performed using a Box-Behnken design, examining the effects of temperature, molar ratio, and catalyst amount. For predicting the optimal point, a second-order polynomial model was fitted to correlate the relationship between independent variables and response (% MG). The effects of temperature (100, 150, and 200 °C); catalyst amount (4, 10, and 16% w/w); and glycerol/oleic acid ratio (1:1, 1:2, and 1:3) were investigated and found to deeply affect the reaction outcome. At the optimal reaction conditions: 200 °C, 0.2% w/w KSF, and a glycerol/oleic acid ratio (3:1), more than 71.8% monoglycerides with selectivity of 80% were obtained. Confirmation experiments were performed to demonstrate the effectiveness of this approach, and the characterization of monoglycerides was performed using high-performance liquid chromatography (HPLC).
Collapse
Affiliation(s)
- Soumaya Bouguerra Neji
- Laboratory
of Electrochemistry and Environment, National Engineering School of
Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia
| | - Asma Chaari
- Laboratory
of Electrochemistry and Environment, National Engineering School of
Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia
| | - Miguel Ladero Galán
- Chemical
and Materials Engineering Department, Universidad
Complutense de Madrid, Madrid 28040, Spain
| | - Fakher Frikha
- Laboratory
of Molecular and Cellular Screening Processes, University of Sfax, Sfax 3038, Tunisia
| | - Mohamed Bouaziz
- Laboratory
of Electrochemistry and Environment, National Engineering School of
Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia
| |
Collapse
|
4
|
Nanvakenari S, Movagharnejad K, Latifi A. Modelling and experimental analysis of rice drying in new fluidized bed assisted hybrid infrared-microwave dryer. Food Res Int 2022; 159:111617. [DOI: 10.1016/j.foodres.2022.111617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/16/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023]
|
5
|
Zhou J, Lee YY, Mao Y, Wang Y, Zhang Z. Future of Structured Lipids: Enzymatic Synthesis and Their New Applications in Food Systems. Foods 2022; 11:foods11162400. [PMID: 36010399 PMCID: PMC9407428 DOI: 10.3390/foods11162400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Structured lipids (SLs) refer to a new type of functional lipid obtained by modifying natural triacylglycerol (TAG) through the restructuring of fatty acids, thereby altering the composition, structure, and distribution of fatty acids attached to the glycerol backbones. Due to the unique functional characteristics of SLs (easy to absorb, low in calories, reduced serum TAG, etc.), there is increasing interest in the research and application of SLs. SLs were initially prepared using chemical methods. With the wide application of enzymes in industries and the advantages of enzymatic synthesis (mild reaction conditions, high catalytic efficiency, environmental friendliness, etc.), synthesis of SLs using lipase has aroused great interest. This review summarizes the reaction system of SL production and introduces the enzymatic synthesis and application of some of the latest SLs discussed/developed in recent years, including medium- to long-chain triacylglycerol (MLCT), diacylglycerol (DAG), EPA- and DHA-enriched TAG, human milk fat substitutes, and esterified propoxylated glycerol (EPG). Lastly, several new ways of applying SLs (powdered oil, DAG plastic fat, inert gas spray oil, and emulsion) in the future food industry are also highlighted.
Collapse
Affiliation(s)
- Jun Zhou
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Yilin Mao
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
| | - Zhen Zhang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
- Correspondence:
| |
Collapse
|
6
|
Nimbkar S, Leena MM, Moses JA, Anandharamakrishnan C. Medium chain triglycerides (MCT): State-of-the-art on chemistry, synthesis, health benefits and applications in food industry. Compr Rev Food Sci Food Saf 2022; 21:843-867. [PMID: 35181994 DOI: 10.1111/1541-4337.12926] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 12/07/2021] [Accepted: 01/16/2022] [Indexed: 12/21/2022]
Abstract
Medium chain triglycerides (MCT) are esters of fatty acids with 6 to 12 carbon atom chains. Naturally, they occur in various sources; their composition and bioactivity are source and extraction process-linked. The molecular size of MCT oil permits unique metabolic pathways and energy production rates, making MCT oil a high-value functional food. This review details the common sources of MCT oil, presenting critical information on the various approaches for MCT oil extraction or synthesis. Apart from conventional techniques, non-thermal processing methods that show promising prospects are analyzed. The biological effects of MCT oil are summarized, and the range of need-driven modification approaches are elaborated. A section is devoted to highlighting the recent trends in the application of MCT oil for food, nutraceuticals, and allied applications. While much is debated about the role of MCT oil in human health and wellness, there is limited information on daily requirements, impact on specific population groups, and effects of long-term consumption. Nonetheless, several studies have been conducted and continue to identify the most effective methods for MCT oil extraction, processing, handling, and storage. A knowledge gap exists and future research must focus on technology packages for scalability and sustainability.
