1
|
Liu T, Lei H, Zhen X, Liu J, Xie W, Tang Q, Gou D, Zhao J. Advancements in modifying insoluble dietary fiber: Exploring the microstructure, physicochemical properties, biological activity, and applications in food industry-A review. Food Chem 2024; 458:140154. [PMID: 38944924 DOI: 10.1016/j.foodchem.2024.140154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Recent research has primarily focused on strategies for modifying insoluble dietary fiber (IDF) to enhance its performance and functionality. IDF is obtained from various inexpensive sources and can be manipulated to alter its biological effects, making it possible to revolutionize food processing and nutrition. In this review, multiple IDF modification techniques are thoroughly examined and discussed, with particular emphasis on the resulting changes in the physicochemical properties, biological activities, and microstructure of the fiber. An extensive overview of the practical applications of modified IDF in food processing is provided. Our study aims to raise awareness about the vast possibilities presented by modified IDF and encourage further exploration and utilization of this field in the realm of food production.
Collapse
Affiliation(s)
- Tong Liu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Hongyu Lei
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Xinyu Zhen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jiaxing Liu
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Wenlong Xie
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Qilong Tang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| |
Collapse
|
2
|
Guo J, Qi X, Liu Y, Guan E, Wen J, Bian K. Structure-activity relationship between gluten and dough quality of sprouted wheat flour based on air classification-induced component recombination. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6905-6911. [PMID: 37312439 DOI: 10.1002/jsfa.12783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 06/14/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Air classification can separate sprouted wheat flour (SWF) into three types: coarse wheat flour (F1), medium wheat flour (F2) and fine wheat flour (F3). The gluten quality of SWF can be indirectly improved by removing inferior parts (F3). In order to reveal the underlying mechanism of this phenomenon, the composition and structural changes of gluten, as well as the rheological properties and fermentation characteristics of gluten in recombinant dough in the process of air classification of all three SWF types, were analyzed in this study. RESULTS Overall, sprouting significantly reduced the content of high-molecular-weight subunits, such as glutenin subunit and ω-gliadin. It also destroyed the structural content, such as disulfide bonds, α-helix and β-turn contents, which maintained the stability of gluten gel. Air classification made the above changes in F3 more severe but reversed them in F1. Moreover, rheological properties were more affected by gluten composition, whereas fermentation characteristics were more affected by gluten structure. CONCLUSION After air classification, particles rich in high molecular weight subunits from SWF are enriched in F1, and the gluten of F1 has more secondary structure that maintain gel stability, which ultimately lead to improved rheology properties and fermentation characteristics. F3 relatively exhibits the opppsite phenomenon. These results further reveal the potential mechanism of improvement of SWF gluten by air classification. Moreover, Thus, this study provides new perspectives for the utilization of SWF. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia Guo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Xiaoxiao Qi
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yuanxiao Liu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Erqi Guan
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Jiping Wen
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Ke Bian
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
3
|
Grgić T, Pavišić Z, Maltar-Strmečki N, Voučko B, Čukelj Mustač N, Ćurić D, Le-Bail A, Novotni D. Ultrasound-assisted Modification of Enzymatic and Antioxidant Activities, Functional and Rheological Properties of Oat and Barley Bran. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03074-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Liu Y, Huang S, Meng T, Wang Y, Zhang Z. Effects of steam explosion on the nutritional and functional properties of black-grained wheat bran and its application. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2175-2185. [PMID: 36541582 DOI: 10.1002/jsfa.12401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND In recent years, an increasing interest in healthy functional foods has been documented among health-conscious consumers. Steam explosion (SE)-treated black-grained wheat (BGW) bran was explored for the development of chiffon cakes with high nutritional and functional value. RESULTS The content of crude fat and total starch decreased with increasing SE pressure, whereas water-holding capacity and antioxidant activity increased, suggesting SE at 0.6-1.0 MPa could be an effective technique for enhancing the nutritional and functional properties of wheat bran. The protein, iron, zinc, manganese, selenium, and soluble dietary fiber contents, the water-holding, oil-binding, swelling, cholesterol binding, and cation-exchange capacities, and antioxidant activity of SE BGW bran were better than those of SE white-grained wheat bran. The addition of SE bran (0.8 MPa) to flour significantly decreased the peak viscosity, final viscosity, and setback and increased the pasting temperature. The effect of SE bran on the pasting properties of low-gluten and medium-gluten flour was stronger than that of high-gluten flour. SE BGW bran altered the physicochemical properties of chiffon cakes. When 6% SE BGW bran (0.8 MPa) was added, chiffon cakes exhibited good specific volume, hardness, chewiness, and other sensory qualities. CONCLUSIONS These results indicate that SE at 0.6-1.0 MPa is an effective technique for enhancing the nutritional and functional properties of wheat bran. SE BGW bran can be alternatives to food materials for developing health functional cereal-based products. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuxiu Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuhua Huang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Tianqi Meng
