1
|
Zhang C, Qu L, Liu H, Cai D, Yuan Y, Wang S. pH-responsive color-indicating film of pea protein isolate cross-linked with dialdehyde carboxylated cellulose nanofibers for pork freshness monitoring. Int J Biol Macromol 2024; 257:128671. [PMID: 38070796 DOI: 10.1016/j.ijbiomac.2023.128671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
The limited mechanical performance and responsiveness of protein-based smart packaging materials have hindered their development. To address these issues, this study prepared a pH-responsive smart film by introducing dialdehyde carboxylated cellulose nanofibers (DCCNFs) as the cross-linking agent capable of covalently reacting with proteins, and bilberry extract (BE) as a pH-responsive indicator into pea protein isolate (PPI) matrix. The results demonstrated that adding DCCNF and BE enhanced the PPI film's thermal stability, density, and UV barrier properties. Tensile tests revealed significant improvements in both tensile strength and elongation at the break for the resulting film. Furthermore, films containing DCCNF and BE exhibited lower moisture content, swelling ratio, water vapor permeability, and relative oxygen transmission compared to PPI films. Notably, the anthocyanins in BE endowed the film with visual color changes corresponding to different pH values. This feature enabled the film to monitor pork freshness; a transition from acidic to alkaline in pork samples was accompanied by a color change from brown to brownish green in the film as storage time increased. Overall, these findings highlight that this developed film possesses excellent physicochemical properties and sensitive pH response capabilities, making it a promising candidate for future smart packaging applications.
Collapse
Affiliation(s)
- Chi Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Luping Qu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Huan Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Danni Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Yi Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China.
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China.
| |
Collapse
|
2
|
Zarali M, Sadeghi A, Jafari SM, Ebrahimi M, Sadeghi Mahoonak A. Enhanced viability and improved in situ antibacterial activity of the probiotic LAB microencapsulated layer-by-layer in alginate beads coated with nisin. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
Application of enterocin-whey films to reduce Listeria monocytogenes contamination on ripened cheese. Food Microbiol 2023; 109:104134. [DOI: 10.1016/j.fm.2022.104134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/27/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
|
4
|
SONG X, WANG X, ZHANG H, ZHANG D, LI Z, WANG HJ, YU J. Characterization of polysaccharide-based antibacterial films properties of loaded with Nisin and preservation of fresh-cut watermelon. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.127522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Xuejian SONG
- Heilongjiang Bayi Agricultural University, China; Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, China; National Coarse Cereals Engineering Research Center, China
| | - Xinhui WANG
- Heilongjiang Bayi Agricultural University, China
| | | | - Dongjie ZHANG
- Heilongjiang Bayi Agricultural University, China; Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, China; National Coarse Cereals Engineering Research Center, China
| | - Zhijiang LI
- Heilongjiang Bayi Agricultural University, China; Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, China; National Coarse Cereals Engineering Research Center, China
| | - Hong jiang WANG
- Heilongjiang Bayi Agricultural University, China; Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, China; National Coarse Cereals Engineering Research Center, China
| | - Jinchi YU
- Heilongjiang Bayi Agricultural University, China
| |
Collapse
|
5
|
Gulzar S, Tagrida M, Prodpran T, Benjakul S. Antimicrobial film based on polylactic acid coated with gelatin/chitosan nanofibers containing nisin extends the shelf life of Asian seabass slices. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Velasco V, Sepúlveda E, Williams P, Rodríguez-Llamazares S, Gutiérrez C, Valderrama N. Starch-based composite foam for chicken meat packaging. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4594-4602. [PMID: 36276525 PMCID: PMC9579259 DOI: 10.1007/s13197-022-05538-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/03/2022] [Accepted: 06/17/2022] [Indexed: 06/16/2023]
Abstract
The development of compostable packages that maintain fresh meat quality, is an important achievement for the poultry industry. The objective of this study was to evaluate the feasibility of using a starch-based composite foam (SCF) in the packaging of fresh chicken meat during refrigerated storage. SCF was prepared using extrusion process. Nisin (2%) was added as antimicrobial agent (SCFN). Commercial expanded polystyrene (EPS) was used as control. Physical characterization, antimicrobial analysis and storage of fresh chicken meat were carried out. No differences were observed in SEM images between SFC and SCFN samples. Water uptake of SCF were higher than SCFN (p < 0.05). SCFN exhibited higher Young´s modulus and flexural strength (p < 0.05), and antimicrobial effect against foodborne pathogens. During the storage of chicken meat, the starch-based composite foam showed a higher capacity to retain liquid than EPS. The color of chicken meat had slight variations at day 4 compared with the raw meat. Nisin did not retard lipid oxidation of chicken meat, however, the aerobic plate count was lower. Therefore, the starch-based composite foam is suitable for fresh meat storage, being improved with the incorporation of nisin as antimicrobial agent. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05538-6.