Collapse
Affiliation(s)
- Shubham Nimbkar
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India
| | - M Maria Leena
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India
| |
Collapse
|
7
|
Lee YY, Tang TK, Chan ES, Phuah ET, Lai OM, Tan CP, Wang Y, Ab Karim NA, Mat Dian NH, Tan JS. Medium chain triglyceride and medium-and long chain triglyceride: metabolism, production, health impacts and its applications - a review. Crit Rev Food Sci Nutr 2021; 62:4169-4185. [PMID: 33480262 DOI: 10.1080/10408398.2021.1873729] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Structured lipid is a type of modified form of lipid that is "fabricated" with the purpose to improve the nutritional and functional properties of conventional fats and oils derived from animal and plant sources. Such healthier choice of lipid received escalating attention from the public for its capability to manage the rising prevalence of metabolic syndrome. Of which, medium-chain triacylglycerol (MCT) and medium-and long-chain triacylglycerol (MLCT) are the few examples of the "new generation" custom-made healthful lipids which are mainly composed of medium chain fatty acid (MCFA). MCT is made up exclusively of MCFA whereas MLCT contains a mixture of MCFA and long chain fatty acid (LCFA), respectively. Attributed by the unique metabolism of MCFA which is rapidly metabolized by the body, MCFA and MCT showed to acquire multiple physiological and functional properties in managing and reversing certain health disorders. Several chemically or enzymatically oils and fats modification processes catalyzed by a biological or chemical catalyst such as acidolysis, interesterification and esterification are adopted to synthesis MCT and MLCT. With their purported health benefits, MCT and MLCT are widely being used as nutraceutical in food and pharmaceutical sectors. This article aims to provide a comprehensive review on MCT and MLCT, with an emphasis on the basic understanding of its structures, properties, unique metabolism; the current status of the touted health benefits; latest routes of production; its up-to-date applications in the different food systems; relevant patents filed and its drawbacks.
Collapse
Affiliation(s)
- Yee-Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.,Monash Industry Palm Oil Research and Education Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Teck-Kim Tang
- International Joint Laboratory on Plant Oils Processing and Safety, Jinan University- Universiti Putra Malaysia.Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Eng-Seng Chan
- Monash Industry Palm Oil Research and Education Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.,School of Engineering, Department of Chemical Engineering, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Eng-Tong Phuah
- Department of Agricultural and Food Science, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
| | - Oi-Ming Lai
- International Joint Laboratory on Plant Oils Processing and Safety, Jinan University- Universiti Putra Malaysia.Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor
| | - Chin-Ping Tan
- International Joint Laboratory on Plant Oils Processing and Safety, Jinan University- Universiti Putra Malaysia. Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yong Wang
- International Joint Laboratory on Plant Oils Processing and Safety, Jinan University- Universiti Putra Malaysia. Department of Food Science and Engineering, Jinan University, Guangzhou, P.R. China
| | - Nur Azwani Ab Karim
- Sime Darby Research Sdn Bhd, R&D Carey Island-Upstream, Carey Island, Selangor, Malaysia
| | - Noorlida Habi Mat Dian
- Malaysia Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor, Malaysia
| | - Joo Shun Tan
- Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Pulau Pinang, Malaysia
| |
Collapse
|
8
|
Huang Z, Guo Z, Xie D, Cao Z, Chen L, Wang H, Jiang L, Shen Q. Rhizomucor miehei lipase-catalysed synthesis of cocoa butter equivalent from palm mid-fraction and stearic acid: Characteristics and feasibility as cocoa butter alternative. Food Chem 2020; 343:128407. [PMID: 33129620 DOI: 10.1016/j.foodchem.2020.128407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 01/17/2023]
Abstract
In this study, cocoa butter equivalents (CBEs) were prepared through enzymatic interesterification of palm mid-fraction (PMF) with stearic acid (SA). The reaction process parameters were experimented and the performance of the product was analysed. PMF and stearic acid (at a mass ratio of 1:2) were catalysed by 80 g kg-1 enzyme loading of Lipozyme RM IM fromRhizomucor mieheiat 60 °C for 120 min. The yield of the CBE product was more than 92%, and the CBE resembled cocoa butter (CB) in terms of its triacylglycerol composition. The hardness of the CBE product was higher than that of CB at different storage temperatures, but this difference was not obvious at 25 °C. The polymorphic structures and SFC curve of the CBE were similar to those of the CB. In addition, the CBE could be mixed with CB in any ratio without an obvious eutectic phenomena. Up to 40% CBE could be added to CB without significantly affecting the thermodynamic properties of CB. Thus, replacing CB with the CBE product is feasible.