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yizhao Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhengmao Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Zhang H, Liu H, Qi L, Xv X, Li X, Guo Y, Jia W, Zhang C, Richel A. Application of steam explosion treatment on the collagen peptides extraction from cattle bone. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
6
|
Kong F, Li Y, Xue D, Ding Y, Sun X, Guo X, Wang W. Physical properties, antioxidant capacity, and starch digestibility of cookies enriched with steam-exploded wheat bran. Front Nutr 2022; 9:1068785. [PMID: 36570167 PMCID: PMC9768449 DOI: 10.3389/fnut.2022.1068785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Wheat bran-based food is rich in bioactive compounds, and steam explosion enhances the nutritional properties of wheat bran. This study examined the potential utilization of steam-exploded wheat bran (SWB) in cookie formulation. The influence of steam explosion on the chemical compounds in wheat bran and the effects of SWB on the physical properties, antioxidant capacity, and starch digestibility of cookies were investigated. The results showed that steam explosion facilitated the release of reducing sugar, flavonoids, phenolic substances, and amino acid nitrogen in wheat bran, thereby improving its nutritional properties. The reduction of sugar, total flavonoids, total phenolics, and amino acid nitrogen contents of wheat bran after steam explosion increased by 34.22, 183.02, 284.09, and 93.39%, respectively, compared with those of native wheat bran. Substitution of SWB for wheat flour mainly induced higher water, sodium carbonate, and sucrose solvent retention capacities, which were positively related to the spread ratio and hardness of cookies. The cookies with more SWB substitution (30-50%) expressed a higher spread ratio and harder texture than the others. The substitution of SWB caused changes in the antioxidant properties of cookies, which were related to the phenolic content. The cookies with SWB showed a higher DPPH radical scavenging activity (16.30-30.93%) than that of the control (14.74%). SWB might form a matrix barrier to hinder starch digestion, thus reducing the digestibility of cookies. The cookies enriched with 30-50% of the SWB exhibited greater physical properties and antioxidant capacity but lower starch digestibility than those of other cookies. The results will contribute to expanding the application range and improving the quality of bran-rich flour products.
Collapse
Affiliation(s)
- Feng Kong
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China,*Correspondence: Feng Kong
| | - Yue Li
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Di Xue
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Yishuai Ding
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Xiaofan Sun
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Xingfeng Guo
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Wenhao Wang
- Gambol Pet Group Co., Ltd., Liaocheng, China
| |
Collapse
|
7
|
Diet nutrient digestibility and growth performance in weaned pigs fed barley differing in fermentable starch and fibre profile. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Meng X, Li T, Zhao J, Fan M, Qian H, Li Y, Wang L. Effects of Different Bran Pretreatments on Rheological and Functional Properties of Triticale Whole-wheat Flour. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02959-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Zeng Q, Kong F, Li Y, Guo X. Correlation of steam explosion severity with morphological and physicochemical characterization of soybean meal. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.991888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Steam explosion, a novel effective technology for cereal modification, integrates high-temperature autohydrolysis and structural disruption, which can significantly influence the morphological and physicochemical characterization of the feedstocks. The deep knowledge of the structural changes that are brought about by the treatment severity is connected with the technological demands to improve the processing efficiency and to increase the industrial application of the feedstocks by steam explosion. In this study, the changes in morphological and physicochemical properties of soybean meal induced by steam explosion were investigated. The correlation of steam explosion severity with soybean meal's final quality was also analyzed. The results showed that steam explosion effectively increased the fractal dimension from 1.6553 to 1.8871, the glycinin content from 151.38 to 334.94 mg/g, and the 2,2-diphenylpicrylhydrazyl (DPPH) radical scavenging activity from 28.69 to 63.78%. The gray value, color (L* and a* values), and the total phenol and polysaccharide contents of soybean meal were reduced with greater steam explosion severity. Steam explosion severity had a remarkable positive correlation with the fractal dimension and DPPH radical scavenging activity. However, steam explosion severity had no significant correlation with the textural and adsorption properties of the soybean meal. This study focused on the morphological and physicochemical property changes of the soybean meal during a steam explosion process, which could guide the application of steam explosion in food systems.