Collapse
Affiliation(s)
- Valeria Velasco
- Departamento de Producción Animal, Facultad de Agronomía, Universidad de Concepción, Av. Vicente Méndez 595, 3812120 Chillán, Chile
| | - Erwin Sepúlveda
- Centro de Investigación de Polímeros Avanzados, Edificio Laboratorio CIPA, Av. Collao 1202, 4051381 Concepción, Chile
- Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, Facultad de Ingeniería, Universidad de Concepción, 4070409 Concepción, Chile
| | - Pamela Williams
- Departamento de Producción Animal, Facultad de Agronomía, Universidad de Concepción, Av. Vicente Méndez 595, 3812120 Chillán, Chile
| | - Saddys Rodríguez-Llamazares
- Centro de Investigación de Polímeros Avanzados, Edificio Laboratorio CIPA, Av. Collao 1202, 4051381 Concepción, Chile
- Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, Parque Industrial Coronel, 3349001 Concepción, Chile
| | - Cristian Gutiérrez
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, 4070386 Concepción, Chile
| | - Natalia Valderrama
- Departamento de Mecanización Y Energía, Facultad de Ingeniería Agrícola, Universidad de Concepción, 3812120 Chillán, Chile
| |
Collapse
|
7
|
Bactericidal Properties of Low-Density Polyethylene (LDPE) Modified with Commercial Additives Used for Food Protection in the Food Industry. ENVIRONMENTS 2022. [DOI: 10.3390/environments9070084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study investigated the influence of commercially available food preservatives: Natamax® (containing natamycin) and Nisaplin® (containing nisin) on the antimicrobial properties of LDPE film, commonly used for food packaging. Studies have shown that the addition of 3% Natamax® or, alternatively, the addition of 5% Nisaplin® provides an LDPE film with effective antimicrobial protection. The applied biocides did not significantly affect the strength and rheological properties of LDPE. However, differences in optical properties were observed. The transparency of the samples decreased slightly with the addition of 3% or 5% Natamax® (by approx. 1% and 3%, respectively). A significant change was observed in the film haze, the addition of 5% Natamax® increased this parameter by approx. 80%, while 5% Nisaplin® increased it by approx. 19%. Both Natamax® and Nisaplin® agents can be successfully used to manufacture food packaging materials with antimicrobial protection. Natamax® showed a stronger bactericidal effect, while Nisaplin® changed other properties less significantly.
Collapse
|
8
|
Sabaghi M, Tavasoli S, Jamali SN, Katouzian I, Faridi Esfanjani A. The Pros and Cons of Incorporating Bioactive Compounds Within Food Networks and Food Contact Materials: a Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02837-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Active Composite Packaging Reinforced with Nisin-Loaded Nano-Vesicles for Extended Shelf Life of Chicken Breast Filets and Cheese Slices. FOOD BIOPROCESS TECH 2022; 15:1284-1298. [PMID: 35495090 PMCID: PMC9033524 DOI: 10.1007/s11947-022-02815-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/14/2022] [Indexed: 01/23/2023]
Abstract
To meet the demands for more effective and ecofriendly food packaging strategies, the potential of nisin-loaded rhamnolipid functionalized nanofillers (rhamnosomes) has been explored after embedding in hydroxypropyl-methylcellulose (HPMC) and κ-carrageenan (κ-CR)-based packaging films. It was observed that intrinsically active rhamnosomes based nanofillers greatly improved the mechanical and optical properties of nano-active packaging (NAP) films. Incorporation of rhamnosomes resulted in higher tensile strength (5.16 ± 0.06 MPa), Young’s modulus (2777 ± 0.77 MPa), and elongation (2.58 ± 0.03%) for NAP than active packaging containing free nisin (2.96 ± 0.03 MPa, 1107 ± 0.67 MPa, 1.48 ± 0.06%, respectively). NAP demonstrated a homogenous distribution of nanofillers in the biopolymer matrix as elucidated by scanning electron microscopy (SEM). Thermogravimetric analysis (TGA) confirmed that NAP prepared with nisin-loaded rhamnosomes was thermally stable even above 200 °C. Differential scanning calorimetry (DSC) analyses revealed that addition of nisin in nanofillers resulted in a slight increase in Tg (108.40 °C), indicating thermal stability of NAP. Fourier transform infrared spectroscopy (FTIR) revealed slight shift in all characteristic bands of nano-active packaging, which indicated the embedding of rhamnosomes inside the polymer network without any chemical interaction. Finally, when tested on chicken breast filets and cheese slices under refrigerated storage conditions, NAP demonstrated broad-spectrum antimicrobial activity (up to 4.5 log unit reduction) and inhibited the growth of Listeria monocytogenes, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. These results suggest that HPMC and κ-CR-based NAP containing functionalized nanofillers can serve as an innovative packaging material for the food industry to improve the safety, quality, and shelf-life of dairy and meat products.