Collapse
Affiliation(s)
- Zhaoxian Huang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Dan Xie
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Zhenyu Cao
- Beijing Key Laboratory of Nutrition & Health and Food Safety, COFCO Nutrition & Health Research Institute, Beijing 102209, China.
| | - Liang Chen
- Jiangsu Yiming Biological Technology Co., Ltd, Taizhou 225300, China
| | - Hong Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Qi Shen
- Aarhuskarlshamn (Shanghai) Co., Ltd, Shanghai 200125, China.
| |
Collapse
|
9
|
Huang Z, Cao Z, Guo Z, Chen L, Wang Z, Sui X, Jiang L. Lipase catalysis of α-linolenic acid-rich medium- and long-chain triacylglycerols from perilla oil and medium-chain triacylglycerols with reduced by-products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4565-4574. [PMID: 32419135 DOI: 10.1002/jsfa.10515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/10/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Medium- and long- chain triacylglycerols (MLCTs) are functional structural lipids that can provide the human body with essential fatty acids and a faster energy supply. This study aimed to prepare MLCTs rich in α-linolenic by enzymatic interesterification of perilla oil and medium-chain triacylglycerols (MCTs), catalyzed by Lipozyme RM IM, Lipozyme TL IM, Lipozyme 435, and Novozyme 435 respectively. RESULTS The effects of lipase loading, concentration of MCTs, reaction temperature, and reaction time on the yield of MLCTs were investigated. It was found that the reaction achieved more than a 70% yield of MLCTs in triacylglycerols under the conditions of 400 g kg-1 MCTs and 60 g kg-1 lipase loading after equilibrium. A novel two-stage deodorization was also applied to purify the interesterification products. The triacylglycerols reach over 97% purity in the products with significant removal (P < 0.05) of the free fatty acids, and the trans fatty acids were strictly controlled at below 1%. There was more than 40% α-linolenic in the purified products, with long-chain fatty acids mostly occupying the desired sn-2 position in acylglycerols, which are more active in hydrolysis. CONCLUSION A series of novel α-linolenic acid-rich medium- and long-chain triacylglycerols was prepared. Under appropriate reaction conditions, the yield of MLCTs in triacylglycerols was above 70%. A novel two-stage deodorization can be used to promote the elimination of free fatty acids and limit the generation of trans fatty acids. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhaoxian Huang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhenyu Cao
- Beijing Key Laboratory of Nutrition & Health and Food Safety, COFCO Nutrition & Health Research Institute, Beijing, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Liang Chen
- Jiangsu Yiming Biological Technology Co., Ltd, Taizhou, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin, China
- National Research Center of Soybean Engineering and Technology, Harbin, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, China
- National Research Center of Soybean Engineering and Technology, Harbin, China
| |
Collapse
|
10
|
Yuan T, Wei W, Wang X, Jin Q. Biosynthesis of structured lipids enriched with medium and long-chain triacylglycerols for human milk fat substitute. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109255] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Zhao B, Li H, Lan T, Wu D, Pan L, Chen Z. Preparation of High-Purity Trilinolein and Triolein by Enzymatic Esterification Reaction Combined with Column Chromatography. J Oleo Sci 2019; 68:159-165. [PMID: 30651418 DOI: 10.5650/jos.ess18142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
High-purity trilinolein and triolein were prepared by Novozym 435-catalyzed esterification reaction combined with column chromatography purification in this study. Firstly, linoleic acid and oleic acid were respectively extracted from safflower seed oil and camellia seed oil by urea adduct method. Secondly, trilinolein and triolein were synthesized through Novozym 435 catalyzed esterification of glycerol and fatty acids. The best synthesis conditions were obtained as follows: reaction temperature 100°C, residual pressure 0.9 kPa, enzyme dosage 6%, molar ratio of glycerol to linoleic acid 1:3 and reaction time 8 h. Crude trilinolein and triolein were further purified by silica gel column chromatography. Finally, highpurity trilinolein (95.43±0.97%) and triolein (93.07±1.05%) were obtained.
