1
|
Fuhr ACFP, Gonçalves IDM, Santos LO, Salau NPG. Machine learning modeling and additive explanation techniques for glutathione production from multiple experimental growth conditions of Saccharomyces cerevisiae. Int J Biol Macromol 2024; 262:130035. [PMID: 38336325 DOI: 10.1016/j.ijbiomac.2024.130035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Glutathione (GSH) production is of great industrial interest due to its essential properties. This study aimed to use machine learning (ML) methods to model GSHproduction under different growth conditions of Saccharomyces cerevisiae, namely cultivation time, culture volume, pressure, and magnetic field application. Different ML and regression models were evaluated for their statistics to select the most robust model. Results showed that eXtreme Gradient Boosting (XGB) was the best predictive performance model. From the best model, additive explanation techniques were used to identify the feature importance of process. According to variable analysis, the best conditions to obtain the highest GSH concentrations would be cultivation times of 72-96 h, low magnetic field intensity (3.02 mT), low pressure (0.5 kgf.cm-2), and high culture volume (3.5 L). XGB use and additive explanation techniques proved promising for determining process optimization conditions and selecting the essential process variables.
Collapse
|
2
|
Preetha P, Varadharaju N, Jeevarathinam G, Deepa J, Kumar APM, Balakrishnan M, Rajkumar P, Pandiselvam R. Optimization of continuous flow pulsed light system process parameters for microbial inactivation in tender coconut water, pineapple and orange juice. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- P. Preetha
- Department of Food Process Engineering, Agricultural Engineering College and Research Institute Tamil Nadu Agricultural University Coimbatore India
| | - N. Varadharaju
- Department of Food Process Engineering, Agricultural Engineering College and Research Institute Tamil Nadu Agricultural University Coimbatore India
| | - G. Jeevarathinam
- Department of Food Technology Hindusthan College of Engineering and Technology Coimbatore Tamil Nadu India
| | - J. Deepa
- Department of Food Process Engineering, Agricultural Engineering College and Research Institute Tamil Nadu Agricultural University Coimbatore India
| | - A. P. Mohan Kumar
- Department of Farm Machinery and Power Engineering, Agricultural Engineering College and Research Institute Tamil Nadu Agricultural University Coimbatore India
| | - M. Balakrishnan
- Department of Food Process Engineering, Agricultural Engineering College and Research Institute Tamil Nadu Agricultural University Coimbatore India
| | - P. Rajkumar
- Department of Food Process Engineering, Agricultural Engineering College and Research Institute Tamil Nadu Agricultural University Coimbatore India
| | - R. Pandiselvam
- Physiology, Biochemistry and Post‐Harvest Technology Division ICAR‐Central Plantation Crops Research Institute Kasaragod Kerala India
| |
Collapse
|
3
|
Liu J, Huang T, Hong W, Peng F, Lu Z, Peng G, Fu X, Liu G, Wang Z, Peng Q, Gong X, Zhou L, Li L, Li B, Xu Z, Lan H. A comprehensive study on ultrasonic deactivation of opportunistic pathogen Saccharomyces cerevisiae in food processing: From transcriptome to phenotype. Lebensm Wiss Technol 2022; 170:114069. [DOI: 10.1016/j.lwt.2022.114069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Junyan Liu
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Tengyi Huang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fang Peng
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zerong Lu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Gongyong Peng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin Fu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gongliang Liu
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Zhi Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Qingmei Peng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xiangjun Gong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Lizhen Zhou
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Lin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Zhenbo Xu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Haifeng Lan
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Fenoglio D, Ferrario M, Andreone A, Guerrero S. Development of an Orange-Tangerine Juice Treated by Assisted Pilot-Scale UV-C Light and Loaded with Yerba Mate: Microbiological, Physicochemical, and Dynamic Sensory Studies. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