Collapse
|
10
|
PABON KSMUÑOZ, APONTE AAAYALA, DUQUE JFSOLANILLA, VILLADA HS. Characterization and antimicrobial efficacy of active biocomposite containing polylactic acid, oregano essential oil and nisin for pork storage. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.67420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Effect of Rice Bran Addition on Physical Properties of Antimicrobial Biocomposite Films Based on Starch. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02669-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Addition of Zein for the Improvement of Physicochemical Properties of Antimicrobial Tapioca Starch Edible Film. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-020-02565-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Almeida e Silva T, Gorup LF, de Araújo RP, Fonseca GG, Martelli SM, de Oliveira KMP, Faraoni LH, de Arruda EGR, Gomes RAB, da Silva CHM, de Arruda EJ. Synergy of Biodegradable Polymer Coatings with Quaternary Ammonium Salts Mediating Barrier Function Against Bacterial Contamination and Dehydration of Eggs. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02545-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Preparation of Long-Term Antibacterial SiO2-Cinnamaldehyde Microcapsule via Sol-Gel Approach as a Functional Additive for PBAT Film. Processes (Basel) 2020. [DOI: 10.3390/pr8080897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The mesoporous silica wall materials can achieve controlled load and sustained-release of active agents. An antimicrobial nanoscale silica microcapsule containing cinnamaldehyde (CA) was prepared by the sol-gel method and applied in poly (butyleneadipate-co-terephthalate) (PBAT) film. The surface morphology, physical and chemical properties, and antibacterial properties of microcapsules and films were studied. The effects of different temperatures and humidities on the release behavior of microcapsules were also evaluated. Results showed that CA was successfully encapsulated in silica microcapsule which had a diameter of 450–700 nm. The antibacterial CA agent had a long-lasting release time under lower temperature and relative humidity (RH) environment. At low temperature (4 °C), the microcapsules released CA 32.35% in the first 18 h, and then slowly released to 56.08% in 216 h; however, the microcapsules released more than 70% in 18 h at 40 °C. At low humidity (50%RH), the release rates of microcapsules at the 18th h and 9th d were 43.04% and 78.01%, respectively, while it reached to equilibrium state at 72 h under 90% RH. The sustained release process of CA in SiO2-CA microcapsules follows a first-order kinetic model. Physicochemical properties of PBAT films loaded with different amounts of microcapsules were also characterized. Results showed that the tensile strength and water vapor transmission rate (WVTR) of the composite film containing 2.5% microcapsules were increased by 26.98% and 14.61%, respectively, compared to the raw film, while the light transmittance was slightly reduced. The crystallinity of the film was improved and can be kept stable up to 384.1 °C. Furthermore, microcapsules and composite film both exhibited distinctive antibacterial effect on Escherichia coli and Listeria monocytogenes. Therefore, SiO2-CA microcapsules and composite films could be a promising material for the active packaging.