Collapse
Affiliation(s)
- Beibei Zhao
- College of Food Science and Engineering, Henan University of Technology
| | - Hua Li
- College of Food Science and Engineering, Henan University of Technology
| | - Tao Lan
- China National Institute of Standardization
| | - Di Wu
- College of Food Science and Engineering, Henan University of Technology
| | - Li Pan
- College of Food Science and Engineering, Henan University of Technology
| | - Zhicheng Chen
- College of Food Science and Engineering, Henan University of Technology
| |
Collapse
|
12
|
Lian W, Wang W, Tan CP, Wang J, Wang Y. Immobilized Talaromyces thermophilus lipase as an efficient catalyst for the production of LML-type structured lipids. Bioprocess Biosyst Eng 2018; 42:321-329. [DOI: 10.1007/s00449-018-2036-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022]
|
13
|
Enzymatic preparation and facile purification of medium-chain, and medium- and long-chain fatty acid diacylglycerols. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Guebara SAB, Ract JNR, Vitolo M. Conversion of Caprylic Acid into Mono-, Di- and Triglycerides Using Immobilized Lipase. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/s13369-018-3138-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Sneha R, Jeyarani T. Lipase-catalysed acidolysis of mango kernel fat with capric acid to obtain medium- and long-chain triacylglycerols. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Ramesh Sneha
- Traditional Food and Sensory Science Department; CSIR- Central Food Technological Research Institute; Mysuru 570020 Karnataka India
| | - Thangaraj Jeyarani
- Traditional Food and Sensory Science Department; CSIR- Central Food Technological Research Institute; Mysuru 570020 Karnataka India
| |
Collapse
|
16
|
Korma SA, Zou X, Ali AH, Abed SM, Jin Q, Wang X. Preparation of structured lipids enriched with medium- and long-chain triacylglycerols by enzymatic interesterification for infant formula. FOOD AND BIOPRODUCTS PROCESSING 2018. [DOI: 10.1016/j.fbp.2017.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Zhou S, Wang Y, Jiang Y, Zhang Z, Sun X, Yu LL. Dietary Intake of Structured Lipids with Different Contents of Medium-Chain Fatty Acids on Obesity Prevention in C57BL/6J Mice. J Food Sci 2017. [DOI: 10.1111/1750-3841.13789] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shengmin Zhou
- Inst. of Food and Nutraceutical Science, School of Agriculture and Biology; Shanghai Jiao Tong Univ.; Shanghai 200240 People's Republic of China
| | - Yueqiang Wang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co. Ltd.; Shanghai 200137 People's Republic of China
| | - Yuanrong Jiang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co. Ltd.; Shanghai 200137 People's Republic of China
| | - Zhongfei Zhang
- Inst. of Food and Nutraceutical Science, School of Agriculture and Biology; Shanghai Jiao Tong Univ.; Shanghai 200240 People's Republic of China
| | - Xiangjun Sun
- Inst. of Food and Nutraceutical Science, School of Agriculture and Biology; Shanghai Jiao Tong Univ.; Shanghai 200240 People's Republic of China
| | - Liangli Lucy Yu
- Dept. of Nutrition and Food Science; Univ. of Maryland; College Park Md. 20742 U.S.A
| |
Collapse
|
18
|
Koçak Yanık D, Keskin H, Fadıloğlu S, Göğüş F. Acidolysis of terebinth fruit oil with palmitic and caprylic acids in a recirculating packed bed reactor: optimization using response surface methodology. GRASAS Y ACEITES 2016. [DOI: 10.3989/gya.0633152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Ghazali HM, Dollah S, Abdulkarim SM, Ahmad SH, Khoramnia A. Enzymatic interesterification on the physicochemical properties of Moringa oleifera seed oil blended with palm olein and virgin coconut oil. GRASAS Y ACEITES 2015. [DOI: 10.3989/gya.0695141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Ramakrishnan V, Goveas LC, Prakash M, Halami PM, Narayan B. Optimization of conditions for probiotic curd formulation by Enterococcus faecium MTCC 5695 with probiotic properties using response surface methodology. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2014; 51:3050-60. [PMID: 26396297 PMCID: PMC4571218 DOI: 10.1007/s13197-012-0821-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/11/2012] [Accepted: 08/16/2012] [Indexed: 10/27/2022]
Abstract
