1
|
Salehinia S, Didaran F, Aliniaeifard S, Zohrabi S, MacPherson S, Lefsrud M. Green light enhances the phytochemical preservation of lettuce during postharvest cold storage. PLoS One 2024; 19:e0311100. [PMID: 39546455 PMCID: PMC11567635 DOI: 10.1371/journal.pone.0311100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/12/2024] [Indexed: 11/17/2024] Open
Abstract
The postharvest lighting environment is a main factor that influences quality preservation for harvested biomass. The objective of this study was to evaluate postharvest changes in bioactive compounds of lettuce with different storage light spectra. The effects of green LEDs with peaks at 500 nm and 530 nm, white LEDs (400-700 nm), and dark storage were evaluated, where light intensity (10 μmol m-2 s-1) and photoperiod (12 h per day) were constant with air temperature at 5°C over the 14 d treatment period. Lettuce stored with 500 nm and 530 nm green LEDs exhibited 1474.5% and 1451.8% (approximately 15.7 and 15.5 times) higher antioxidant activity, respectively, compared to dark storage. Significant improvements in total phenolic content, and 67.5% and 64.8% increases in total soluble solids with 530 nm and 500 nm green LEDs over dark storage were discerned. Exposure to 530 nm green LEDs led to 128.2% (approximately 2.28 times) higher anthocyanin content, a 26.2% increase in carotenoids, and a 95% rise in flavonoid content compared to dark storage. Increases of 26.4% and 16.0% in chlorophyll a content in lettuce stored under 500 nm and 530 nm green LEDs, respectively, and 65.6% and 46.6% rises in the Chlorophyll a/b ratio were observed. Compared to dark storage, green LEDs (500 nm) resulted in a 13.5% higher total chlorophyll content. Findings underscore the positive impact of green LEDs on the nutritional quality of lettuce, providing insight for postharvest practices.
Collapse
Affiliation(s)
- Shafieh Salehinia
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Fardad Didaran
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Sasan Aliniaeifard
- Controlled Environment Agriculture Center, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Saman Zohrabi
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Sarah MacPherson
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Mark Lefsrud
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Li L, Wu C, Chen Q, Shi Z, Xu K, Niu Y, Rao X. Preparation of dehydroabietic acid modified chitosan/wintergreen essential oil film and mandarin freshness preservation study. Food Chem 2024; 464:141836. [PMID: 39509898 DOI: 10.1016/j.foodchem.2024.141836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/26/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
In order to obtain an eco-friendly and multifunctional preservative film, dehydroabietic acid (DHA) modified chitosan (CS) containing wintergreen essential oil (CSDA-WEO) film was developed. CS grafted by DHA was able to increase the deformation capacity of CS film (MCS) by about 12.5 %, and the film made by CSDA containing WEO increased the tensile deformation capacity to 32 %. CSDA-WEO film (MCSDA-WEO) can improve the transmittance and UV blocking, and MCSDA-WEO can be completely degraded within 35 days. In the Film-2 approach, PE film (MPE), CSDA film (MCSDA) and MCSDA-WEO again improve the preservative performance based on the original 1 approach and have good freshness preservation. MCSDA and MCSDA-WEO were able to delay the loss of antioxidant activity, improve the antifungal property and prolong the shelf life of mandarins up to 18 days. MCSDA and MCSDA-WEO have good performance, are green and healthy, and have a wide perspective for food preservation.
Collapse
Affiliation(s)
- Lingling Li
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, Yunnan 650224, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Chunhua Wu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, Yunnan 650224, China.
| | - Qian Chen
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, Yunnan 650224, China.
| | - Zhengjun Shi
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, Yunnan 650224, China.