Collapse
|
10
|
Sanchez-Zannatta J, Le Thanh B, Wang L, Beltranena E, Newkirk R, Zijlstra R. Ileal nutrient and energy digestibility of steam-exploded canola meal in cannulated grower pigs and total tract nutrient digestibility and growth performance of diets containing steam-exploded canola meal in weaned pigs. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Kong F, Zeng Q, Li Y, Di X, Ding Y, Guo X. Effect of steam explosion on nutritional components, physicochemical and rheological properties of brown rice powder. Front Nutr 2022; 9:954654. [PMID: 36071937 PMCID: PMC9441901 DOI: 10.3389/fnut.2022.954654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
Brown rice powder is underutilized mainly due to its lower starch digestibility and poor processing performance. The present study investigated the potential of steam explosion on the improvement of nutritional and physicochemical characteristic in brown rice powder and rheological property of paste. Compared with native brown rice powder, steam explosion at 0.5 MPa for 7 min increased the water-extractable arabinoxylans (5.77%), reducing sugar content (21.04%), and iodine blue value (30.38%), which indicated steam explosion that destroyed the intact cells of brown rice. Later the crystalline structure of brown rice powder was destroyed into an amorphous structure by steam explosion. Steam explosion enhanced the degree of gelatinization (4.76~351.85%) and solvent retention capacity (SRC) of brown rice powder, compared with native sample. The effect on the intact cells and starch structure of brown rice caused the starch digestibility enhancement remarkable. Viscoelastic profiles confirmed that steam explosion weakened the paste strength and elasticity corresponded with hardness and cohesiveness by increasing the loss factor (tanδ). This work provided important information for brown rice powder modified by steam explosion (0.5 MPa, 7 min) with good nutritional property (nutrients and digestibility) and processability (SRC, textural, and rheological property). Steam exploded brown rice powder (0.5 MPa, 7 min) could serve as a potential ingredient widely used in food products.
Collapse
|
12
|
Kong F, Zeng Q, Li Y, Zhao Y, Guo X. Improving bioaccessibility and physicochemical property of blue-grained wholemeal flour by steam explosion. Front Nutr 2022; 9:877704. [PMID: 35967773 PMCID: PMC9363763 DOI: 10.3389/fnut.2022.877704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Whole grain contains many health-promoting ingredients, but due to its poor bioaccessibility and processibility, it is not widely accepted by consumers. The steam explosion was exploited to modify the nutritional bioaccessibility and the physicochemical properties of wholemeal flour in this study. In vitro starch digestibility, in vitro protein digestibility of wholemeal flour, total flavonoids content, and total phenolics content of digestive juice were used to evaluate the bioaccessibility, and a significant variation (p < 0.05) was noted. Results showed that steam explosion enhanced the gastric protein digestibility ranged from 5.67 to 6.92% and the intestinal protein digestibility ranged from 16.77 to 49.12%. Steam-exploded wholemeal flour (0.5 MPa, 5 min) had the highest protein digestibility and rapidly digestible starch content. Compared with native flour, steam explosion (0.5 MPa, 5 min) contributed to a 0.72-fold and 0.33-fold increment of total flavonoids content and total phenolics content in digestible juice. Chemical changes of wholemeal flour, induced by steam explosion, caused the changes in the solvent retention capacity, rheological property of wholemeal flour, and altered the falling number (and liquefaction number). An increasing tendency to solid-like behavior and the gel strength of wholemeal flour was significantly enhanced by the steam explosion at 0.5 MPa for 5 min, while the gluten was not weakened. This study indicated that steam-exploded wholemeal flour (0.5 MPa, 5 min) could serve as a potential ingredient with the noticeable bioaccessibility and physicochemical properties in cereal products.
