1
|
Geng Y, Zheng Y, Zhou R, Ma M. Effect of supercritical carbon dioxide on protein structure modification and antimicrobial peptides production of Mongolian cheese and its in vitro digestion. Food Res Int 2024; 191:114714. [PMID: 39059962 DOI: 10.1016/j.foodres.2024.114714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
The aim of this research was to investigate the effects of supercritical carbon dioxide (SC-CO2) treatment on protein structure in Mongolian cheese. The peptides during the digestive process of the SC-CO2 treated cheese were also studied. SC-CO2 technology was utilized to treat Mongolian cheese at three temperatures (45, 55 and 65 °C) and three pressures (7.5, 12.5 and 17.5 MPa). The results of fluorescence, ultraviolet-visible, Fourier transform infrared spectroscopy and free sulfhydryl groups showed that SC-CO2, particularly at 65 °C and 17.5 MPa, modified the protein structure in Mongolian cheese effectively. The data of LC-MS/MS-based peptidomics showed that the content of antimicrobial peptides found in the SC-CO2 treated Mongolian cheese was 1.55 times that of the untreated Mongolian cheese; the content of unique antimicrobial peptides in the digested SC-CO2 treated Mongolian cheese was 1.46 times that of the digested untreated Mongolian cheese, which proved that SC-CO2 could help produce antimicrobial peptides in cheese not only during the process of SC-CO2 treatment but during subsequent simulated gastrointestinal digestion as well. In conclusion, SC-CO2 could be considered a promising method to develop cheese products with potential health benefits.
Collapse
Affiliation(s)
- Yawen Geng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Ran Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Quality Supervision, Inspection and Testing Center for Cold Storage and Refrigeration Equipment, Ministry of Agriculture, Shanghai, China.
| | - Ming Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
2
|
Qiu H, Duan W, Hu W, Wei S, Liu Y, Sun Q, Wang Z, Han Z, Liu Y, Liu S. Insight into the allergenicity and structure changes of parvalbumin from Trachinotus ovatus induced by dense-phase carbon dioxide. Int J Biol Macromol 2024; 260:129582. [PMID: 38246469 DOI: 10.1016/j.ijbiomac.2024.129582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/31/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Parvalbumin (PV) is a major allergen in fish, and traditional treatments cannot reduce its sensitization. The effects of dense-phase carbon dioxide (DPCD) treatment on the sensitization and spatial structure of PV in Trachinotus ovatus were evaluated in this study. Western blotting and indirect ELISA were used to determine the allergenicity changes and spatial conformations of PV treated by DPCD. Tris-tricine-SDS-PAGE, circular dichroism, surface hydrophobicity, endogenous fluorescence, UV spectrophotometry, free amino group, total sulfhydryl group and SEM analyses were applied to characterize PV structure. The results showed that DPCD treatment (15 MPa, 30 min, 50 °C) could reduce PV-induced allergic reactions by 39-41 %, which destroyed the normal conformational epitopes and reduced the risk of PV-induced allergy. The secondary structure changed from ordered to disordered with a decreased content of α-helical groups, while the internal hydrophobic groups were exposed. The total sulfhydryl group content decreased significantly (P < 0.05). The surface hydrophobicity and ultraviolet absorption spectrum were enhanced, and the endogenous fluorescence peak shifted to a long wavelength. Meanwhile, the content of free amino groups increased significantly (P < 0.05). This study could provide a theoretical basis and a promising technical approach for reduction of PV allergenicities.
