1
|
Qazi HJ, Ye A, Acevedo-Fani A, Singh H. Delivery of encapsulated bioactive compounds within food matrices to the digestive tract: recent trends and future perspectives. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38821104 DOI: 10.1080/10408398.2024.2353366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Encapsulation technologies have achieved encouraging results improving the stability, bioaccessibility and absorption of bioactive compounds post-consumption. There is a bulk of published research on the gastrointestinal behavior of encapsulated bioactive food materials alone using in vitro and in vivo digestion models, but an aspect often overlooked is the impact of the food structure, which is much more complex to unravel and still not well understood. This review focuses on discussing the recent findings in the application of encapsulated bioactive components in fabricated food matrices. Studies have suggested that the integration of encapsulated bioactive compounds has been proven to have an impact on the physicochemical characteristics of the finished product in addition to the protective effect of encapsulation on the fortified bioactive compound. These products containing bioactive compounds undergo further structural reorganization during digestion, impacting the release and emptying rates of fortified bioactive compounds. Thus, by manipulation of various food structures and matrices, the release and delivery of these bioactive compounds can be altered. This knowledge provides new opportunities for designing specialized foods for specific populations.
Collapse
Affiliation(s)
- Haroon Jamshaid Qazi
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jillani Road, Lahore, Punjab, Pakistan
| | - Aiqian Ye
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
2
|
Saunshi YB, David CG, Pushpadass HA, Emerald Franklin ME, Awachat VB, Kadakol VR. Characterization of withanolides and bacoside A-loaded proniosomes: effect on oxidative stress and survival under hypergravity in rodent model. Drug Dev Ind Pharm 2023; 49:748-758. [PMID: 38037324 DOI: 10.1080/03639045.2023.2286702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVE This work provides characterization of withanolides and bacoside A proniosomes, and evaluating their potency in rat model for combating oxidative stress-induced blood-brain barrier (BBB) damage and their survival under hypergravity. SIGNIFICANCE The delivery system was aimed for sustained drug release in plasma and brain, which could improve their efficiency and provide a therapeutic approach to combat oxidative damage and restore BBB integrity. METHODS Proniosomes were prepared using withanolides extracted from the roots of W. somnifera and bacoside A derived from the leaf extract of B. monnieri by thin film hydration technique. In vitro release of withanolides and bacoside A from the proniosomes was studied. In vivo experiments were conducted in Wistar Albino rat model to evaluate the efficacy of drug-loaded proniosomes in improving the antioxidant activity in plasma and brain, restoring BBB integrity and combating hypergravity conditions. RESULTS The withanolides and bacoside A-loaded proniosomes showed slow and sustained release of just 62.0 ± 2.87 and 62.9 ± 3.41%, respectively, in 9 h period against the release of 98-99% for the extracts that served as control. Trials conducted in vivo revealed a significant (p < .05) increase in the activity of antioxidant enzymes in both plasma and brain. Also, minimal extravasation of Evans blue dye into the brain (15 ± 0.03 and 16 ± 0.03 ng/g in treated groups against 110 ± 0.01 ng/g in control) of the rats fed with drug-loaded proniosomes was indicative of minimal damage to BBB. Rats fed with drug-loaded proniosomes survived to the extent of 75-83.3% against simulated hypergravity as compared to the control group in which only 50% survived. CONCLUSION Proniosomes provided sustained release of drugs, which helped to protect BBB integrity, thereby combating hypergravity.
Collapse
Affiliation(s)
| | - Corbon Godfrey David
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | | | | | | | | |
Collapse
|
3
|
Abd El-Aziz M, Salama HH, Sayed RS. Plant extracts and essential oils in the dairy industry: A review. FOODS AND RAW MATERIALS 2023:321-337. [DOI: 10.21603/2308-4057-2023-2-579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Plants have been used as food additives worldwide to enhance the sensory qualities of foods and extend their shelf life by reducing or eliminating foodborne pathogens. They also serve as therapeutic agents due to their beneficial effects on human health through their anti-cancerous, anti-inflammatory, antioxidant, and immune-modulatory properties.