Collapse
Affiliation(s)
| | | | | | | | - Xingfeng Guo
- College of Agronomy, Liaocheng University, Liaocheng, China
| |
Collapse
|
13
|
Kong F, Zeng Q, Li Y, Ding Y, Xue D, Guo X. Improving Antioxidative and Antiproliferative Properties Through the Release of Bioactive Compounds From Eucommia ulmoides Oliver Bark by Steam Explosion. Front Nutr 2022; 9:916609. [PMID: 35845794 PMCID: PMC9280486 DOI: 10.3389/fnut.2022.916609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
Eucommia ulmoides Oliver bark is a potential medicinal plant-based feedstock for bioactive products and possesses the effective functions of antioxidant and antitumor. Network pharmacology was employed to reveal the oxidative and free radical damage and cancer-related potential compounds of Eucommia ulmoides Oliver in this study. The result showed that quercetin might be the key compound to resist these two types of diseases. Then, the effect of steam explosion on the release of bioactive compounds and the antioxidative and antiproliferative properties of the extract from Eucommia ulmoides Oliver bark were investigated. Results showed that steam explosion at 0.7 MPa for 30 min significantly enhanced the total phenolic, total flavonoids, and quercetin content of Eucommia ulmoides Oliver bark. Reducing power and 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging activity of the steam-exploded extracting solution were 1.72 and 2.76 times of native. The antiproliferative activity to CT26 and HepG2 of the extract from steam-exploded Eucommia ulmoides Oliver bark (SEU) was higher than those of native-exploded Eucommia ulmoides Oliver bark (NEU). All these results suggested that steam explosion could be applied to release the bioactive compounds, thus enhanced the antioxidative and antiproliferative activities of medicinal and edible plant-based sources.
Collapse
|
14
|
Kong F, Zeng Q, Li Y, Guo X. Effect of Steam Explosion on Structural Characteristics of β-Conglycinin and Morphology, Chemical Compositions of Soybean Meal. Front Nutr 2022; 9:896664. [PMID: 35719153 PMCID: PMC9202520 DOI: 10.3389/fnut.2022.896664] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, steam explosion was applied as a means to degrade β-conglycinin. We investigated changes in morphology, the chemical composition of soybean meal, and the structural characteristics of β-conglycinin. The results showed that steam explosion at 0.7 MPa for 8 min could effectively decrease the β-conglycinin content of soybean meal while the histamine content was not increased. The structural characteristics of soybean meal proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), and X-ray diffraction (XRD). Steam explosion caused the degradation of high weight proteins and reduced the band density of α', α, and β subunits in β-conglycinin. The micro-surface of soybean meal seemed to be in the cracked or puffed stage and the color became brown or dark after steam explosion. Steam explosion facilitated the dissolution of water-extractable arabinoxylans, which are 4.81 fold higher than that of native soybean meal. Phytic acid was exposed to the hydrothermal environment of the steam explosion process and consequently degraded by 12.95-24.69%. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of soybean meal extract was gradually increased from 20.70 to 33.71% with the rising of treated pressure from 0.3 to 0.7 MPa, which was 1.11-1.81 fold of native extract. The steam explosion may be a new modification technology that could decrease antigenicity, and steam-exploded soybean meal (0.7 MPa, 8 min) with lower β-conglycinin and phytic acid content that could be widely used in food products.
Collapse
Affiliation(s)
| | | | | | - Xingfeng Guo
- College of Agronomy, Liaocheng University, Liaocheng, China
| |
Collapse
|
15
|
High solids all-inclusive polysaccharide hydrolysis of steam-exploded corn pericarp by periodic peristalsis. Carbohydr Polym 2020; 246:116483. [PMID: 32747226 DOI: 10.1016/j.carbpol.2020.116483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 11/20/2022]
Abstract
A new sequence of steam explosion (SE) with periodic peristalsis (PP) exploited to fractionate corn pericarp (CP), and its high solid cellulosic hydrolysis to increase sugar yield. In this investigation, the optimum SE-condition was 0.8 MPa/5 min., recovered around 12.62 % total sugars than untreated CP, whereas glucan and xylan digestibility reached around 97 % and 87 %, respectively. Besides that, the unground SECP conversion increased by 27.10 % glucan and 34.18 % xylan than the ground one. FE-SEM, FTIR, XRD results confirmed that SE significantly fractionated the amorphous substances that driven the increment of the crystallinity index. SE changed the functional groups without altering the lignin, and also the formation of degradations products was negligible and not detrimental to sugars conversion. An unpolluted SEPP enzymatic hydrolysis system at high solid loading (25 %) with compatible low cellulase dose (15 FPU g-1 solids) was beneficial to intensified sugars conversion.