The effect of heat treatment and thermosonication on the microbial and quality properties of green olive. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01322-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Non-thermal Microbial Inactivation of Honey Raspberry Wine Through the Application of High-Voltage Electrospray Technology. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02755-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Zhu Y, Zhang M, Mujumdar AS, Liu Y. Application advantages of new non-thermal technology in juice browning control: A comprehensive review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2021419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yuanyuan Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S. Mujumdar
- Department of Bioresource Engineering, Macdonald College, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Yaping Liu
- R & D Center, Guangdong Galore Food Co., Ltd. Guangdong, Zhongshan, China
| |
Collapse
|
8
|
Soro AB, Oliveira M, O'Donnell CP, Tiwari BK. Ultrasound assisted modulation of yeast growth and inactivation kinetics. ULTRASONICS SONOCHEMISTRY 2021; 80:105819. [PMID: 34768062 PMCID: PMC8591419 DOI: 10.1016/j.ultsonch.2021.105819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The yeast Saccharomyces cerevisiae is well known for its application in the food industry for the purpose of developing fermented food. The ultrasound (US) technology offer a wide range of applications for the food industry, including the enhancement of fermentation rates and inactivation of microbial cells. However, a better understanding and standardization of this technology is still required to ensure the scaling-up process. This study investigated the effect of the US technology on the growth of S. cerevisiae using frequencies of 20, 25, 45 and 130 kHz, treatment periods from 2 to 30 min. Furthermore, yeast kinetics subjected to US treatments were evaluated using modelling tools and scanning electron microscopy (SEM) analysis to explore the impact of sonication on yeast cells. Yeast growth was monitored after different US treatments plotting optical density (OD) at 660 nm for 24 h at 30 ⁰C. Growth curves were fitted using models of modified Gompertz and Scale-Free which showed good parameters of the fit. In particular, US frequencies of 45 and 130 kHz did not have a disruptive effect in lag phase and growth rate of the yeast populations, unlike the frequency of 20 kHz. Moreover, inactivation curves of yeast cells obtained after exposure to 20 and 25 kHz also observed the best fit using the Weibull model. US frequency of 20 kHz achieved significant reductions of 1.3 log cfu/mL in yeast concentration and also induced important cell damage on the external structures of S. cerevisiae. In conclusion, the present study demonstrated the significant effect of applying different US frequencies on the yeast growth for potential application in the food industry.
Collapse
Affiliation(s)
- Arturo B Soro
- Department of Food Chemistry & Technology, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Márcia Oliveira
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Colm P O'Donnell
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Brijesh K Tiwari
- Department of Food Chemistry & Technology, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| |
Collapse
|
9
|
Morata A, Loira I, González C, Escott C. Non- Saccharomyces as Biotools to Control the Production of Off-Flavors in Wines. Molecules 2021; 26:molecules26154571. [PMID: 34361722 PMCID: PMC8348789 DOI: 10.3390/molecules26154571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Off-flavors produced by undesirable microbial spoilage are a major concern in wineries, as they affect wine quality. This situation is worse in warm areas affected by global warming because of the resulting higher pHs in wines. Natural biotechnologies can aid in effectively controlling these processes, while reducing the use of chemical preservatives such as SO2. Bioacidification reduces the development of spoilage yeasts and bacteria, but also increases the amount of molecular SO2, which allows for lower total levels. The use of non-Saccharomyces yeasts, such as Lachancea thermotolerans, results in effective acidification through the production of lactic acid from sugars. Furthermore, high lactic acid contents (>4 g/L) inhibit lactic acid bacteria and have some effect on Brettanomyces. Additionally, the use of yeasts with hydroxycinnamate decarboxylase (HCDC) activity can be useful to promote the fermentative formation of stable vinylphenolic pyranoanthocyanins, reducing the amount of ethylphenol precursors. This biotechnology increases the amount of stable pigments and simultaneously prevents the formation of high contents of ethylphenols, even when the wine is contaminated by Brettanomyces.