| | - Kaimeng Xu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Yanfei Niu
- Yunnan Baiyao Group Chinese Medicinal Resources Division, 650500, China
| | - Xiaoping Rao
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, Yunnan 650224, China; College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
3
|
Loi M, De Leonardis S, Mulè G, Serio F, Bottiglione B, Paciolla C, Villani A. Light emitting diodes for the improvement of postharvest quality of wild rocket in soilless and soil-bound cultivation systems. Heliyon 2024; 10:e39052. [PMID: 39498002 PMCID: PMC11532293 DOI: 10.1016/j.heliyon.2024.e39052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Wild rocket (Diplotaxis tenuifolia (L.) DC cv. Dallas) is a leafy green vegetable appreciated for its pungent taste and healthy properties, often consumed as a ready-to-eat product. The cultivation system is crucial in determining the overall quality, while postharvest storage is fundamental for preserving nutritional quality, phytochemicals, and vitamins. This study aimed to investigate the phytochemical content and microbiological quality of soilless (SS) and soil-bound (SB) wild rocket during cold postharvest storage under blue, red, and green Light Emitting Diode (LED). Blue LED increased chlorophylls and carotenoids in SB after two days of storage, and chlorophyll a in SS after seven days. Furthermore, it reduced H2O2 levels after two days (SS and SB) and lipid peroxidation in SB. Red LED increased phenols in both SS and SB but was detrimental to chlorophyll, carotenoids, and oxidative markers. Green LED had less significant effects. Microbiological growth varied with LED treatment: green light increased mesophilic bacteria in SB, and red light did so in SS by day four, while blue light reduced bacterial growth at the end of storage. Overall, Blue LED was the most effective LED in preserving postharvest quality. Soilless cultivation was particularly beneficial in reducing lipid peroxidation and maintaining cell membrane integrity during long-term storage, and it might also be more effective in preserving ascorbic acid. Conversely, soil-bound cultivation methods could enhance initial polyphenol content or better preserve it during early storage. This study highlights the complex interplay of pre-harvest conditions, postharvest quality, and shelf-life performance.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola, 122/O, 70126, Bari, Italy
| | - Silvana De Leonardis
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola, 122/O, 70126, Bari, Italy
| | - Francesco Serio
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola, 122/O, 70126, Bari, Italy
| | - Benedetta Bottiglione
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Costantino Paciolla
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Alessandra Villani
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola, 122/O, 70126, Bari, Italy
| |
Collapse
|
4
|
Wang M, Xu J, Li L, Shen H, Ding Z, Xie J. Development of packaging films based on UiO-66 MOF loaded melatonin with antioxidation functions for spinach preservation. Food Chem 2024; 440:138211. [PMID: 38104446 DOI: 10.1016/j.foodchem.2023.138211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Spinach tends to deteriorate after harvest due to physiological metabolic activities. As a natural, pollution-free, and environmentally friendly preservative, melatonin (MT) can effectively maintain the quality of fruits and vegetables after harvest and delay senescence. To enhance the preservation effect of MT, this study developed antioxidant films using MT-loaded UiO-66 metal-organic framework (MOF) nanoparticles. This approach effectively extends the shelf life of spinach while preserving its quality. The underlying mechanism involves leveraging the microporous structure and stability of UiO-66 MOF. Experimental results obtained from the packaging films demonstrated significant improvements in both mechanical strength and antioxidant properties when UiO-66 was loaded with MT at a concentration of 0.20 mg/mL and combined with sodium alginate. Freshness preservation experiments also indicated the effective preservation effect of these films on spinach. In conclusion, the results of this study suggest that MT-loaded UiO-66 MOF is a promising active packaging material for spinach preservation.
Collapse
Affiliation(s)
- Mingying Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jin Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Li Li
- Shanghai Tramy Green Food (Group) Co. Ltd, Shanghai Tramy Academy of Modern Agricultural Industry, Shanghai 201399, China
| | - Huming Shen
- Shanghai Tramy Green Food (Group) Co. Ltd, Shanghai Tramy Academy of Modern Agricultural Industry, Shanghai 201399, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| |
Collapse
|
5
|
Li L, Xu Y, Xu Z, Wu C, Chen Q, Xu K, Shi Z, Rao X. Synthesis, characterization and antifungal properties of maleopimaric anhydride modified chitosan. Int J Biol Macromol 2024; 267:131373. [PMID: 38583838 DOI: 10.1016/j.ijbiomac.2024.131373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Fruit spoilage can cause huge economic losses, in which fungal infection is one of the main influencing factors, how to effectively control mould and spoilage of fruits and prolong their shelf-life has become a primary issue in the development of fruit and vegetable industry. In this study, rosin derivative maleopimaric anhydride (MPA) was combined with biodegradable and antifungal chitosan (CS) to enhance its antifungal and preservative properties. The modified compounds were characterized by FTIR, 1H NMR spectra and XRD, and the in vitro antifungal properties of the modified compounds were evaluated by the radial growth assay and the minimal inhibitory concentration assay. The preservation effect on small mandarin oranges and longan was studied. The analysis revealed that the modification product (CSMA) of MPA access to C6-OH of CS had a better antifungal effect. In addition, CSMA was more environmentally friendly and healthier than the commercially available chemical preservative (Imazalil), and had the same antifungal preservative effect in preserving small mandarin orange, and was able to extend the shelf life to >24 d. In the preservation of longan, CSMA was more effective against tissue water loss and was able to maintain the moisture in the longan pulp and extend the shelf life. Therefore, CSMA has good application potentials in longan keeping-fresh.
Collapse
Affiliation(s)
- Lingling Li
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest forestry University, Kunming, Yunnan 650224, China
| | - Yanran Xu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest forestry University, Kunming, Yunnan 650224, China
| | - Zhuo Xu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest forestry University, Kunming, Yunnan 650224, China
| | - Chunhua Wu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest forestry University, Kunming, Yunnan 650224, China.
| | - Qian Chen
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest forestry University, Kunming, Yunnan 650224, China
| | - Kaimeng Xu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest forestry University, Kunming, Yunnan 650224, China
| | - Zhengjun Shi
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest forestry University, Kunming, Yunnan 650224, China
| | - Xiaoping Rao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
6
|
Rehman M, Pan J, Mubeen S, Ma W, Luo D, Cao S, Saeed W, Jin G, Li R, Chen T, Chen P. Morpho-physio-biochemical, molecular, and phytoremedial responses of plants to red, blue, and green light: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20772-20791. [PMID: 38393568 DOI: 10.1007/s11356-024-32532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Light is a basic requirement to drive carbon metabolism in plants and supports life on earth. Spectral quality greatly affects plant morphology, physiology, and metabolism of various biochemical pathways. Among visible light spectrum, red, blue, and green light wavelengths affect several mechanisms to contribute in plant growth and productivity. In addition, supplementation of red, blue, or green light with other wavelengths showed vivid effects on the plant biology. However, response of plants differs in different species and growing conditions. This review article provides a detailed view and interpretation of existing knowledge and clarifies underlying mechanisms that how red, blue, and green light spectra affect plant morpho-physiological, biochemical, and molecular parameters to make a significant contribution towards improved crop production, fruit quality, disease control, phytoremediation potential, and resource use efficiency.