Collapse
|
16
|
Hu L, Guo J, Zhu X, Liu R, Wu T, Sui W, Zhang M. Effect of steam explosion on nutritional composition and antioxidative activities of okra seed and its application in gluten-free cookies. Food Sci Nutr 2020; 8:4409-4421. [PMID: 32884721 PMCID: PMC7455944 DOI: 10.1002/fsn3.1739] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 02/05/2023] Open
Abstract
Health-conscious consumers are increasingly interested in gluten-free (GF) foods. Raw okra seed (ROS) flour and steam-exploded okra seed (SEOS) flour were explored for developing GF cookies with high nutritional values and in vitro enzymatic digestion. Results indicated that the steam explosion exhibited significant effects on enhancing the release of dietary fibers and lipids in okra seed flour at moderate explosion pressure. Although steam explosion caused the loss of flavonoid compounds, moderate high explosion pressure enhanced the release of total phenolics ranged from 294.57 to 619.07 mg GAE/100 g DM with significantly improved DPPH• radical scavenging activity (from 18.78% to 67.34%) and ferric reducing antioxidant power (from 13.37% to 149.04%). The rapidly digestible starch (RDS) content in GF cookies decreased with increasing steam explosion severity, whereas slowly digestible starch (SDS) and resistant starch (RS) contents significantly increased from 36.91% to 40.92% and from 2.50% to 9.06%, respectively. Steam explosion is an effective technique for enhancing the release of nutrients like dietary fiber and total phenolics, and okra seed flour, especially SEOS flour, can be alternative choices to provide food functional materials for developing various GF food products.
Collapse
Affiliation(s)
- Lei Hu
- State Key Laboratory of Food Nutrition and SafetyTianjin University of Science & TechnologyTianjinChina
| | - Jiamin Guo
- State Key Laboratory of Food Nutrition and SafetyTianjin University of Science & TechnologyTianjinChina
| | - Xiwei Zhu
- Jing Hong Yuan Modern Agricultural Technology Co., Ltd.HengshuiHebei ProvinceChina
| | - Rui Liu
- State Key Laboratory of Food Nutrition and SafetyTianjin University of Science & TechnologyTianjinChina
- Engineering Research Center of Food BiotechnologyMinistry of EducationTianjinChina
| | - Tao Wu
- State Key Laboratory of Food Nutrition and SafetyTianjin University of Science & TechnologyTianjinChina
- Engineering Research Center of Food BiotechnologyMinistry of EducationTianjinChina
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and SafetyTianjin University of Science & TechnologyTianjinChina
- Jing Hong Yuan Modern Agricultural Technology Co., Ltd.HengshuiHebei ProvinceChina
| | - Min Zhang
- State Key Laboratory of Food Nutrition and SafetyTianjin University of Science & TechnologyTianjinChina
- Tianjin Agricultural UniversityTianjinChina
| |
Collapse
|
17
|
Chen Y, Shan S, Cao D, Tang D. Steam flash explosion pretreatment enhances soybean seed coat phenolic profiles and antioxidant activity. Food Chem 2020; 319:126552. [PMID: 32151898 DOI: 10.1016/j.foodchem.2020.126552] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/08/2020] [Accepted: 03/02/2020] [Indexed: 01/09/2023]
Abstract
The resource utilization of soybean seed coats is currently poor. In this study, steam flash explosion (SFE) pretreatment was performed to extract valuable phytochemicals from soybean seed coats. The total content of phytochemicals and the antioxidant activity of extracts from SFE-treated soybean seed coat were systematically evaluated. On the basis of the application value of antioxidant activity, we optimized the process parameters of SFE-pretreated soybean seed coat to maximize the antioxidant activity. Additionally, the subsequently obtained ethyl acetate fraction with the highest antioxidant activity was analysed using HPLC-DAD-Q-Orbitrap HRMS/MS analysis. The results indicated that SFE could enhance the release of both aglycone and acetylglucoside forms of isoflavones from the cellular structure and enhance the antioxidant activity of soybean seed coats. This study provides evidence that SFE is a novel thermal processing technology with high efficiency and low energy consumption that improves the phytochemical composition and bioactivity of soybean seed coats.
