1
|
Malikul Ikram MM, Putri SP, Fukusaki E. Chitosan-based coating enriched with melezitose alters primary metabolites in fresh-cut pineapple during storage. J Biosci Bioeng 2023; 136:374-382. [PMID: 37689569 DOI: 10.1016/j.jbiosc.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/25/2023] [Accepted: 08/06/2023] [Indexed: 09/11/2023]
Abstract
Demand for minimally processed fresh fruit is increasing due to its convenience. However, the distribution of fresh-cut fruits is limited because of their short shelf life. Pineapple, a popular tropical fruit, sold in fresh-cut form has a shelf life of approximately 5-7 days at 4 °C. Chitosan, an edible coating, is commonly used to prolong the shelf life of food products. Similarly, the sugar melezitose has been reported to change during pineapple ripening and may play a role in regulating the shelf life of pineapple. However, the direct effects of this sugar have yet to be studied. The objective of this study was to investigate the effect of chitosan coating with melezitose to prolong the shelf life of fresh-cut pineapple. Full-ripe Bogor pineapples from Okinawa, Japan, were cut into cubes and soaked in either chitosan 1.25%, melezitose 5 mg/L, or chitosan+melezitose and stored for 5 days under dark conditions (23.6 ± 0.5 °C; relative humidity, 40.0 ± 10.4%). None of the treatments significantly altered the weight loss or color changes in the fresh-cut fruit. However, treatment significantly altered the primary metabolites, namely quinic acid, sucrose, and xylitol based on orthogonal projection to latent structures data with the screening from p-value score. Moreover, cell-wall metabolism is possibly affected in pineapple cut fruit treated by chitosan-melezitose as shown from metabolite sets enrichment analysis. This study showed that chitosan added with melezitose might have potential to prolong the shelf-life of fresh-cut pineapple, providing a basis for further post-harvest studies of the whole pineapple fruit.
Collapse
Affiliation(s)
- Muhammad Maulana Malikul Ikram
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sastia Prama Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan.
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; Osaka University-Shimadzu Omics Innovation Research Laboratories, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
2
|
Yan Z, Xu D, Yue X, Yuan S, Shi J, Gao L, Wu C, Zuo J, Wang Q. Whole-transcriptome RNA sequencing reveals changes in amino acid metabolism induced in harvested broccoli by red LED irradiation. Food Res Int 2023; 169:112820. [PMID: 37254395 DOI: 10.1016/j.foodres.2023.112820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Whole-transcriptomic profiling combined with amino acid analysis were conducted in order to gain a better understanding of global changes in amino acid metabolism induced in broccoli by red LED irradiation. The results showed that the contents of almost all 16 amino acids in postharvest broccoli were maintained under red LED illumination. The red LED irradiation enhanced the anabolism of amino acid, including the biosynthesis of aromatic amino acids by upregulating the genes' expression in the shikimate pathway, as well as by upregulating the genes' expression which encoding biosynthetic enzymes in the branched-chain amino acid biosynthesis pathway. Red LED irradiation induced the expression of genes encoding aspartate aminotransferase, which plays a role in Asp synthesis, aspartate kinase, which functions in aspartate metabolism, and a cytoplasmic aspartate aminotransferase that converts 2-Oxoglutarate into Glu. Genes encoding imidazole glycerol-phosphate synthase and histidinol-phosphatase, which function in the His biosynthesis pathway, were also upregulated. According to our results, red LED irradiation delays broccoli's yellowing and senescence by regulating amino acid metabolism. These results enhance our understanding of the role of amino acid metabolism in the senescence of broccoli and the mechanism of red LED irradiation to alter amino acid metabolism in harvested broccoli.
Collapse
Affiliation(s)
- Zhicheng Yan
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China.
| | - Dongying Xu
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Xiaozhen Yue
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Shuzhi Yuan
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Junyan Shi
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lipu Gao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China
| | - Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
3
|
Xue S, Yin Y. An exploration of robust model construction for monitoring banana quality during storage based on hyperspectral information. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01542-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
4
|
Chen Q, Ou J, Guo L, Wu F. Study on the effect of icariin on the preservation of postharvest mango fruit. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Qiqi Chen
- College of Food Science and Engineering Foshan University Foshan China
| | - Jiaying Ou
- College of Food Science and Engineering Foshan University Foshan China
| | - Lihong Guo
- College of Food Science and Engineering Foshan University Foshan China
| | - Fuwang Wu
- College of Food Science and Engineering Foshan University Foshan China
- Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing Foshan University Foshan China
| |
Collapse
|
5
|
Banana spoilage benchmark determination method and early warning potential based on hyperspectral data during its storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00948-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Yu L, Liao Z, Zhao Y, Zeng X, Yang B, Bai W. Metabolomic analyses of dry lemon slice during storage by NMR. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Limei Yu
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Zhiqiang Liao
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Yupeng Zhao
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Bao Yang
- South China Botanical Garden Chinese Academy of Sciences Guangzhou China
| | - Weidong Bai
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou China
| |
Collapse
|