Collapse
Affiliation(s)
- Muzammal Rehman
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Jiao Pan
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Samavia Mubeen
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Wenyue Ma
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Dengjie Luo
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Shan Cao
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Wajid Saeed
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Gang Jin
- Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Ru Li
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Tao Chen
- Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Peng Chen
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
7
|
Li L, Xu Y, Xu Z, Wu C, Chen Q, Xu K, Shi Z. Synthesis, characterization and antifungal properties of dehydroabietic acid modified chitosan. Int J Biol Macromol 2024; 255:128056. [PMID: 37967604 DOI: 10.1016/j.ijbiomac.2023.128056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
The bioactivities of pristine chitosan are considerable weak compared with the commercial chemicals, which has restricted its broad application prospects in food packaging and preservation. In order to obtain a safe, biologically derived fruits preservative with excellent antifungal properties, dehydroabietic acid (DHA) was used to modify chitosan (CS). The structural characterization of modified chitosans were identified by FTIR and 1H NMR spectra. The XRD pattern showed the modified chitosan changed the crystal structure due to the modification of the amino and/or hydroxyl groups on the chitosan. Their antifungal activities against Penicillium digitutim and Penicillium italicum were investigated in vitro using the radial growth assay and the minimal inhibitory concentration assay. The study also examined the differences in antifungal effect among three modified chitosans. The results showed that DHA only conjugated thehydroxyl group at C-6, bearing free amino group at C-2, exhibited the strongest antifungal effect, with a minimum inhibitory concentration (MIC) of 200 μg/mL. In addition, a comparison of the antifungal activity of the modified compounds with different concentrations of Imazalil demonstrated that the modified biologic antifungal agent was as effective as Imazalil. CSDA can achieve 100 % inhibition of P. digitutim at concentrations >100 μg/mL and remain unchanged for a long time. Because CSDA can enhance the shelf life of longans, DHA-CS, chitosan derivatives, have tremendous promise for use in fruits preservation.
Collapse
Affiliation(s)
- Lingling Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest forestry University, Kunming, Yunnan 650224, China; Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest forestry University, Kunming, Yunnan 650224, China
| | - Yanran Xu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest forestry University, Kunming, Yunnan 650224, China; Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest forestry University, Kunming, Yunnan 650224, China
| | - Zhuo Xu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest forestry University, Kunming, Yunnan 650224, China; Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest forestry University, Kunming, Yunnan 650224, China
| | - Chunhua Wu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest forestry University, Kunming, Yunnan 650224, China; Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest forestry University, Kunming, Yunnan 650224, China.
| | - Qian Chen
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest forestry University, Kunming, Yunnan 650224, China
| | - Kaimeng Xu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest forestry University, Kunming, Yunnan 650224, China
| | - Zhengjun Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest forestry University, Kunming, Yunnan 650224, China
| |
Collapse
|
8
|
Paolillo I, Costanzo G, Delicato A, Villano F, Arena C, Calabrò V. Light Quality Potentiates the Antioxidant Properties of Brassica rapa Microgreen Extracts against Oxidative Stress and DNA Damage in Human Cells. Antioxidants (Basel) 2023; 12:1895. [PMID: 37891974 PMCID: PMC10604222 DOI: 10.3390/antiox12101895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Plants are an inexhaustible source of bioactive compounds beneficial for contrasting oxidative stress, leading to many degenerative pathologies. Brassica rapa L. subsp. rapa is well known for its nutraceutical properties among edible vegetable species. In our work, we aimed to explore an eco-friendly way to enhance the beneficial dietary phytochemicals in this vast world of crop-growing plants at selected light quality conditions. White broad-spectrum (W) and red-blue (RB) light regimes were used for growing brassica microgreens. The organic extracts were tested on keratinocytes upon oxidative stress to explore their capability to act as natural antioxidant cell protectors. Our results show that both W and RB extracts caused a notable reduction in reactive oxygen species (ROS) levels induced by H2O2. Interestingly, according to its higher contents of polyphenols and flavonoids, the RB was more efficient in reducing ROS amount and DNA damage than the W extract, particularly at the lowest concentration tested. However, at higher concentrations (up to 100 μg/mL), the antioxidant effect reached a plateau, and there was little added benefit. These findings confirm that RB light effectively increases the antioxidant compounds in Brassica rapa L. microgreens, thus contributing to their enhanced activity against oxidative-induced genotoxicity compared to microgreens grown under W light.