Plants can be added to food as a dry powder, grated material, paste, juice, or as an extract that can be produced by a variety of methods. Plant extracts and essential oils are concentrated sources of bioactive phytochemicals that can be added to food in small amounts in a variety of forms. These forms include liquid, semi-solid, or dry powder for easy and uniform diffusion. Encapsulation can protect bioactive compounds from temperature, moisture, oxidation, and light, as well as allow for controlling the release of the encapsulated ingredients. Nanoemulsions can enhance the bioactivity of active components.
This review explains how plant extracts and essential oils are used in the dairy industry as antimicrobial materials, analyzing their impact on starter bacteria; as natural antioxidants to prevent the development of off-flavors and increase shelf life; and as technological auxiliaries, like milk-clotting enzymes, stabilizers, and flavoring agents. Therefore, plant extracts and essential oils are a better choice for the dairy industry than plants or their parts due to a wide range of applications, homogeneous dispersion, and ability to control the concentration of the bioactive ingredients and enhance their efficiency.
Collapse
|
4
|
Indiarto R, Rahimah S, Subroto E, Putri NAG, Pangawikan AD. Antioxidant activity and characteristics of a cocoa drink formulated with encapsulated green coffee extract. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2144883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Rossi Indiarto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang km. 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Souvia Rahimah
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang km. 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Edy Subroto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang km. 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Nur Alifia Gardiantini Putri
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang km. 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Aldila Din Pangawikan
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang km. 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| |
Collapse
|
5
|
Mahdi SA, Astawan M, Wulandari N, Muhandri T, Wresdiyati T, Febrinda AE. Formula Optimization and Physicochemical Characterization of Tempe Drink Powder. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2022. [DOI: 10.12944/crnfsj.10.3.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tempe is chosen as the main ingredient of tempe drink powder (TDP) due to its protein digestibility, phytochemical compounds, as well as vitamins and minerals. Previous studies had been conducted to develop TDP formula. The commercial TDP formula showed that improvement of quality aspects needs to be done so the product has better physical and chemical characteristics. In order to optimize the TDP formula, the viscosity, water solubility index (WSI), water absorption index (WAI), sedimentation index (SI), proximate, antioxidant activity, isoflavone content, GABA content, and physicochemical properties were analyzed. The optimized formula was done using the mixture experiment optimization method with optimization d-optimal to obtain the best formula. The optimization result showed that the best formula proportion consisted of 70% (w/w) Tempe flour, 18.23% (w/w) maltodextrin and 1.77% (w/w) guar gum. The best formula was chosen due to having better chemical characteristics compared with the commercial TDP and commercial soy drink powder (SDP), with protein content of 42.61%, antioxidant activity of 58.36 mgAEAC/100g, daidzein and genistein isoflavones of each 48.18 and 140.06 mg/100g and GABA of 21.24 mg/g. Based on the physical characteristics, the optimum formula had a lower viscosity value (18.67 cP) and WAI (2.58g/g) as well as a higher SI value (10.18%) and WSI (9.70%) compared with the commercial TDP. The optimum TDP formula has fulfilled the quality requirements based on the Indonesian National Standard (SNI 7612:2011) regarding soy drink powder.