Collapse
|
10
|
Nagy D, Felfoldi J, Taczmanne Bruckner A, Mohacsi-Farkas C, Bodor Z, Kertesz I, Nemeth C, Zsom-Muha V. Determining Sonication Effect on E. coli in Liquid Egg, Egg Yolk and Albumen and Inspecting Structural Property Changes by Near-Infrared Spectra. SENSORS 2021; 21:s21020398. [PMID: 33429975 PMCID: PMC7826563 DOI: 10.3390/s21020398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 01/15/2023]
Abstract
In this study, liquid egg, albumen, and egg yolk were artificially inoculated with E. coli. Ultrasound equipment (20/40 kHz, 180/300 W; 30/45/60 min) with a circulation cooling system was used to lower the colony forming units (CFU) of E. coli samples. Frequency, absorbed power, energy dose, and duration of sonication showed a significant impact on E. coli with 0.5 log CFU/mL in albumen, 0.7 log CFU/mL in yolk and 0.5 log CFU/mL decrease at 40 kHz and 6.9 W absorbed power level. Significant linear correlation (p < 0.001) was observed between the energy dose of sonication and the decrease of E. coli. The results showed that sonication can be a useful tool as a supplementary method to reduce the number of microorganism in egg products. With near-infrared (NIR) spectra analysis we were able to detect the structural changes of the egg samples, due to ultrasonic treatment. Principal component analysis (PCA) showed that sonication can alter C-H, C-N, -OH and N-H bonds in egg. The aquagrams showed that sonication can alter the properties of H2O structure in egg products. The observed data showed that the absorbance of free water (1412 nm), water molecules with one (1440 nm), two (1462 nm), three (1472 nm) and four (1488 nm) hydrogen bonds, water solvation shell (1452 nm) and strongly bonded water (1512 nm) of the egg samples have been changed during ultrasonic treatment.
Collapse
Affiliation(s)
- David Nagy
- Department of Physics and Control, Faculty of Food Science, Szent István University, 1118 Budapest, Hungary; (J.F.); (Z.B.); (I.K.)
- Correspondence: (D.N.); (V.Z.-M.)
| | - Jozsef Felfoldi
- Department of Physics and Control, Faculty of Food Science, Szent István University, 1118 Budapest, Hungary; (J.F.); (Z.B.); (I.K.)
| | - Andrea Taczmanne Bruckner
- Department of Microbiology and Biotechnology, Faculty of Food Science, Szent István University, 1118 Budapest, Hungary; (A.T.B.); (C.M.-F.)
| | - Csilla Mohacsi-Farkas
- Department of Microbiology and Biotechnology, Faculty of Food Science, Szent István University, 1118 Budapest, Hungary; (A.T.B.); (C.M.-F.)
| | - Zsanett Bodor
- Department of Physics and Control, Faculty of Food Science, Szent István University, 1118 Budapest, Hungary; (J.F.); (Z.B.); (I.K.)
| | - Istvan Kertesz
- Department of Physics and Control, Faculty of Food Science, Szent István University, 1118 Budapest, Hungary; (J.F.); (Z.B.); (I.K.)
| | | | - Viktoria Zsom-Muha
- Department of Physics and Control, Faculty of Food Science, Szent István University, 1118 Budapest, Hungary; (J.F.); (Z.B.); (I.K.)
- Correspondence: (D.N.); (V.Z.-M.)
| |
Collapse
|
11
|
Eradication of Saccharomyces cerevisiae by Pulsed Electric Field Treatments. Microorganisms 2020; 8:microorganisms8111684. [PMID: 33138324 PMCID: PMC7692574 DOI: 10.3390/microorganisms8111684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/29/2022] Open
Abstract
One of the promising technologies that can inactivate microorganisms without heat is pulsed electric field (PEF) treatment. The aim of this study was to examine the influence of PEF treatment (2.9 kV cm−1, 100 Hz, 5000 pulses in trains mode of 500 pulses with a pulse duration of 10 µs) on Saccharomyces cerevisiae eradication and resealing in different conditions, such as current density (which is influenced by the medium conductivity), the sort of medium (phosphate buffered saline (PBS) vs. yeast malt broth (YMB) and a combined treatment of PEF with the addition of preservatives. When the S. cerevisiae were suspended in PBS, increasing the current density from 0.02 to 3.3 A cm−2 (corresponding to a total specific energy of 22.04 to 614.59 kJ kg−1) led to an increase of S. cerevisiae eradication. At 3.3 A cm−2, a total S. cerevisiae eradication was observed. However, when the S. cerevisiae in PBS was treated with the highest current density of 3.3 A cm−2, followed by dilution in a rich YMB medium, a phenomenon of cell membrane resealing was observed by flow cytometry (FCM) and CFU analysis. The viability of S. cerevisiae was also examined when the culture was exposed to repeating PEF treatments (up to four cycles) with and without the addition of preservatives. This experiment was performed when the S. cerevisiae were suspended in YMB containing tartaric acid (pH 3.4) and ethanol to a final concentration of 10% (v/v), which mimics wine. It was shown that one PEF treatment cycle led to a reduction of 1.35 log10, compared to 2.24 log10 when four cycles were applied. However, no synergic effect was observed when the preservatives, free SO2, and sorbic acid were added. This study shows the important and necessary knowledge about yeast eradication and membrane recovery processes after PEF treatment, in particular for application in the liquid food industry.