Collapse
Affiliation(s)
- Ida Paolillo
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (I.P.); (G.C.); (A.D.); (F.V.); (V.C.)
| | - Giulia Costanzo
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (I.P.); (G.C.); (A.D.); (F.V.); (V.C.)
| | - Antonella Delicato
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (I.P.); (G.C.); (A.D.); (F.V.); (V.C.)
| | - Filippo Villano
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (I.P.); (G.C.); (A.D.); (F.V.); (V.C.)
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (I.P.); (G.C.); (A.D.); (F.V.); (V.C.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Viola Calabrò
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (I.P.); (G.C.); (A.D.); (F.V.); (V.C.)
| |
Collapse
|
9
|
Costanzo G, Vitale E, Iesce MR, Spinelli M, Fontanarosa C, Paradiso R, Amoresano A, Arena C. Modulation of Antioxidant Compounds in Fruits of Citrus reticulata Blanco Using Postharvest LED Irradiation. BIOLOGY 2023; 12:1029. [PMID: 37508457 PMCID: PMC10376515 DOI: 10.3390/biology12071029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Phlegrean mandarin fruits are already known for health-promoting properties due to the high concentration of phytochemicals in peel, pulp, and seed. Biotic and abiotic factors, including light, may modulate their biosynthesis, metabolism, and accumulation. In this context, light-emitting diodes (LED) have recently been applied to control nutritional traits, ripening process, senescence, fruit shelf-life, and pathogenic microbial spoilage of fruits. This study investigated the effect of the seven-day exposure of Phlegrean mandarin fruits to two LED regimes, white (W) and red-blue (RB), to test the possibility that the storage under specific light wavelengths may be used as green preservation technology that enhances fruit phytochemical properties. To pursue this aim, the antioxidant activity and polyphenolic profile of the pulp and peel of mandarins under W and RB light regimes were evaluated and compared with Control fruits not exposed to LED treatment. Our results indicated that storage under W and RB treatments modulates the antioxidant content in pulp and peel differently. Compared to W, the RB regime increases the ascorbic acid, flavonoid, anthocyanin, and carotenoid concentrations, while the polyphenol profile analysis reveals that the number of important phytochemicals, i.e., quercetin rutinoside, chlorogenic acid, sinensetin, and rutin, are higher under W. The overall data demonstrated that postharvest LED irradiation is a valid tool for modifying fruit phytochemical properties, which also boosts specific bioactive compounds.
Collapse
Affiliation(s)
- Giulia Costanzo
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy
| | - Ermenegilda Vitale
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy
| | - Maria Rosaria Iesce
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy
| | - Michele Spinelli
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy
| | - Carolina Fontanarosa
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy
| | - Roberta Paradiso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy
- NBFC-National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
10
|
Jiang L, Chen X, Gu X, Deng M, Li X, Zhou A, Suo M, Gao W, Lin Y, Wang Y, He W, Li M, Chen Q, Zhang Y, Luo Y, Wang X, Tang H, Zhang Y. Light Quality and Sucrose-Regulated Detached Ripening of Strawberry with Possible Involvement of Abscisic Acid and Auxin Signaling. Int J Mol Sci 2023; 24:ijms24065681. [PMID: 36982763 PMCID: PMC10058270 DOI: 10.3390/ijms24065681] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
The regulation of detached ripening is significant for prolonging fruit shelf life. Although light quality and sucrose affecting strawberry fruit ripening have been widely reported, little information is available about how they co-regulate the strawberry detached ripening process. In this study, different light qualities (red light—RL, blue light—BL, and white light—WL) and 100 mM sucrose were applied to regulate the ripening of initial red fruits detached from the plant. The results showed RL-treated samples (RL + H2O, RL + 100 mM sucrose) had brighter and purer skin color with a higher L*, b*, and C* value, and promoted the ascorbic acid. Almost all light treatments significantly decreased TSS/TA (total soluble solid/titratable acid) and soluble sugar/TA ratio, which is exacerbated by the addition of sucrose. Blue or red light in combination with sucrose notably increased total phenolic content and decreased malondialdehyde (MDA) accumulation. In addition, blue or red light combined with sucrose increased abscisic acid (ABA) content and promoted ABA signaling by inducing ABA-INSENSITIVE 4 (ABI4) expression and inhibiting SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE 2.6 (SnRK2.6) expression. The strawberries exposed to blue and red light significantly improved auxin (IAA) content compared to the control (0 d), whereas the addition of sucrose inhibited IAA accumulation. Moreover, sucrose treatment suppressed the AUXIN/INDOLE-3-ACETIC ACID 11 (AUX/IAA11) and AUXIN RESPONSE FACTOR 6 (ARF6) expression under different light qualities. Overall, these results indicated that RL/BL + 100 mM sucrose might promote the detached ripening of strawberries by regulating abscisic acid and auxin signaling.
Collapse
Affiliation(s)
- Leiyu Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinpeng Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xianjie Gu
- Mianyang Academy of Agricultural Sciences, Mianyang 621000, China
| | - Meiyi Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaotong Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Aiyang Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyue Suo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Weiliang Gao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (H.T.); (Y.Z.)