Collapse
Affiliation(s)
- Sulaiman Akbar Mahdi
- 1Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
| | - Made Astawan
- https://www.foodandnutritionjournal.org/volume10number3/formula-optimization-and-physicochemical-characterization-of-tempe-drink-powder/
| | - Nur Wulandari
- 1Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
| | - Tjahja Muhandri
- 1Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
| | - Tutik Wresdiyati
- 2Department of Anatomy, Physiology, and Pharmacology, School of Veterinary Medicine and Biomedicine, IPB University, Bogor, Indonesia
| | - Andi Early Febrinda
- 3Department of Food Quality Assurance Supervisor, College of Vocational Studies, IPB University, Bogor, Indonesia
| |
Collapse
|
6
|
Cocoa based beverages – Composition, nutritional value, processing, quality problems and new perspectives. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Siddiqui SA, Bahmid NA, Taha A, Khalifa I, Khan S, Rostamabadi H, Jafari SM. Recent advances in food applications of phenolic-loaded micro/nanodelivery systems. Crit Rev Food Sci Nutr 2022; 63:8939-8959. [PMID: 35426751 DOI: 10.1080/10408398.2022.2056870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The current relevance of a healthy diet in well-being has led to a surging interest in designing novel functional food products enriched by biologically active molecules. As nature-inspired bioactive components, several lines of research have revealed the capability of polyphenolic compounds (phenolics) in the medical intervention of different ailments, i.e., tumors, cardiovascular and inflammatory diseases. Phenolics typically possess antioxidant and antibacterial properties and, due to their unique molecular structure, can offer superior platforms for designing functional products. They can protect food ingredients from oxidation and promote the physicochemical attributes of proteins and carbohydrate-based materials. Even though these properties contribute to the inherent benefits of bioactive phenolics as important functional ingredients in the food industry, the in vitro/in vivo instability, poor solubility, and low bioavailability are the main factors restricting their food/pharma applicability. Recent advances in the encapsulation realm are now offering efficient platforms to overcome these limitations. The application of encapsulation field may offer protection and controlled delivery of phenolics in food formulations. Here, we review recent advances in micro/nanoencapsulation of phenolics and highlight efficient carriers from this decade, which have been utilized successfully in food applications. Although further development of phenolic-containing formulations promises to design novel functional food formulations, and revolutionize the food industry, most of the strategies found in the scientific literature are not commercially applicable. Moreover, in vivo experiments are extremely crucial to corroborate the efficiency of such products.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Nur Alim Bahmid
- National Research and Innovation Agency, Jakarta, Indonesia
- Agricultural Product Technology Department, Sulawesi Barat University, Majene, Indonesia
| | - Ahmed Taha
- Center for Physical Sciences and Technology, State Research Institute, Vilnius, Lithuania
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Sipper Khan
- Institute of Agricultural Engineering Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Hadis Rostamabadi
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seid Mahdi Jafari
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
8
|
Yuan Y, He N, Dong L, Guo Q, Zhang X, Li B, Li L. Multiscale Shellac-Based Delivery Systems: From Macro- to Nanoscale. ACS NANO 2021; 15:18794-18821. [PMID: 34806863 DOI: 10.1021/acsnano.1c07121] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Delivery systems play a crucial role in enhancing the activity of active substances; however, they require complex processing techniques and raw material design to achieve the desired properties. In this regard, raw materials that can be easily processed for different delivery systems are garnering attention. Among these raw materials, shellac, which is the only pharmaceutically used resin of animal origin, has been widely used in the development of various delivery systems owing to its pH responsiveness, biocompatibility, and degradability. Notably, shellac performs better on encapsulating hydrophobic active substances than other natural polymers, such as polysaccharides and proteins. In addition, specially designed shellac-based delivery systems can also be used for the codelivery of hydrophilic and hydrophobic active substances. Shellac is most widely used for oral administration, as shellac-based delivery systems can form a compact structure through hydrophobic interaction, protecting transported active substances from the harsh environment of the stomach to achieve targeted delivery in the small intestine or colon. In this review, the advantages of shellac in delivery systems are discussed in detail. Multiscale shellac-based delivery systems from the macroscale to nanoscale are comprehensively introduced, including matrix tablets, films, enteric coatings, hydrogels, microcapsules, microparticles (beads/spheres), nanoparticles, and nanofibers. Furthermore, the hotspots, deficiencies, and future perspectives of shellac-based delivery system development are also analyzed. We hoped this review will increase the understanding of shellac-based delivery systems and inspire their further development.