Collapse
|
15
|
Musioł M, Jurczyk S, Sobota M, Klim M, Sikorska W, Zięba M, Janeczek H, Rydz J, Kurcok P, Johnston B, Radecka I. (Bio)Degradable Polymeric Materials for Sustainable Future-Part 3: Degradation Studies of the PHA/Wood Flour-Based Composites and Preliminary Tests of Antimicrobial Activity. MATERIALS 2020; 13:ma13092200. [PMID: 32403315 PMCID: PMC7254317 DOI: 10.3390/ma13092200] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 11/22/2022]
Abstract
The need for a cost reduction of the materials derived from (bio)degradable polymers forces research development into the formation of biocomposites with cheaper fillers. As additives can be made using the post-consumer wood, generated during wood products processing, re-use of recycled waste materials in the production of biocomposites can be an environmentally friendly way to minimalize and/or utilize the amount of the solid waste. Also, bioactive materials, which possess small amounts of antimicrobial additives belong to a very attractive packaging industry solution. This paper presents a study into the biodegradation, under laboratory composting conditions, of the composites that consist of poly[(R)-3-hydroxybutyrate-co-4-hydroxybutyrate)] and wood flour as a polymer matrix and natural filler, respectively. Thermogravimetric analysis, differential scanning calorimetry and scanning electron microscopy were used to evaluate the degradation progress of the obtained composites with different amounts of wood flour. The degradation products were characterized by multistage electrospray ionization mass spectrometry. Also, preliminary tests of the antimicrobial activity of selected materials with the addition of nisin were performed. The obtained results suggest that the different amount of filler has a significant influence on the degradation profile.
Collapse
Affiliation(s)
- Marta Musioł
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Sklodowska St., 41-819 Zabrze, Poland; (M.S.); (M.K.); (W.S.); (M.Z.); (H.J.); (J.R.); (P.K.)
- Correspondence: ; Tel.: +48-322-716-077
| | - Sebastian Jurczyk
- Łukasieiwcz Research Network – Institute for Engineering of Polymer Materials and Dyes, 55, M. Sklodowska-Curie St., 87-100 Toruń, Poland;
| | - Michał Sobota
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Sklodowska St., 41-819 Zabrze, Poland; (M.S.); (M.K.); (W.S.); (M.Z.); (H.J.); (J.R.); (P.K.)
| | - Magdalena Klim
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Sklodowska St., 41-819 Zabrze, Poland; (M.S.); (M.K.); (W.S.); (M.Z.); (H.J.); (J.R.); (P.K.)
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, 4 Jagiellońska St., 41-200 Sosnowiec, Poland
| | - Wanda Sikorska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Sklodowska St., 41-819 Zabrze, Poland; (M.S.); (M.K.); (W.S.); (M.Z.); (H.J.); (J.R.); (P.K.)
| | - Magdalena Zięba
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Sklodowska St., 41-819 Zabrze, Poland; (M.S.); (M.K.); (W.S.); (M.Z.); (H.J.); (J.R.); (P.K.)
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Sklodowska St., 41-819 Zabrze, Poland; (M.S.); (M.K.); (W.S.); (M.Z.); (H.J.); (J.R.); (P.K.)
| | - Joanna Rydz
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Sklodowska St., 41-819 Zabrze, Poland; (M.S.); (M.K.); (W.S.); (M.Z.); (H.J.); (J.R.); (P.K.)
| | - Piotr Kurcok
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Sklodowska St., 41-819 Zabrze, Poland; (M.S.); (M.K.); (W.S.); (M.Z.); (H.J.); (J.R.); (P.K.)
| | - Brian Johnston
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (B.J.); (I.R.)
| | - Izabela Radecka
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (B.J.); (I.R.)