Enterococcus faecium MTCC 5695 possessing potential probiotic properties as well as enterocin producing ability was used as starter culture. Effect of time (12-24 h) and inoculum level (3-7 % v/v) on cell growth, bacteriocin production, antioxidant property, titrable acidity and pH of curd was studied by response surface methodology (RSM). The optimized conditions were 26.48 h and 2.17%v/v inoculum and the second order model validated. Co cultivation studies revealed that the formulated product had the ability to prevent growth of foodborne pathogens that affect keeping quality of the product during storage. The results indicated that application of E. faecium MTCC 5695 along with usage of optimized conditions attributed to the formation of highly consistent well set curd with bioactive and bioprotective properties. Formulated curd with potential probiotic attributes can be used as therapeutic agent for the treatment of foodborne diseases like Traveler's diarrhea and gastroenteritis which thereby help in improvement of bowel health.
Collapse
Affiliation(s)
- Vrinda Ramakrishnan
- />Department of Food Microbiology, CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
| | - Louella Concepta Goveas
- />Department of Food Microbiology, CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
| | - Maya Prakash
- />Sensory Science Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
| | - Prakash M. Halami
- />Department of Food Microbiology, CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
| | - Bhaskar Narayan
- />Department of Meat, Fish and Poultry Technology, CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
| |
Collapse
|
21
|
Yang K, Bi Y, Sun S, Yang G, Ma S, Liu W. Optimisation of Novozym-435-catalysed esterification of fatty acid mixture for the preparation of medium- and long-chain triglycerides (MLCT) in solvent-free medium. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12393] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Kaizhou Yang
- School of Food Science and Engineering; Henan University of Technology; Lianhua Rd Zhengzhou Henan Province 450001 China
| | - Yanlan Bi
- School of Food Science and Engineering; Henan University of Technology; Lianhua Rd Zhengzhou Henan Province 450001 China
| | - Shangde Sun
- School of Food Science and Engineering; Henan University of Technology; Lianhua Rd Zhengzhou Henan Province 450001 China
| | - Guolong Yang
- School of Food Science and Engineering; Henan University of Technology; Lianhua Rd Zhengzhou Henan Province 450001 China
| | - Sumin Ma
- School of Food Science and Engineering; Henan University of Technology; Lianhua Rd Zhengzhou Henan Province 450001 China
| | - Wei Liu
- School of Food Science and Engineering; Henan University of Technology; Lianhua Rd Zhengzhou Henan Province 450001 China
| |
Collapse
|
22
|
|
23
|
Keskin H, Koçak D, Göğüş F, Fadıloğlu S. Enzymatic acidolysis of triolein with palmitic and caprylic acids: Optimization of reaction parameters by response surface methodology. GRASAS Y ACEITES 2012. [DOI: 10.3989/gya.011012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Lee YY, Tang TK, Lai OM. Health Benefits, Enzymatic Production, and Application of Medium- and Long-Chain Triacylglycerol (MLCT) in Food Industries: A Review. J Food Sci 2012; 77:R137-44. [DOI: 10.1111/j.1750-3841.2012.02793.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Sharma M, Lokesh BR. Effect of Enzymatic Trans- and Interesterification on the Thermal Properties of Groundnut and Linseed Oils and Their Blends. J AM OIL CHEM SOC 2012. [DOI: 10.1007/s11746-011-1985-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Jala RCR, Hu P, Yang T, Jiang Y, Zheng Y, Xu X. Lipases as biocatalysts for the synthesis of structured lipids. Methods Mol Biol 2012; 861:403-433. [PMID: 22426731 DOI: 10.1007/978-1-61779-600-5_23] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Structured lipids (SL) are broadly referred to as modified or synthetic oils and fats or lipids with functional or pharmaceutical applications. Some structured lipids, such as triglycerides that contain both long-chain (mainly essential) fatty acids and medium- or short-chain fatty acids and also artificial products that mimic the structure of natural materials, namely human milk fat substitutes and cocoa butter equivalents, have been discussed. Further, other modified or synthetic lipids, such as structured phospholipids and synthetic phenolic lipids are also included in this chapter. For all the products described in this chapter, enzymatic production in industry has been already conducted in one way or another. Cocoa butter equivalents, healthy oil containing medium-chain fatty acids, phosphatidyl serine, and phenol lipids from enzyme technology have been reported for commercial operation. As the demand for better quality functional lipids is increasing, the production of structured lipids becomes an interesting area. Thus, in this chapter we have discussed latest developments as well as present industrial situation of all commercially important structured lipids.