Collapse
Affiliation(s)
- Yi Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Ni He
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Liya Dong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Qiyong Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xia Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Bing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Lin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
9
|
Muhammad DRA, Kongor JE, Dewettinck K. Investigating the effect of different types of cocoa powder and stabilizers on suspension stability of cinnamon-cocoa drink. Journal of Food Science and Technology 2021; 58:3933-3941. [PMID: 34471317 DOI: 10.1007/s13197-020-04855-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 11/25/2022]
Abstract
Sedimentation of particles in cocoa drink is a technological challenge for the food industry. This study investigates the effect of different stabilizers (alginate, xanthan gum or carrageenan) on the suspension stability of cinnamon-cocoa drink made from 2 types of cocoa powder (natural or alkalized). Rheological and microstructural properties determination was used to examine the stabilization effect mechanism. The cocoa powder characteristic was investigated to study the correlation between cocoa powder properties and suspension stability. The results showed that xanthan gum is the most effective stabilizer to prevent particle sedimentation of the cinnamon-cocoa drink. Xanthan gum formed a network entrapping the particles. It increased the viscosity from 2.47 to 70.44 mPa s at a shear rate of 10/s. The drink formulated with alkalized cocoa powder has a better stability than that formulated with natural cocoa powder. However, at the concentration of 0.1% (w/v), xanthan gum could prevent sedimentation regardless the type of cocoa powder. The addition of xanthan gum up to 0.1% (w/v) had no significant effect on pH and antioxidant properties of the cinnamon-chocolate drink with a minor change in the lightness (L*) parameter. As such, the value of L*, pH, phenolic content and antioxidant activity of the cinnamon-cocoa drinks remained stable at around 22.5 ± 0.9, 7.2 ± 0.1, 0.31 ± 0.5 mg epicatechin equivalent /ml and 0.44 ± 0.3 mg tannic acid equivalent /ml, respectively. This study can be useful for the food industry to define a novel strategy to produce "ready-to-drink" cocoa-based beverage with prolonged suspension stability.
Collapse
Affiliation(s)
- Dimas Rahadian Aji Muhammad
- Laboratory of Food Technology and Engineering, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
- Department of Food Science and Technology, Universitas Sebelas Maret, Jl. Ir Sutami 36A, Surakarta, 57126 Indonesia
| | - John Edem Kongor
- Laboratory of Food Technology and Engineering, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
- Council for Scientific and Industrial Research-Food Research Institute, P.O Box M20, Accra, Ghana
| | - Koen Dewettinck
- Laboratory of Food Technology and Engineering, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| |
Collapse
|
10
|
Gómez-Guillén MC, Montero MP. Enhancement of oral bioavailability of natural compounds and probiotics by mucoadhesive tailored biopolymer-based nanoparticles: A review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106772] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Sensory and Physicochemical Properties and Stability of Folic Acid in a Pineapple Ready-to-Serve Beverage Fortified with Encapsulated Folic Acid. J FOOD QUALITY 2021. [DOI: 10.1155/2021/9913884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fortification of food and beverages with folic acid is carried out frequently as a remedy to folic acid deficiency which causes serious health issues. This study was carried out to investigate the effect of incorporation of folic acid encapsulated alginate submicron particles in pineapple ready-to-serve (RTS) beverages. The encapsulation efficiency and loading capacity of the particles were 91.54 ± 0.45% and 1.02 ± 0.01%, respectively. The photostability and thermal stability studies of folic acid revealed that encapsulation poses a protective effect on folic acid and that dark and refrigerated conditions contribute to higher stability of folic acid. In this study, sensory evaluation of the RTS beverages was carried out through both ranking tests and acceptance tests using a five-point hedonic scale. The sensory panel showed the highest preference to pineapple RTS with incorporated encapsulated folic acid at a quantity of its recommended daily intake (400 µg/200 mL) before heat treatment. Shelf-life evaluations were carried out through measuring physicochemical properties, and pH, titratable acidity, and total soluble solids showed negligible or acceptable changes over two months. Folic acid degradation occurred due to heat treatment, but encapsulation in alginate submicron particles provided heat stability to folic acid. Thus, microencapsulated folic acid may be a successful carrier of folic acid which can be incorporated in beverages such as fortified pineapple RTS.