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (H.T.); (Y.Z.)
| |
Collapse
|
11
|
Ramesh T, Hariram U, Srimagal A, Sahu JK. Applications of light emitting diodes and their mechanism for food preservation. J Food Saf 2023. [DOI: 10.1111/jfs.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | | | - A. Srimagal
- Department of Food Technology Rajalakshmi Engineering College Chennai India
| | - Jatindra K. Sahu
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi New Delhi India
| |
Collapse
|
12
|
Teng X, Zhang M, Mujumdar AS. Phototreatment (below 1100 nm) improving quality attributes of fresh-cut fruits and vegetables: A review. Food Res Int 2023; 163:112252. [PMID: 36596164 DOI: 10.1016/j.foodres.2022.112252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
The emerging area of phototreatment technology has shown a significant potential to enhance the quality of fresh-cut fruit and vegetable products (FFVP). This review critically evaluates relevant literatures to address the potential for phototreatment technology (Red, blue, green, ultraviolet and pulsed light) applied to FFVP, outline the key to the success of phototreatment processing, and discuss the corresponding problems for phototreatment processing along with research and development needs. Base on photothermal, photophysical and photochemical process, phototreatment displays a great potential to maintain quality attributes of FFVP. The operating parameters of light, the surface properties and matrix components of the targeted material and the equipment design affect the quality of the fresh-cut products. To adapt current phototreatment technology to industrial FFVP processing, it is necessary to offset some limitations, especially control of harmful substances (For example, nitrite and furan) produced by phototreatment, comparison between different phototreatment technologies, and establishment of mathematical models/databases.
Collapse
Affiliation(s)
- Xiuxiu Teng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Ultraviolet Applications to Control Patulin Produced by Penicillium expansum CMP-1 in Apple Products and Study of Further Patulin Degradation Products Formation and Toxicity. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
Patulin is a mycotoxin whose presence in apple-derived products and fruit juices is legally regulated, being its maximum limits established in the legislation of multiple countries. However, the management of contaminated batches is still an issue for producers. This investigation aims to evaluate ultraviolet light (254 nm, UV-C254nm) irradiation to find solutions that can be applied at different stages of the apple juice production chain. In this regard, 8.8 (UV-1) and 35.1 (UV-2) kJ m−2 treatments inactivated spores of Penicillium expansum CMP-1 on the surface of apples. Although the same treatments applied to wounded apples (either before the infection or after the infection, immediately or when the lesion had appeared) did not show any effect on the growth rate of P. expansum during storage (up to 14 days, at 4 or 25 °C), they reduced patulin content per lesion size in apples treated after the infection had occurred (patulin decreased from 2.24 (control) to 0.65 µg kg−1 cm−2 (UV-2 treated apples)). Additionally, the treatment of juice with patulin with ultraviolet light up to 450.6 kJ m−2 resulted in more than 98 % reduction of patulin. Degradation products of patulin after UV-C254nm treatments were tentatively identified by HPLC–MS, and toxicity and biological activities were assessed in silico, and results indicated that such products did not pose an increased risk when compared to patulin.
Collapse
|
14
|
Nassarawa SS, Luo Z. Effect of Light Irradiation on Sugar, Phenolics, and GABA Metabolism on Postharvest Grape (Vitis vinifera L.) During Storage. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Yang Q, Luo M, Zhou Q, Zhou X, Zhao Y, Chen J, Ji S. Insights into Profiling of 24-Epibrassinolide Treatment Alleviating the Loss of Glucosinolates in Harvested Broccoli. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Post-Harvest LED Light Irradiation Affects Firmness, Bioactive Substances, and Amino Acid Compositions in Chili Pepper ( Capsicum annum L.). Foods 2022; 11:foods11172712. [PMID: 36076894 PMCID: PMC9455159 DOI: 10.3390/foods11172712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Chili pepper is an important vegetable and spice crop with high post-harvest deteriorations in terms of commercial and nutritional quality. Light-emitting diodes (LEDs) are eco-friendly light sources with various light spectra that have been demonstrated to improve the shelf-life of various vegetables by manipulating light quality; however, little is known about their effects on the post-harvest nutritional quality of chili peppers. This study investigated the effects of different LED lightings on the post-harvest firmness and nutritional quality of chili peppers. We found that red and blue light could increase the content of capsaicinoids, whereas white and red light could increase the essential and aromatic amino acid (AA) content in pepper. Nonetheless, the influence of light treatments on AA contents and compositions depends strongly on the pepper genotype, which was reflected by total AA content, single AA content, essential AA ratio, delicious AA ratio, etc., that change under different light treatments. Additionally, light affected fruit firmness and the content of nutrients such as chlorophyll, vitamin C, and total carotenoids, to varying degrees, depending on pepper genotypes. Thus, our findings indicate that LED-light irradiation is an efficient and promising strategy for preserving or improving the post-harvest commercial and nutritional quality of pepper fruit.
