1
|
Liu Y, Deng XH, Carballo CB, Cong T, Piacentini A, Jordan Hall A, Ying L, Rodeo SA. Evaluating the role of subacromial impingement in rotator cuff tendinopathy: development and analysis of a novel rat model. J Shoulder Elbow Surg 2022; 31:1898-1908. [PMID: 35430367 DOI: 10.1016/j.jse.2022.02.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Subacromial impingement of the rotator cuff caused by variations in acromial anatomy or altered glenohumeral kinematics leads to inflammation and degeneration of the rotator cuff, ultimately contributing to the development of tendinopathy. However, the underlying cellular and molecular changes in the impinged tendon remain poorly understood. Because the rat is an accepted model for rotator cuff studies, we have developed a rat model to study rotator cuff tendinopathy. METHODS Forty-four adult male Sprague-Dawley rats were allocated to one of 4 study groups: intact control group (group 1, n = 11); bilateral subacromial surgical clip placement to induce supraspinatus impingement for 2 weeks (group 2, n = 11), 4 weeks (group 3, n = 11), and 8 weeks (group 4, n = 11). Bilateral shoulder specimens were harvested for biomechanical testing, histology, and quantitative real-time polymerase chain reaction (qRT-PCR) analysis. RESULTS Radiography confirmed that all microvascular clips remained in stable position in the subacromial space. Gross inspection of supraspinatus tendon specimens in the impingement groups revealed changes in tendon morphology at the enthesis and midsubstance. Biomechanical evaluation demonstrated decreased supraspinatus tendon failure force and tissue stiffness at all time points compared with control tendons. Semiquantitative scoring of histologic specimens demonstrated significant, persistent tendinopathic changes over 8 weeks. qRT-PCR analysis of impinged tendon specimens demonstrated upregulation of gene expression for Col3 and Mmp14 in the impingement groups compared with control groups. In muscle samples, significant upregulation was seen in the expression of genes that are commonly associated with muscle atrophy (MuRF1 and Ube2b) and fatty infiltration (Fabp4, Pparg2, and Klf15). CONCLUSION This new rat subacromial impingement model creates cellular and molecular changes consistent with the development of rotator cuff tendinopathy. The results of this study may serve as a baseline for future investigation.
Collapse
Affiliation(s)
- Yulei Liu
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, USA; Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Xiang-Hua Deng
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, USA
| | - Camila B Carballo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, USA
| | - Ting Cong
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, USA
| | - Alexander Piacentini
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, USA
| | - Arielle Jordan Hall
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, USA
| | - Liang Ying
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, USA
| | - Scott A Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
2
|
Stengaard K, Hejbøl EK, Jensen PT, Degn M, Ta TML, Stensballe A, Andersen DC, Schrøder HD, Lambertsen KL, Frich LH. Early-stage inflammation changes in supraspinatus muscle after rotator cuff tear. J Shoulder Elbow Surg 2022; 31:1344-1356. [PMID: 35150831 DOI: 10.1016/j.jse.2021.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/12/2021] [Accepted: 12/25/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Rotator cuff (RC) tendon tear leads to impaired shoulder function and pain. The supraspinatus (SS) tendon is most often affected, but the biological response of the SS muscle to SS tendon tear is largely unknown. This study aimed to investigate time-dependent muscle inflammation, degeneration, fatty infiltration, and regeneration in experimental SS tear conditions. METHODS Forty-five C57BL/6 mice were subjected to SS tendon tear and allowed to recover for 1, 3, 5, 7, 14, or 28 days. The extent of muscle damage was examined using histologic, flow cytometric, proteomic, and chemiluminescence analyses. RESULTS We found that muscle inflammation peaked around day 5 with increased monocyte infiltration and increased cytokine levels in the ipsilateral compared to the contralateral SS muscle. Bioinformatics analysis of proteomics on mice that survived 5 days after RC tendon tear revealed upregulated proteins involved in "neutrophil activation involved in immune response" and "extracellular matrix organization," whereas "skeletal muscle tissue development and contraction" and "respiratory electron transport chain" were among the most downregulated. Histologic analysis of collagen showed increased collagen accumulation and fatty infiltration of the ipsilateral SS over time. Finally, we observed time- and lesion-dependent changes in satellite cell and fibro-adipogenic progenitor populations. CONCLUSION Altogether, we demonstrate that the SS muscle shows severe signs of acute inflammation, early degeneration, and fatty infiltration, as well as reduced regenerative potential following SS tendon tear.