Collapse
|
12
|
Snoussi A, Essaidi I, Ben Haj Koubaier H, Zrelli H, Alsafari I, Živoslav T, Mihailovic J, Khan M, El Omri A, Ćirković Veličković T, Bouzouita N. Drying methodology effect on the phenolic content, antioxidant activity of Myrtus communis L. leaves ethanol extracts and soybean oil oxidative stability. BMC Chem 2021; 15:31. [PMID: 33952328 PMCID: PMC8097818 DOI: 10.1186/s13065-021-00753-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/13/2021] [Indexed: 11/10/2022] Open
Abstract
In this study, different drying methodologies (convective air, oven and microwave) of Myrtus communis L. (M. communis L.) leaves were conducted to investigate their effects on the levels of phenolic compounds, antioxidant capacity of ethanolic extracts (EEs) as well as the soybean oil oxidative stability. Drying methodology significantly influenced the extractability of phenolic compounds. Microwave drying led to an increase in the amounts of total phenols, flavonoids and proanthocyanidins followed by oven drying at 70 °C. Higher temperature of drying (100 and 120 °C) led to a significant reduction of their amounts (p < 0.05). An ultra-performance liquid chromatography method combined with high resolution mass spectroscopic detection was used to analyze the phenolic fraction of extracts. Higher amounts of the identified compounds were observed when leaves were heat treated. Furthermore, the evaluation of the antioxidant activity showed that the studied extracts possess in general high antioxidant capacities, significantly dependent on the employed drying methodology. The incorporation of the different extracts at 200 ppm in soybean oil showed that its oxidative stability was significantly improved. Extracts from leaves treated with microwave (EE_MW) and at 70 °C (EE_70) have better effect than BHT. The results of the present study suggest that microwave drying could be useful to enhance the extractability of phenolic compounds and the antioxidant capacity of M. communis L. leaf extract.
Collapse
Affiliation(s)
- Ahmed Snoussi
- Higher School of Food Industries of Tunis (ESIAT), University of Carthage, 58 Avenue Alain Savary, 1003, Tunis El Khadra, Tunisia. .,Laboratoire de Chimie Organique Structurale, Synthèse et Etude Physicochimique-Faculté des Sciences de Tunis, 2092, El Manar, Tunisia.
| | - Ismahen Essaidi
- Institut Supérieur Agronomique de Chott Meriem, Université de Sousse, Sousse, Tunisia
| | - Hayet Ben Haj Koubaier
- Higher School of Food Industries of Tunis (ESIAT), University of Carthage, 58 Avenue Alain Savary, 1003, Tunis El Khadra, Tunisia.,Laboratoire de Chimie Organique Structurale, Synthèse et Etude Physicochimique-Faculté des Sciences de Tunis, 2092, El Manar, Tunisia
| | - Houda Zrelli
- Genomics and Biotechnology Section, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibrahim Alsafari
- Department of Chemistry, College of Science, University of Hafr AlBatin, Hafr Al Batin, Saudi Arabia.,Department of Biology, College of Science, University of Hafr AlBatin, Hafr Al Batin, Saudi Arabia
| | - Tesic Živoslav
- Faculty of Chemistry, Belgrade, Serbia.,Center of Excellence for Molecular Food Sciences and Department of Biochemistry, Facult of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Jelena Mihailovic
- Center of Excellence for Molecular Food Sciences and Department of Biochemistry, Facult of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Muhummadh Khan
- Genomics and Biotechnology Section, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdelfatteh El Omri
- Genomics and Biotechnology Section, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tanja Ćirković Veličković
- Faculty of Chemistry, Belgrade, Serbia.,Center of Excellence for Molecular Food Sciences and Department of Biochemistry, Facult of Chemistry, University of Belgrade, Belgrade, Serbia.,Ghent University Global Campus, Incheon, South Korea.,Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Nabiha Bouzouita
- Higher School of Food Industries of Tunis (ESIAT), University of Carthage, 58 Avenue Alain Savary, 1003, Tunis El Khadra, Tunisia.,Laboratoire de Chimie Organique Structurale, Synthèse et Etude Physicochimique-Faculté des Sciences de Tunis, 2092, El Manar, Tunisia
| |
Collapse
|
13
|
Wu Q, Zhou J. The application of polyphenols in food preservation. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:35-99. [PMID: 34507646 DOI: 10.1016/bs.afnr.2021.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polyphenols are a kind of complex secondary metabolites in nature, widely exist in the flowers, bark, roots, stems, leaves, and fruits of plants. Numerous studies have shown that plant-derived polyphenols have a variety of bioactivities due to their unique chemical structure, such as antioxidant, antimicrobial, and prevention of chronic diseases, cardiovascular disease, cancer, osteoporosis, and neurodegeneration. With the gradual rise of natural product development, plant polyphenols have gradually become one of the research hotspots in the field of food science due to their wide distribution in the plants, and the diversity of physiological functions. Owing to the extraordinary antioxidant and antibacterial activity of polyphenols, plant-derived polyphenols offer an alternative to chemical additives used in the food industry, such as oil, seafood, meat, beverages, and food package materials. Based on this, this chapter provides an overview of the potential antioxidant and antibacterial mechanisms of plant polyphenols and their application in food preservation, it would be providing a reference for the future development of polyphenols in the food industry.