Collapse
|
12
|
García Carrillo M, Ferrario M, Schenk M, Guerrero S. Effect of an UV-C Light-Based Hurdle Strategy for Carrot-Orange Juice Processing on Candida parapsilosis Inactivation and Physiological State: Impact on Juice Sensory and Physicochemical Quality Parameters. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02540-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Vollmer K, Santarelli S, Vásquez-Caicedo AL, Iglesias SV, Frank J, Carle R, Steingass CB. Non-thermal Processing of Pineapple (Ananas comosus [L.] Merr.) Juice Using Continuous Pressure Change Technology (PCT): Effects on Physical Traits, Microbial Loads, Enzyme Activities, and Phytochemical Composition. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02520-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AbstractA comprehensive study using continuous pressure change technology (PCT) for the non-thermal processing of fresh pineapple juice on pilot scale was conducted (1 L/min, 50 MPa, argon, 3 min, <35 °C). The immediate effects of a single and a twofold PCT treatment on the most important quality parameters were examined and compared with those of fresh and thermally pasteurised (90 °C) juices. In comparison to the fresh juice, both PCT-treated samples exhibited slightly brighter and less yellowish colour (CIE L*a*b*). A significant reduction in the mean particle size resulted in diminished centrifugable pulp contents and enhanced cloud stability. Moreover, a slightly improved microbial quality (−0.9 to −1.2 log10 CFU/mL) in terms of total aerobic and yeast and mould counts was attained. Noteworthy, PCT retained a high bromelain activity (−3 to −15% reduction) and efficiently inactivated polyphenol oxidase. Water-soluble vitamins, phenolic compounds, and all further constituents assessed were mostly preserved. However, the high residual peroxidase activity (−10 to −23%) and microbial loads are likely to affect juice quality during storage. In contrast, thermal pasteurisation ensured a complete reduction in both microbial counts (−4.4 to −4.5 log10 CFU/mL) and effective inactivation of peroxidase. However, bromelain activity was strongly affected (−83%) by heat treatment, and colour was darkened and even less yellowish. Overall, this study highlighted the potential of PCT for the production of fresh-like pineapple juices; however, its current limitations were revealed as well.
Collapse
|
14
|
Navab Safa N, Dorraki N, Ebadi MT, Maroofi A, Ghasempour A, Ghomi H. Decontamination of peppermint distillate using spark plasma: microbiological and physicochemical evaluation. Journal of Food Science and Technology 2020; 57:3314-3322. [PMID: 32713960 DOI: 10.1007/s13197-020-04364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/07/2020] [Accepted: 03/18/2020] [Indexed: 11/28/2022]
Abstract
Microbial contamination of herbal distillates is one of the crucial problems that the market is commonly facing. Spark plasma can be proposed as a potential emerging solution for the decontamination of liquids even with the sensitive aromatic compound like peppermint (Mentha piperita L.) distillate. However, its probable effects on the physicochemical properties of distillate is the main area of concern which will be discussed in the current paper. According to our results, spark plasma with an energy of 2 J/pulse is able to achieve a 4-log reduction in Pseudomonas aeruginosa counts after 4 min of treatment. Various assessments including pH analysis, color measurement, evaluation of essential oil content and composition are employed to determine the likely side effects of the method on the final product. The results show that the plasma processing does not make any sensible changes in the peppermint distillate acidity and color. According to the results, the peppermint essential oil content decreases only about 4% in the samples affected by the plasma, however, content of menthol as the main compound of peppermint distillate reduces about 17%.