Collapse
Affiliation(s)
- Yongsheng Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Sharui Shan
- The First Affiliated Hospital of Jinan University (Guangzhou Overseas Chinese Hospital), Guangzhou 510632, China
| | - Dongmin Cao
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of SATCM, Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of SATCM, Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
18
|
Kong F, Wang L, Chen H, Zhao X. Improving storage property of wheat bran by steam explosion. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14630] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Feng Kong
- State Key Laboratory of Biochemical Engineering Beijing Key Laboratory of Biomass Refining Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing100190China
- University of Chinese Academy of Sciences Beijing100049China
| | - Lan Wang
- State Key Laboratory of Biochemical Engineering Beijing Key Laboratory of Biomass Refining Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing100190China
| | - Hongzhang Chen
- State Key Laboratory of Biochemical Engineering Beijing Key Laboratory of Biomass Refining Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing100190China
| | - Xuan Zhao
- State Key Laboratory of Biochemical Engineering Beijing Key Laboratory of Biomass Refining Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing100190China
| |
Collapse
|
19
|
|
20
|
Kong F, Wang L, Gao H, Chen H. Process of steam explosion assisted superfine grinding on particle size, chemical composition and physico-chemical properties of wheat bran powder. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.05.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Sui W, Xie X, Liu R, Wu T, Zhang M. Effect of wheat bran modification by steam explosion on structural characteristics and rheological properties of wheat flour dough. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.06.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
22
|
Wu T, Li Z, Liu R, Sui W, Zhang M. Effect of Extrusion, Steam Explosion and Enzymatic Hydrolysis on Functional Properties of Wheat Bran. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tao Wu
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology); Engineering Research Center of Food Biotechnology, Ministry of Education
| | - Zhi Li
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology); Engineering Research Center of Food Biotechnology, Ministry of Education
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology); Engineering Research Center of Food Biotechnology, Ministry of Education
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology); Engineering Research Center of Food Biotechnology, Ministry of Education
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology); Engineering Research Center of Food Biotechnology, Ministry of Education
| |
Collapse
|
23
|
Aktas-Akyildiz E, Mattila O, Sozer N, Poutanen K, Koksel H, Nordlund E. Effect of steam explosion on enzymatic hydrolysis and baking quality of wheat bran. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Chen Y, Zhang R, Liu C, Zheng X, Liu B. Enhancing antioxidant activity and antiproliferation of wheat bran through steam flash explosion. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2016; 53:3028-3034. [PMID: 27765973 PMCID: PMC5052171 DOI: 10.1007/s13197-016-2274-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/26/2016] [Accepted: 06/02/2016] [Indexed: 12/23/2022]
Abstract
The effect of steam flash explosion (SFE), a green processing technology, on the phenolic composition, antioxidant activity and antiproliferation to HepG2 of wheat bran was investigated. Moderate SFE treatment significantly enhanced the total soluble phenolic content of wheat bran. After SFE pretreatment, the free and conjugated ferulic acid content in the wheat bran were significantly increased. Antioxidant activities of SFE treated wheat bran were higher than those untreated wheat bran. The cellular antioxidant and antiproliferative activities of SFE treated wheat bran were also significantly ameliorated. It was suggested that SFE pretreatment could be applied to release the bound phenolic compounds and enhance the antioxidant activities and antiproliferative activities of wheat bran.
Collapse
Affiliation(s)
- Yongsheng Chen
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003 China
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, 510640 China
| | - Ruiting Zhang
- College of Grain and Food, Henan University of Technology, Zhengzhou, 450001 China
| | - Chong Liu
- College of Grain and Food, Henan University of Technology, Zhengzhou, 450001 China
| | - Xueling Zheng
- College of Grain and Food, Henan University of Technology, Zhengzhou, 450001 China
| | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003 China
| |
Collapse
|