Collapse
Affiliation(s)
- Qian Wu
- Hubei University of Technology, Wuhan, China.
| | - Jie Zhou
- Northwest Agriculture & Forestry University, Yangling, China
| |
Collapse
|
14
|
|
15
|
Yuan Y, Zhang X, Pan Z, Xue Q, Wu Y, Li Y, Li B, Li L. Improving the properties of chitosan films by incorporating shellac nanoparticles. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Shruthi P, Pushpadass HA, Franklin MEE, Battula SN, Laxmana Naik N. Resveratrol-loaded proniosomes: Formulation, characterization and fortification. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Hernandez-Aguilar C, Dominguez-Pacheco A, Valderrama-Bravo C, Cruz-Orea A, Martínez Ortiz E, Ordonez-Miranda J. Photoacoustic Spectroscopy in the Characterization of Bread with Turmeric Addition. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02546-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Muhammad DRA, Tuenter E, Patria GD, Foubert K, Pieters L, Dewettinck K. Phytochemical composition and antioxidant activity of Cinnamomum burmannii Blume extracts and their potential application in white chocolate. Food Chem 2020; 340:127983. [PMID: 32919354 DOI: 10.1016/j.foodchem.2020.127983] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/10/2020] [Accepted: 08/30/2020] [Indexed: 01/15/2023]
Abstract
This study aims at determining the potentials of cinnamon (Cinnamomun burmannii) extracts to improve the health-promoting properties of white chocolate. LC-HRMS analysis was employed to obtain information regarding the phytochemical content while the phosphomolybdenum, FRAP and DPPH assays were used to determine antioxidant activity of cinnamon extract. Furthermore, the cinnamon extract was loaded into nanoparticles before adding it to white chocolate. The results show that cinnamon extracts contained phenols up to 310 mg EE and possessed antioxidant activity up to 260 mg TAE per gram of dry extract depending on the extraction mode (i.e., traditional and ultrasonic-assisted method) and the solvent type. The cinnamon extract contained catechin, epicatechin, procyanidin B2, quercitrin, 3,4-dihydroxybenzaldehyde, protocatechuic acid and cinnamic acid at levels of 51, 53, 1396, 13, 1138, 228 and 934 µg/g of dry extract, respectively. The encapsulated cinnamon extract increased the phenolic content of white chocolate from 47.6 to 1060.6 µg EE/g.
Collapse
Affiliation(s)
- Dimas Rahadian Aji Muhammad
- Laboratory of Food Technology and Engineering, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent 9000, Belgium; Department of Food Science and Technology, Faculty of Agriculture, Universitas Sebelas Maret, Jl. Ir Sutami 36A, Surakarta 57126, Indonesia.
| | - Emmy Tuenter
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Antwerp (Wilrijk), Belgium.
| | - Graha Darma Patria
- Laboratory of Food Technology and Engineering, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent 9000, Belgium
| | - Kenn Foubert
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Antwerp (Wilrijk), Belgium.
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Antwerp (Wilrijk), Belgium.
| | - Koen Dewettinck
- Laboratory of Food Technology and Engineering, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent 9000, Belgium.
| |
Collapse
|
19
|
Luo D, Mu T, Sun H, Chen J. Optimization of the formula and processing of a sweet potato leaf powder-based beverage. Food Sci Nutr 2020; 8:2680-2691. [PMID: 32566185 PMCID: PMC7300073 DOI: 10.1002/fsn3.1555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 02/05/2023] Open
Abstract
For the development of a sweet potato leaf powder (SPLP)-based beverage, we investigated the effects of blanching methods on SPLP quality (including color, nutritional and functional compositions and antioxidant activity), and the effects of particle size and stabilizers on suspension stability of final product. The total polyphenol and antioxidant activity of SPLP of uncut group were 1.69 and 1.91 times those of cut group, respectively, and the indices of nutritional quality of copper, manganese and vitamin E of uncut group were significantly greater than cut group. The ultrafine SPLP-produced lowest gravitational sedimentation ratio (49%), indicating it had greatest suspension stability. The optimized formula of SPLP-based beverage was as follows: ultrafine SPLP of uncut group was mixed with 2.5% (w/w, powder basis) xanthan gum, 1% calcium lactate, 2% ascorbic acid, 12% maltodextrin, 20% xylitol, and 0.9% apple essence. The final product had high nutritional value along with consumer-acceptable flavor and texture.