Collapse
Affiliation(s)
- Hui Qiu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Weiwen Duan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Weicheng Hu
- College of Medicine, Yangzhou University, Yangzhou 225109, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Yanan Liu
- College of Medicine, Yangzhou University, Yangzhou 225109, China
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Zefu Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Zongyuan Han
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Yang Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
4
|
Cochineal carmine adsorbed on layered zinc hydroxide salt applied on mortadella to improve color stability. Curr Res Food Sci 2021; 4:758-764. [PMID: 34766006 PMCID: PMC8569633 DOI: 10.1016/j.crfs.2021.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 11/23/2022] Open
Abstract
The pink/reddish color meat products characteristic of cured meat without the curing salts is a meat industry demand to serve consumers who are looking for healthy foods with the usual sensory characteristics. This study aimed to obtain and characterize a hybrid dye and use it as a replacer for curing salt in the production of pink/red color in mortadella stored for 40 days. A layered zinc hydroxide salt (ZHN) was obtained by alkaline precipitation to immobilize and increase cochineal carmine stability, obtaining the hybrid dye (ZHN-carmine) by ion exchange in aqueous solution. The ZHN-carmine was subjected to ultrasound to increase color intensity and reduce the amount of application. ZHN, cochineal carmine and ZHN-carmine were characterized by X-Ray Diffraction, Fourier-Transform Infrared Spectroscopy, Thermogravimetric Analysis and Differential Scanning Calorimetry. The ZHN-carmine was used in the mortadella elaboration traditionally prepared with nitrite/nitrate and/or carmine. In the characterization it was observed that carmine dye was adsorbed on the lamellar compound surface and over the mortadella storage, it ensures a more stable pink/reddish color than the others product formulations. A more intense color with lower L* and higher a* values was observed for mortadella added of ZHN-carmine ultrasound-assisted. Therefore, the lamellar matrix adsorbed with cochineal carmine may a suitable and useful alternative to obtain the pink/reddish color characteristic of cooked meat products by applying a natural hybrid dye. Hybrid dye was obtained by adsorbing carmine dye on a layered zinc hydroxide salt The hybrid-dye mortadella had a stable pink/reddish color characteristic The ultrasound improved the color supplied by hybrid dye in mortadella Hybrid dye may be used as curing salt replacer on mortadella without color loss
Collapse
|
5
|
Chen G, Zhang Q, Lu Q, Feng B. Protection effect of polyols on Rhizopus chinensis lipase counteracting the deactivation from high pressure and high temperature treatment. Int J Biol Macromol 2019; 127:555-562. [PMID: 30664969 DOI: 10.1016/j.ijbiomac.2019.01.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/19/2022]
Abstract
The influence of polyols on Rhizopus chinensis lipase (RCL) was investigated under high pressure. The poor stability of RCL was observed at 500 MPa at 60 °C without polyols which protected RCL against the loss of activity. The lipase is more stable in phosphate buffer than in tris buffer despite the protection of polyols. The activity was maintained 63% by the sorbitol of 2 mol/L in Tris-HCl buffer but 73% in phosphate buffer after the treatment at 500 MPa and 60 °C for 25 min. The same protective effects could be observed at 1 mol/L of sorbitol, erythritol, xylitol, and mannitol. However, further increase of hydroxyl group number could not significantly improve the enzyme stability. The protection of polyols on RCL appears to depend on both of the polyol nature and the hydroxyl group number. Together with fluorescence spectra, circular dichroism spectra indicated that the chaotic conformation of RCL under high pressure became more ordered with 1 mol/L sorbitol. The results showed that sorbitol effectively stabilized the lipase conformation including the hydrophobic core under extreme conditions. It might be attributed to the interaction of polyols with RCL surface to modify intra-/intermolecular hydrogen bonds, maintaining the hydrophobic interactions within RCL.
Collapse
Affiliation(s)
- Gang Chen
- School of Food Science, Henan University of Technology, 100 Lianhua Street, Zhengzhou 450001, Henan, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China.
| | - Qiupei Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Qiyu Lu
- School of Food Science, Henan University of Technology, 100 Lianhua Street, Zhengzhou 450001, Henan, China
| | - Biao Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
6
|
Yan W, Xie Y, Wang X, Jia F, Li X. The effect of dense phase carbon dioxide on the conformation of hemoglobin. Food Res Int 2018; 106:885-891. [PMID: 29580000 DOI: 10.1016/j.foodres.2018.01.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/11/2018] [Accepted: 01/27/2018] [Indexed: 11/25/2022]
Abstract
Dense phase carbon dioxide (DPCD) sterilization is a non-thermal sterilization technology used to process heat-sensitive foods. Although nutritional and sensorial quality of food is preserved while unwanted microbial activity is reduced during DPCD sterilization, the effect on protein structure remains unclear. In this work, the effect of DPCD on the higher order structure and fluorescence properties of Hemoglobin (Hb) was investigated. The different conditions assessed during DPCD processing included variation in pressure, pH and heating conditions. Results from this study showed an inversely proportional correlation between α-helical content of Hb and pressure. As the pressure was lowered, the levels of α-helical content increased. The increased levels of α-helix correlated with a lower fluorescence intensity and a limited redshift in the fluorescence emission wavelength. TEM imaging showed that DPCD processing resulted in Hb with larger molecular diameters, which became smaller as the pressure increased. Interestingly, after 7-day storage at 4 °C, an increase in α-helical content was observed. Results from this work show that DPCD sterilization does impact the conformation of hemoglobin, with a notable impact on secondary and tertiary structure.
Collapse
Affiliation(s)
- Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| | - Yangyang Xie
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| | - Xiaoxi Wang
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| | - Fei Jia
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingmin Li
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
8
|
Guo M, Liu S, Ismail M, Farid MM, Ji H, Mao W, Gao J, Li C. Changes in the myosin secondary structure and shrimp surimi gel strength induced by dense phase carbon dioxide. Food Chem 2017; 227:219-226. [DOI: 10.1016/j.foodchem.2017.01.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/14/2016] [Accepted: 01/11/2017] [Indexed: 12/16/2022]
|