Collapse
|
17
|
Chlorophyllin-Based 405 nm Light Photodynamic Improved Fresh-Cut Pakchoi Quality at Postharvest and Inhibited the Formation of Biofilm. Foods 2022; 11:foods11162541. [PMID: 36010540 PMCID: PMC9407260 DOI: 10.3390/foods11162541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to evaluate the effect of chlorophyllin-based photodynamic inactivation (Chl-PDI) on biofilm formation and fresh-cut pakchoi quality during storage. Firstly, Chl-based PDI reduced the amount of biofilm in an in vivo experiment and inactivated the food spoilage bacteria. Antibacterial mechanism analysis indicated that the bacterial extracellular polysaccharides and extracellular proteins were vulnerable targets for attacks by the Chl-based PDI. Then, the food spoilage microorganisms (Pseudomonas reinekei and Pseudomonas palleroniana) were inoculated onto the surface of fresh-cut pakchoi. We used chlorophyllin (1 × 10−5 mol/L) and 405 nm light (22.27 J/cm2 per day) to investigate the effect of Chl-based PDI treatment on fresh-cut pakchoi quality during storage. The results showed that Chl-based PDI increased the visual quality and the content of chlorophyll, VC, total soluble solids, and SOD activity and decreased the occurrence of leaf yellowing and POD activity. These suggest that Chl-based PDI can be used for the preservation of fresh-cut pakchoi and has the potential to inhibit biofilm formation of food spoilage bacteria. It is of great significance for the effective processing and traditional vegetable preservation.
Collapse
|
18
|
Nassarawa SS, Belwal T, Javed M, Luo Z. Influence of the Red LEDs Light Irradiation on the Quality and Chemical Attributes of Postharvest Table Grape (Vitis vinifera L.) During Storage. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02824-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
19
|
Yu X, Zheng P, Zou Y, Ye Z, Wei T, Lin J, Guo L, Yuk HG, Zheng Q. A review on recent advances in LED-based non-thermal technique for food safety: current applications and future trends. Crit Rev Food Sci Nutr 2022; 63:7692-7707. [PMID: 35369810 DOI: 10.1080/10408398.2022.2049201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Light-emitting diodes (LEDs) is an eco-friendly light source with broad-spectrum antimicrobial activity. Recent studies have extensively been conducted to evaluate its efficacy in microbiological safety and the potential as a preservation method to extend the shelf-life of foods. This review aims to present the latest update of recent studies on the basics (physical, biochemical and mechanical basics) and antimicrobial activity of LEDs, as well as its application in the food industry. The highlight will be focused on the effects of LEDs on different types (bacteria, yeast/molds, viruses) and forms (planktonic cells, biofilms, endospores, fungal toxin) of microorganisms. The antimicrobial activity of LEDs on various food matrices was also evaluated, together with further analysis on the food-related factors that lead to the differences in LEDs efficiency. Besides, the applications of LEDs on the food-related conditions, packaged food, and equipment that could enhance LEDs efficiency were discussed to explore the future trends of LEDs technology in the food industry. Overall, the present review provides important insights for future research and the application of LEDs in the food industry.
Collapse
Affiliation(s)
- Xinpeng Yu
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Peng Zheng
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yuan Zou
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Zhiwei Ye
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Tao Wei
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Junfang Lin
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Liqiong Guo
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, Korea National University of Transportation, Chungbuk, Republic of Korea
| | - Qianwang Zheng
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| |
Collapse
|
20
|
Darré M, Vicente AR, Cisneros-Zevallos L, Artés-Hernández F. Postharvest Ultraviolet Radiation in Fruit and Vegetables: Applications and Factors Modulating Its Efficacy on Bioactive Compounds and Microbial Growth. Foods 2022; 11:653. [PMID: 35267286 PMCID: PMC8909097 DOI: 10.3390/foods11050653] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022] Open
Abstract
Ultraviolet (UV) radiation has been considered a deleterious agent that living organisms must avoid. However, many of the acclimation changes elicited by UV induce a wide range of positive effects in plant physiology through the elicitation of secondary antioxidant metabolites and natural defenses. Therefore, this fact has changed the original UV conception as a germicide and potentially damaging agent, leading to the concept that it is worthy of application in harvested commodities to take advantage of its beneficial responses. Four decades have already passed since postharvest UV radiation applications began to be studied. During this time, UV treatments have been successfully evaluated for different purposes, including the selection of raw materials, the control of postharvest diseases and human pathogens, the elicitation of nutraceutical compounds, the modulation of ripening and senescence, and the induction of cross-stress tolerance. Besides the microbicide use of UV radiation, the effect that has received most attention is the elicitation of bioactive compounds as a defense mechanism. UV treatments have been shown to induce the accumulation of phytochemicals, including ascorbic acid, carotenoids, glucosinolates, and, more frequently, phenolic compounds. The nature and extent of this elicitation have been reported to depend on several factors, including the product type, maturity, cultivar, UV spectral region, dose, intensity, and radiation exposure pattern. Even though in recent years we have greatly increased our understanding of UV technology, some major issues still need to be addressed. These include defining the operational conditions to maximize UV radiation efficacy, reducing treatment times, and ensuring even radiation exposure, especially under realistic processing conditions. This will make UV treatments move beyond their status as an emerging technology and boost their adoption by industry.