Collapse
Affiliation(s)
- Dan Luo
- Laboratory of Food Chemistry and Nutrition ScienceInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesKey Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
| | - Tai‐Hua Mu
- Laboratory of Food Chemistry and Nutrition ScienceInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesKey Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition ScienceInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesKey Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
| | - Jingwang Chen
- Laboratory of Food Chemistry and Nutrition ScienceInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesKey Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
| |
Collapse
|
20
|
Sedaghat Doost A, Nikbakht Nasrabadi M, Kassozi V, Nakisozi H, Van der Meeren P. Recent advances in food colloidal delivery systems for essential oils and their main components. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.037] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Muhammad DRA, Sedaghat Doost A, Gupta V, bin Sintang MD, Van de Walle D, Van der Meeren P, Dewettinck K. Stability and functionality of xanthan gum–shellac nanoparticles for the encapsulation of cinnamon bark extract. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105377] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Muhammad DRA, Lemarcq V, Alderweireldt E, Vanoverberghe P, Praseptiangga D, Juvinal JG, Dewettinck K. Antioxidant activity and quality attributes of white chocolate incorporated with Cinnamomum burmannii Blume essential oil. Journal of Food Science and Technology 2019; 57:1731-1739. [PMID: 32327784 DOI: 10.1007/s13197-019-04206-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/30/2019] [Accepted: 12/11/2019] [Indexed: 01/16/2023]
Abstract
White chocolate is often considered as an unhealthy product with low phenolic content and antioxidant activity since it does not contain cocoa liquor. In this study, investigation on the phytochemical composition of cinnamon essential oil as well as its potential use to improve the antioxidant activity of white chocolate were carried out. The effect of the essential oil incorporation on the quality attributes of white chocolate was also examined. The results show that cinnamon essential oil was rich in cinnamaldehyde and exhibited antioxidant activity. The incorporation of cinnamon essential oil at a level of 0.1% (w/w) increased the antioxidant activity of the white chocolate more than twofold without significant effect on its hardness, melting properties and colour. However, a slight alteration on the flow behaviour of the white chocolate was observed. This study clearly shows that natural cinnamon essential oil could be an alternative to synthetic additives in foods to improve their antioxidant activity.
Collapse
Affiliation(s)
- Dimas Rahadian Aji Muhammad
- 1Laboratory of Food Technology and Engineering, Department of Food Technology, Safety and Health, Faculty of Bioscience-Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium.,2Department of Food Science and Technology, Universitas Sebelas Maret (UNS), Jl. Ir Sutami 36A Kentingan Jebres, Surakarta, 57126 Indonesia
| | - Valérie Lemarcq
- 1Laboratory of Food Technology and Engineering, Department of Food Technology, Safety and Health, Faculty of Bioscience-Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Elien Alderweireldt
- 1Laboratory of Food Technology and Engineering, Department of Food Technology, Safety and Health, Faculty of Bioscience-Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Pauline Vanoverberghe
- 1Laboratory of Food Technology and Engineering, Department of Food Technology, Safety and Health, Faculty of Bioscience-Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Danar Praseptiangga
- 2Department of Food Science and Technology, Universitas Sebelas Maret (UNS), Jl. Ir Sutami 36A Kentingan Jebres, Surakarta, 57126 Indonesia
| | - Joel Garcia Juvinal
- 3Department of Food Science and Technology, Central Luzon State University, Science City of Munoz, 3120 Nueva Ecija Philippines
| | - Koen Dewettinck
- 1Laboratory of Food Technology and Engineering, Department of Food Technology, Safety and Health, Faculty of Bioscience-Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| |
Collapse
|