Collapse
|
27
|
Debnath S, Ravi R, Lokesh BR. Optimisation of lipase-catalysed interesterification reaction for modulating rheological and heat transfer properties of frying oil. Food Chem 2011. [DOI: 10.1016/j.foodchem.2011.05.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Effects of Enzymatic Liquefaction, Maltodextrin Concentration, and Spray-Dryer Air Inlet Temperature on Pumpkin Powder Characteristics. FOOD BIOPROCESS TECH 2011. [DOI: 10.1007/s11947-011-0686-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
29
|
Hydrodynamic, thermo-analytical and molecular structural investigations of enzyme interesterified oil and its thermo-oxidative stability by thermogravimetric analysis. J FOOD ENG 2011. [DOI: 10.1016/j.jfoodeng.2011.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Characterization of Terebinth Fruit Oil and Optimization of Acidolysis Reaction with Caprylic and Stearic Acids. J AM OIL CHEM SOC 2011. [DOI: 10.1007/s11746-011-1830-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Lipase-Mediated Interesterification of Oils for Improving Rheological, Heat Transfer Properties and Stability During Deep-Fat Frying. FOOD BIOPROCESS TECH 2011. [DOI: 10.1007/s11947-010-0485-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Optimization of Dehydration of Lactobacillus salivarius Using Radiant Energy Vacuum. FOOD BIOPROCESS TECH 2010. [DOI: 10.1007/s11947-010-0437-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Application of Response Surface Methodology to Improve Fermentation Time and Rheological Properties of Probiotic Yogurt Containing Lactobacillus reuteri. FOOD BIOPROCESS TECH 2010. [DOI: 10.1007/s11947-010-0433-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Modeling and Optimization of Lipozyme RM IM-Catalyzed Esterification of Medium- and Long-Chain Triacyglycerols (MLCT) Using Response Surface Methodology. FOOD BIOPROCESS TECH 2010. [DOI: 10.1007/s11947-010-0325-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Kuang SS, Oliveira JC, Crean AM. An Analysis of the Influence of Multiple Processing Factors on the Characteristics of Bioactive-Loaded Beads Prepared by Extrusion–Spheronisation. FOOD BIOPROCESS TECH 2009. [DOI: 10.1007/s11947-009-0308-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Physicochemical Properties and Sensory Attributes of Medium- and Long-Chain Triacylglycerols (MLCT)-Enriched Bakery Shortening. FOOD BIOPROCESS TECH 2009. [DOI: 10.1007/s11947-009-0204-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Enrichment of Rice Bran Oil with α-Linolenic Acid by Enzymatic Acidolysis: Optimization of Parameters by Response Surface Methodology. FOOD BIOPROCESS TECH 2009. [DOI: 10.1007/s11947-009-0191-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Koh SP, Arifin N, Tan CP, Yusoff MSA, Long K, Lai OM. Deep Frying Performance of Enzymatically Synthesized Palm-Based Medium- and Long-Chain Triacylglycerols (MLCT) Oil Blends. FOOD BIOPROCESS TECH 2008. [DOI: 10.1007/s11947-008-0138-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|