| |
Collapse
|
16
|
Antilisterial and physical properties of polysaccharide-collagen films embedded with cell-free supernatant of Lactococcus lactis. Int J Biol Macromol 2020; 145:1031-1038. [DOI: 10.1016/j.ijbiomac.2019.09.195] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/15/2019] [Accepted: 09/22/2019] [Indexed: 12/20/2022]
|
17
|
Characterization, Release Profile and Antimicrobial Properties of Bioactive Polyvinyl Alcohol-Alyssum homolocarpum Seed Gum- Nisin Composite Film. FOOD BIOPHYS 2019. [DOI: 10.1007/s11483-018-09562-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Hu S, Li P, Wei Z, Wang J, Wang H, Wang Z. Antimicrobial activity of nisin-coated polylactic acid film facilitated by cold plasma treatment. J Appl Polym Sci 2018. [DOI: 10.1002/app.46844] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- S. Hu
- Center for Biomedical Materials and Interfaces; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| | - P. Li
- Center for Biomedical Materials and Interfaces; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| | - Z. Wei
- Center for Biomedical Materials and Interfaces; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| | - J. Wang
- Center for Biomedical Materials and Interfaces; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| | - H. Wang
- Center for Biomedical Materials and Interfaces; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| | - Z. Wang
- Center for Biomedical Materials and Interfaces; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
- CSIRO Agriculture and Food; 671 Sneydes Road, Werribee Australia
| |
Collapse
|
19
|
Characterization of cellulosic paper coated with chitosan-zinc oxide nanocomposite containing nisin and its application in packaging of UF cheese. Int J Biol Macromol 2017; 109:1311-1318. [PMID: 29175522 DOI: 10.1016/j.ijbiomac.2017.11.145] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/13/2017] [Accepted: 11/22/2017] [Indexed: 11/23/2022]
Abstract
A new antimicrobial bilayer film was developed using chitosan, cellulose, and nisin. Chitosan solution containing nisin (500 and 1000μg/mL) was prepared by sol-gel method and then the solution was coated on cellulose paper by dip coating method. A chitosan-cellulose film without antimicrobial had no inhibitory effect on Listeria monocytogenes, whereas, the incorporation of nisin made a significant increase (P<0.05) in antimicrobial characteristics of the films. Moreover, no significant differences were shown on antimicrobial activity of developed films during the storage at 4°C for one month. However, the addition of nisin showed a significant increase in the swelling index and solubility of bilayer film. Scanning electron microscope images revealed a uniform coating of chitosan solution on cellulose paper. The FTIR analysis also confırmed successful introducing and binding of the nisin in double layer film. Films with 1000μg/mL of nisin completely inactivated the initial (∼5log10 CFU/g) counts of L. monocytogenes on the surface of Ultra-filter white cheese after storage at 4°C for 14 days. We concluded that nanocomposite film of chitosan-cellulose containing nisin has novel antibacterial activity and can be used for packaging in cheese.
Collapse
|
20
|
Chandrasekar V, Coupland JN, Anantheswaran RC. Release Kinetics of Nisin from Chitosan-Alginate Complex Films. J Food Sci 2016; 81:E2503-E2510. [PMID: 27635864 DOI: 10.1111/1750-3841.13443] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/15/2016] [Accepted: 08/09/2016] [Indexed: 11/29/2022]
Abstract
Understanding the release kinetics of antimicrobials from polymer films is important in the design of effective antimicrobial packaging films. The release kinetics of nisin (30 mg/film) from chitosan-alginate polyelectric complex films prepared using various fractions of alginate (33%, 50%, and 66%) was investigated into an aqueous release medium. Films containing higher alginate fractions showed significantly lower (P < 0.05) degree of swelling in water. Total amount of nisin released from films into an aqueous system decreased significantly (P < 0.05) with an increase in alginate concentration. The mechanism of diffusion of nisin from all films was found to be Fickian, and diffusion coefficients varied from 0.872 × 10-9 to 8.034 ×10-9 cm2 /s. Strong complexation was confirmed between chitosan and alginate polymers within the films using isothermal titration calorimetry and viscosity studies, which affects swelling of films and subsequent nisin release. Complexation was also confirmed between nisin and alginate, which limited the amount of free nisin available for diffusion from films. These low-swelling biopolymer complexes have potential to be used as antimicrobial packaging films with sustained nisin release characteristics.
Collapse
Affiliation(s)
- Vaishnavi Chandrasekar
- Dept. of Food Science, 202 Rodney A. Erickson Food Science Building, Pennsylvania State Univ, University Park, PA, 16802, U.S.A.
| | - John N Coupland
- Dept. of Food Science, 202 Rodney A. Erickson Food Science Building, Pennsylvania State Univ, University Park, PA, 16802, U.S.A
| | - Ramaswamy C Anantheswaran
- Dept. of Food Science, 202 Rodney A. Erickson Food Science Building, Pennsylvania State Univ, University Park, PA, 16802, U.S.A
| |
Collapse
|
21
|
Effects of Fish Gelatin and Tea Polyphenol Coating on the Spoilage and Degradation of Myofibril in Fish Fillet During Cold Storage. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1798-7] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|