Collapse
Affiliation(s)
- Magalí Darré
- LIPA—Laboratorio de Investigación en Productos Agroindustriales, Universidad Nacional de La Plata, Calle 60 y 119 s/n, La Plata CP 1900, Argentina;
| | - Ariel Roberto Vicente
- LIPA—Laboratorio de Investigación en Productos Agroindustriales, Universidad Nacional de La Plata, Calle 60 y 119 s/n, La Plata CP 1900, Argentina;
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Murcia, Spain;
| |
Collapse
|
21
|
Chávez‐Zaragoza K, Morales‐Guerrero A, Colín‐Chávez C, Tovar‐Díaz L, Ornelas‐Paz JDJ, Osuna‐Castro JA, Vargas‐Arispuro I, Martínez‐Téllez MA, Virgen‐Ortiz JJ. Improving the nutraceutical value of mango during ripening by postharvest irradiation with blue LEDs via enhancing of antioxidant enzyme activities. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Karen Chávez‐Zaragoza
- Centro de Innovación y Desarrollo Agroalimentario de Michoacán (CIDAM) Antigua Carretera a Pátzcuaro km 8 Morelia Michoacán C.P. 58341 México
- Instituto Tecnológico Superior de Uruapan Carretera Uruapan‐Carapan No. 5555 Col. La Basilia Uruapan Michoacán C.P. 60015 México
| | - Alejandro Morales‐Guerrero
- Instituto Tecnológico Superior de Uruapan Carretera Uruapan‐Carapan No. 5555 Col. La Basilia Uruapan Michoacán C.P. 60015 México
| | - Citlali Colín‐Chávez
- Centro de Innovación y Desarrollo Agroalimentario de Michoacán (CIDAM) Antigua Carretera a Pátzcuaro km 8 Morelia Michoacán C.P. 58341 México
| | - Luis Tovar‐Díaz
- Centro de Innovación y Desarrollo Agroalimentario de Michoacán (CIDAM) Antigua Carretera a Pátzcuaro km 8 Morelia Michoacán C.P. 58341 México
| | - José de Jesús Ornelas‐Paz
- Centro de Investigación en Alimentación y Desarrollo A.C. ‐ Unidad Cuauhtémoc Av. Río Conchos S/N, Parque Industrial Cd. Cuauhtémoc Chihuahua C.P. 31570 México
| | - Juan A. Osuna‐Castro
- Facultad de Ciencias Biológicas y Agropecuarias Universidad de Colima Carretera Colima‐Manzanillo km 40 Tecomán, Colima C.P. 28100 México
| | - Irasema Vargas‐Arispuro
- Centro de Investigación en Alimentación y Desarrollo A.C. Carretera la Victoria km 0.6 Hermosillo Sonora C.P. 83304 México
| | - Miguel A. Martínez‐Téllez
- Centro de Investigación en Alimentación y Desarrollo A.C. Carretera la Victoria km 0.6 Hermosillo Sonora C.P. 83304 México
| | - Jose J. Virgen‐Ortiz
- CONACYT ‐ Centro de Investigación en Alimentación y Desarrollo A. C. ‐ CIDAM. Antigua Carretera a Pátzcuaro km 8 Morelia Michoacán C.P. 58341 México
| |
Collapse
|
22
|
Conventional and Emerging Techniques for Detection of Foodborne Pathogens in Horticulture Crops: a Leap to Food Safety. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02730-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Zhang XJ, Zhang M, Chitrakar B, Devahastin S, Guo Z. Novel Combined Use of Red-White LED Illumination and Modified Atmosphere Packaging for Maintaining Storage Quality of Postharvest Pakchoi. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02771-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Zhang P, Lu S, Liu Z, Zheng T, Dong T, Jin H, Jia H, Fang J. Transcriptomic and Metabolomic Profiling Reveals the Effect of LED Light Quality on Fruit Ripening and Anthocyanin Accumulation in Cabernet Sauvignon Grape. Front Nutr 2022; 8:790697. [PMID: 34970581 PMCID: PMC8713590 DOI: 10.3389/fnut.2021.790697] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Different light qualities have various impacts on the formation of fruit quality. The present study explored the influence of different visible light spectra (red, green, blue, and white) on the formation of quality traits and their metabolic pathways in grape berries. We found that blue light and red light had different effects on the berries. Compared with white light, blue light significantly increased the anthocyanins (malvidin-3-O-glucoside and peonidin-3-O-glucoside), volatile substances (alcohols and phenols), and soluble sugars (glucose and fructose), reduced the organic acids (citric acid and malic acid), whereas red light achieved the opposite effect. Transcriptomics and metabolomics analyses revealed that 2707, 2547, 2145, and 2583 differentially expressed genes (DEGs) and (221, 19), (254, 22), (189, 17), and (234, 80) significantly changed metabolites (SCMs) were filtered in the dark vs. blue light, green light, red light, and white light, respectively. According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, most of the DEGs identified were involved in photosynthesis and biosynthesis of flavonoids and flavonols. Using weighted gene co-expression network analysis (WGCNA) of 23410 highly expressed genes, two modules significantly related to anthocyanins and soluble sugars were screened out. The anthocyanins accumulation is significantly associated with increased expression of transcription factors (VvHY5, VvMYB90, VvMYB86) and anthocyanin structural genes (VvC4H, Vv4CL, VvCHS3, VvCHI1, VvCHI2, VvDFR), while significantly negatively correlated with VvPIF4. VvISA1, VvISA2, VvAMY1, VvCWINV, VvβGLU12, and VvFK12 were all related to starch and sucrose metabolism. These findings help elucidate the characteristics of different light qualities on the formation of plant traits and can inform the use of supplemental light in the field and after harvest to improve the overall quality of fruit.