Collapse
Affiliation(s)
- Nasrin Navab Safa
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983963113 Iran
| | - Naghme Dorraki
- Department of Electric Power Engineering, NTNU, 7034 Trondheim, Norway
| | - Mohammad-Taghi Ebadi
- Department of Horticultural Sciences, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Alireza Maroofi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983963113 Iran
| | - Alireza Ghasempour
- Medicinal Plants and Drug Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | - Hamid Ghomi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983963113 Iran
| |
Collapse
|
15
|
Fenoglio D, Ferrario M, Schenk M, Guerrero S. Effect of pilot-scale UV-C light treatment assisted by mild heat on E. coli, L. plantarum and S. cerevisiae inactivation in clear and turbid fruit juices. Storage study of surviving populations. Int J Food Microbiol 2020; 332:108767. [PMID: 32593099 DOI: 10.1016/j.ijfoodmicro.2020.108767] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 11/24/2022]
Abstract
Consumer growing demands for high-quality and safe food and beverages have stimulated the interest in alternative preservation technologies. Short-wavelength ultraviolet light (UV-C, 254 nm) has proven to be useful for the decontamination of a great variety of clear juices while improving their quality compared to traditional thermal treatments. Suspended solids and coloured compounds in turbid juices, diminish light transmission. The use of UV-C under a hurdle approach, may be a promising strategy for their treatment. The purpose of this study was to analyse Escherichia coli ATCC 25922, Saccharomyces cerevisiae KE 162 and Lactobacillus plantarum ATCC 8014 inactivation in clear pear juice (PJ), turbid orange-tangerine (OT) and orange-banana-mango-kiwi-strawberry (OBMKS) juices processed by single UV-C (390 mJ/cm2, 20 °C) and UV-C assisted by mild heat (UV-C/H, 50 °C) at pilot-scale in a coiled tubing unit and stored under refrigeration (5 °C). Inactivation studies were also conducted in peptone water (PW) and model solution (MS). The adequacy of the Coroller, Weibull and Biphasic Plus Shoulder models was studied. UV-C was highly effective in PW, MS and PJ, achieving up to 5.5-6.3-4.7, 4.8-5.1-4.6 and 4.4-5.5 log reductions for L. plantarum, E. coli,and S. cerevisiae, respectively. Whereas, a moderate inactivation by single UV-C was recorded in the turbid blends, reducing up to 2.4-3.8-1.6 and 3.6-3.7-1.3 log-cycles in OT and OBMKS, respectively. When the UV-C/H treatment was applied, high bacterial inactivation was observed achieving 5.2-5.6, 6.3-6.6 and 5.5-6.7 log reductions in OT, OBMKS and PJ, respectively, while 4.6-4.9 log reductions were determined for the yeast in OBMKS and OT, respectively. Thus, additive inactivation effects between UV-C and H were observed. All the models tested gave useful information regarding the existence of microbial subpopulations with varying resistances. However, the cumulative Weibull distribution function was the most versatile one, fitting inactivation curves with different shapes. Additionally, the frequency distributions of resistances showed that UV-C/H not only increased the UV-C microbicidal effect but changed the distribution of inactivation times. Principal component analysis revealed that UV-C effectiveness was associated to low particle size, a⃰, turbidity and high UV-C transmittance. An increase on the inactivation of treated bacterial populations was recorded along storage, while no yeast recovery was observed, thus emphasizing the contribution of refrigerated storage to microbial inactivation. Microbial inactivation in clear and turbid juices achieved by UV-C (390 mJ/cm2) assisted by mild heat (50 °C) and subsequent refrigerated storage may represent an useful alternative for multiple applications in the juice industry.
Collapse
Affiliation(s)
- Daniela Fenoglio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Buenos Aires, Argentina
| | - Mariana Ferrario
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Pabellón de Industrias, Ciudad Universitaria, Avenida Intendente Güiraldes 2160(C1428EGA) Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcela Schenk
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Pabellón de Industrias, Ciudad Universitaria, Avenida Intendente Güiraldes 2160(C1428EGA) Ciudad Autónoma de Buenos Aires, Argentina
| | - Sandra Guerrero
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Pabellón de Industrias, Ciudad Universitaria, Avenida Intendente Güiraldes 2160(C1428EGA) Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
16
|
Vollmer K, Chakraborty S, Bhalerao PP, Carle R, Frank J, Steingass CB. Effect of Pulsed Light Treatment on Natural Microbiota, Enzyme Activity, and Phytochemical Composition of Pineapple (Ananas comosus [L.] Merr.) juice. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02460-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AbstractThe effect of pulsed light (PL) on numerous important quality characteristics of pineapple juice was studied and compared with untreated and thermally pasteurised samples. The laboratory scale PL batch system used was operated with each three different voltages (1.8, 2.1, and 2.4 kV) and numbers of pulses (47, 94, and 187). Treatments with 2.4 kV and either 94 or 187 pulses (757/1479 J·cm−2) resulted in a 5-log reduction in aerobic mesophiles and the yeast and mould counts. Peroxidase was more resistant to PL than polyphenol oxidase, whereas the bromelain activity was completely retained in all PL-treated juices. Colour and antioxidant capacity were minimally affected, while vitamin C, genuine pineapple furanones, and phenolic compounds declined. In contrast, thermal pasteurisation was more detrimental to colour, antioxidant capacity, and vitamin C content, but resulted in a superior inactivation of microorganisms and enzymes and retention of phenolic compounds. Principal component analysis (PCA) permitted the differentiation of fresh, thermally pasteurised, and all PL-treated juices. PCA on the basis of the individual juice constituents additionally arranged the latter juices according to the number of pulses and voltage levels applied, particularly promoted by the oxidation of ascorbic to dehydroascorbic acid. In conclusion, PL treatment represents a promising new alternative to conventional thermal preservation techniques, whereby the inactivation of deteriorative enzymes may be further optimised.
Collapse
|
17
|
Montanari C, Tylewicz U, Tabanelli G, Berardinelli A, Rocculi P, Ragni L, Gardini F. Heat-Assisted Pulsed Electric Field Treatment for the Inactivation of Saccharomyces cerevisiae: Effects of the Presence of Citral. Front Microbiol 2019; 10:1737. [PMID: 31417527 PMCID: PMC6684780 DOI: 10.3389/fmicb.2019.01737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/15/2019] [Indexed: 11/13/2022] Open
Abstract
Pulsed electric field (PEF) treatment is a non-thermal technology that has shown good potential for microbial inactivation. However, in many cases, it cannot be sufficient to avoid microbial proliferation, and the combination with other stabilizing technologies is needed. In the framework of the hurdle concept, several researches have been focused on the use of PEF in combination with heat and/or antimicrobials to increase its efficacy. This study investigated the inactivation effect of PEF on a strain of Saccharomyces cerevisiae (isolated from spoiled beverages) in a model system (growth medium). The efficacy of PEF treatment was evaluated in relation to different variables, such as electric field strength (25 and 50 kV/cm), treatment time (from 1 to 5 s), initial inoculum level (4 or 6 log cfu/ml), preheating at 50°C, medium pH (4 or 6), and addition of citral at sublethal concentration (i.e., half of minimum inhibiting concentration). The data from plate counting, modeled with the Weibull equation, showed that one of the main factors affecting yeast inactivation was the preheating of the suspension at 50°C. Indeed, higher cell load reductions were obtained with heat-assisted PEF, especially in the presence of citral. The effect of initial cell load was negligible, while pH affected yeast inactivation only without preheating, with higher death kinetics at pH 6. Flow cytometry (FCM) analysis confirmed higher mortality under these conditions. However, the occurrence of injured cells, especially in samples treated at pH 4, was observed. The ability of these cells to recover from the damages induced by treatments was affected by both citral and preheating. The synergic effects of PEF, preheating, and citral were likely due to the increase of membrane permeability (especially at pH 6), as the primary target of electroporation, which favored the solubilization of citral in the cell membrane, enhancing the efficacy of the whole process. The multi-analytical approach (traditional plate counting and FCM) allowed defining parameters to increase PEF efficacy against S. cerevisiae. Moreover, FCM, able to discriminate different physiological states of the yeast population, was helpful to better clarify the action mechanism and the potential recovery of cells after treatment.
Collapse
Affiliation(s)
- Chiara Montanari
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena, Italy
| | - Urszula Tylewicz
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Giulia Tabanelli
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena, Italy
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | | | - Pietro Rocculi
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena, Italy
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Luigi Ragni
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena, Italy
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Fausto Gardini
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena, Italy
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| |
Collapse
|
18
|
Ruiz-De Anda D, Ventura-Lara MG, Rodríguez-Hernández G, Ozuna C. The impact of power ultrasound application on physicochemical, antioxidant, and microbiological properties of fresh orange and celery juice blend. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00236-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Tabanelli G, Montanari C, Arioli S, Magnani M, Patrignani F, Lanciotti R, Mora D, Gardini F. Physiological response of Saccharomyces cerevisiae to citral combined with thermal treatment. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|