Collapse
Affiliation(s)
- Peian Zhang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Suwen Lu
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Zhongjie Liu
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Ting Zheng
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Tianyu Dong
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Huanchun Jin
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Haifeng Jia
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Jingggui Fang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
25
|
Zhang X, Zhang M, Xu B, Mujumdar AS, Guo Z. Light-emitting diodes (below 700 nm): Improving the preservation of fresh foods during postharvest handling, storage, and transportation. Compr Rev Food Sci Food Saf 2021; 21:106-126. [PMID: 34967490 DOI: 10.1111/1541-4337.12887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 12/30/2022]
Abstract
In order to maintain the original taste, flavors, and appearance, fresh foods usually do not go through complex processing prior to sale; this makes them prone to deterioration due to external factors. Light-emitting diodes (LEDs) have many unique advantages over traditional preservation technologies leading to their increasing application in the food industry. This paper reviews the luminescence principles of LED, the advantages of LED compared with traditional lighting equipment, and its possible preservation mechanism, and then critically summarizes the beneficial effects of LED irradiation on the ripening and aging process of various fruits and vegetables (climacteric and non-climacteric). The activity changes of many enzymes closely related to crop development and quality maintenance, and the variation of flavor components caused by LED irradiation are discussed. LED illumination with a specific spectrum also has the important effect of maintaining the original color and flavor of meat, seafood, and dairy products. For microorganisms attached to the surface of animal-derived food, both 400-460 nm LED irradiation based on photodynamic inactivation principle and UV-LED irradiation based on ultraviolet sterilization principle have high bactericidal efficacy. Although there is still a lack of useful standards for matching optimal LED irradiation dose with wavelength, perhaps in the near future, the improved LED irradiation system will be applied extensively in the food industry.
Collapse
Affiliation(s)
- Xijia Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, China
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| | - Zhimei Guo
- R&D Center, Wuxi Haihe Equipment Co., Wuxi, China
| |
Collapse
|
26
|
Li M, Yin Y, Yu H, Yuan Y, Liu X. Early Warning Potential of Banana Spoilage Based on 3D Fluorescence Data of Storage Room Gas. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02691-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Jin S, Ding Z, Xie J. Study of Postharvest Quality and Antioxidant Capacity of Freshly Cut Amaranth after Blue LED Light Treatment. PLANTS (BASEL, SWITZERLAND) 2021; 10:1614. [PMID: 34451660 PMCID: PMC8400882 DOI: 10.3390/plants10081614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022]
Abstract
Freshly cut vegetables are susceptible to microbial contamination and oxidation during handling and storage. Hence, light-emitting diode technology can effectively inhibit microbial growth and improve antioxidant enzyme activity. In this paper, the freshly cut amaranth was treated with different intensities of blue light-emitting diode (LED460nm) over 12 days. Chlorophyll content, ascorbic acid content, antioxidant capacity, antioxidant enzymes activity, the changes in microbial count, and sensorial evaluation were measured to analyze the effects of LED treatment on the amaranth. Blue LED460nm light irradiation improved the vital signs of the samples and extended the shelf life by 2-3 days. The AsA-GSH cycle was effectively activated with the irradiation of 30 μmol/(m2·s) blue LED460nm light. According to the results, the LED460nm light could retard the growth of colonies and the main spoilage bacteria, Pseudomonas aeruginosa, of freshly cut amaranth.
Collapse
Affiliation(s)
- Siyuan Jin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.J.); (Z.D.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.J.); (Z.D.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.J.); (Z.D.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| |
Collapse
|
28
|
Loi M, Villani A, Paciolla F, Mulè G, Paciolla C. Challenges and Opportunities of Light-Emitting Diode (LED) as Key to Modulate Antioxidant Compounds in Plants. A Review. Antioxidants (Basel) 2020; 10:antiox10010042. [PMID: 33396461 PMCID: PMC7824119 DOI: 10.3390/antiox10010042] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 02/08/2023] Open
Abstract
Plant antioxidants are important compounds involved in plant defense, signaling, growth, and development. The quantity and quality of such compounds is genetically driven; nonetheless, light is one of the factors that strongly influence their synthesis and accumulation in plant tissues. Indeed, light quality affects the fitness of the plant, modulating its antioxidative profile, a key element to counteract the biotic and abiotic stresses. With this regard, light-emitting diodes (LEDs) are emerging as a powerful technology which allows the selection of specific wavelengths and intensities, and therefore the targeted accumulation of plant antioxidant compounds. Despite the unique advantages of such technology, LED application in the horticultural field is still at its early days and several aspects still need to be investigated. This review focused on the most recent outcomes of LED application to modulate the antioxidant compounds of plants, with particular regard to vitamin C, phenols, chlorophyll, carotenoids, and glucosinolates. Additionally, future challenges and opportunities in the use of LED technology in the growth and postharvest storage of fruits and vegetables were also addressed to give a comprehensive overview of the future applications and trends of research.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
| | - Alessandra Villani
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Francesco Paciolla
- Automation Engineering, Polytechnic of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
| | - Costantino Paciolla
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|