Collapse
Affiliation(s)
- Kira Stengaard
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Eva Kildall Hejbøl
- Department of Orthopedics, Hospital Sønderjylland, Region of Southern Denmark, Denmark
| | - Peter Toft Jensen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Matilda Degn
- Pediatric Oncology Laboratory, Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Thi My Linh Ta
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ditte Caroline Andersen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Institute of Clinical Research, University of Southern, Denmark
| | | | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Neurology, Odense University Hospital, Odense, Denmark; BRIDGE-Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lars Henrik Frich
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Orthopedics, Hospital Sønderjylland, Region of Southern Denmark, Denmark; Orthopedic Research Unit, Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
3
|
Chang R, Tu TY, Hung YM, Huang JY, Chou MC, Wei JCC. Metformin use is associated with a lower risk of rotator cuff disease in patients with type 2 diabetes mellitus. DIABETES & METABOLISM 2022; 48:101368. [PMID: 35760373 DOI: 10.1016/j.diabet.2022.101368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022]
Abstract
AIMS - Metformin has been mentioned to be protective against inflammation, degeneration, and oxidative stress, conditions that are associated with rotator cuff disease. To access the association between metformin use and risk of rotator cuff disease in patients with type 2 diabetes mellitus (DM). METHODS - This was a retrospective cohort study utilizing Taiwan National Health Insurance Research Database between January 1, 2000, and December 31, 2012 to retrieved participants. Metformin and propensity score matched never metformin users were determined at baseline (between the date of onset of DM and the index date), and followed to December 31, 2013. Propensity scores were adopted to address measurable confounders (including demographic variables, Diabetes Complications Severity Index, and relevant comorbidities and co-medication). A multivariable Cox proportional hazards regression model was applied to estimate the adjusted hazard ratios (HRs) for the risk of the first diagnosis of rotator cuff disease on the full cohort and on the propensity score matched cohort. RESULTS - In the propensity score matched cohort, a total of 34,964 individuals (19,416 [55.5%] men), 17,482 individuals were taking metformin, 559 [3.2%] of whom developed rotator cuff disease. Incidence of rotator cuff disease was 4.51 per 10,000 person-months in the metformin users and 5.11 in the controls. Among metformin group, the aHR (95% CI) was 0.879 (0.784-0.984) after full adjustment. The potential beneficial effect on the risk of rotator cuff disease was consistently observed across all subgroups, including sex, age, concomitant other glucose lowering drugs, and level of Diabetes Complications Severity Index (all P for interaction > 0.050). CONCLUSION - Metformin use was associated with a lower risk of rotator cuff disease in patients with type 2 DM.
Collapse
Affiliation(s)
- Renin Chang
- Department of Recreation and Sports Management, Tajen University, Pingtung, Taiwan; Department of Emergency, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| | - Ting-Yu Tu
- Department of Orthopedic, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| | - Yao-Min Hung
- Department of Internal Medicine, Kaohsiung Municipal United Hospital, Kaohsiung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; College of Health and Nursing, Meiho University, Pingtung, Taiwan.
| | - Jing-Yang Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, Taiwan.
| | - Mei-Chia Chou
- Department of Recreation and Sports Management, Tajen University, Pingtung, Taiwan; Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Pingtung Branch, Pingtung, Taiwan.
| | - James Cheng-Chung Wei
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital; Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan; Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.
| |
Collapse
|
4
|
Croen BJ, Carballo CB, Wada S, Zhang X, Patel S, Deng XH, Rodeo SA. Chronic subacromial impingement leads to supraspinatus muscle functional and morphological changes: Evaluation in a murine model. J Orthop Res 2021; 39:2243-2251. [PMID: 33336819 DOI: 10.1002/jor.24964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
Muscle atrophy and fatty infiltration have been directly correlated with higher rates of incomplete or failed healing following surgical repair of the rotator cuff. The purpose of this study was to evaluate clinically relevant functional and morphological changes in the supraspinatus muscle at various time points in this model of rotator cuff tendinopathy. Subacromial impingement was induced in 47, male C57BL/6 mice (total 94 limbs) by implantation of a metal clip in the subacromial space. Specimens were evaluated at 4, 6, and 12 weeks postoperatively. Gait analysis was used to measure various kinematic parameters. Supraspinatus muscle wet weight, histology, and quantitative reverse-transcription polymerase chain reaction analysis of genes related to muscle atrophy and adipogenesis were performed to characterize the structural, cellular, and molecular changes. Muscle atrophy and fatty infiltration was evident beginning at 6 weeks, with progression out to 12 weeks. Gait analysis identified significant functional changes in many aspects of gait and abnormal stance tracing as early as 4 weeks, verifying alterations in upper extremity function. We have demonstrated that clinically relevant changes to the supraspinatus muscle are seen starting 6 weeks after induction of subacromial impingement. Furthermore, the gait analysis provides key functional outcome measurements that may be useful for future evaluation of new therapeutic strategies.
Collapse
Affiliation(s)
- Brett J Croen
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA.,Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Camila B Carballo
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
| | - Susumu Wada
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
| | - Xueying Zhang
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
| | - Saral Patel
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
| | - Xiang-Hua Deng
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
| | - Scott A Rodeo
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
5
|
Eager JM, Warrender WJ, Deusenbery CB, Jamgochian G, Singh A, Abboud JA, Spiller KL. Distinct Gene Expression Profile in Patients With Poor Postoperative Outcomes After Rotator Cuff Repair: A Case-Control Study. Am J Sports Med 2021; 49:2760-2770. [PMID: 34283947 DOI: 10.1177/03635465211023212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Impaired healing after rotator cuff repair is a major concern, with retear rates as high as 94%. A method to predict whether patients are likely to experience poor surgical outcomes would change clinical practice. While various patient factors, such as age and tear size, have been linked to poor functional outcomes, it is currently very challenging to predict outcomes before surgery. PURPOSE To evaluate gene expression differences in tissue collected during surgery between patients who ultimately went on to have good outcomes and those who experienced a retear, in an effort to determine if surgical outcomes can be predicted. STUDY DESIGN Case-control study; Level of evidence, 3. METHODS Rotator cuff tissue was collected at the time of surgery from 140 patients. Patients were tracked for a minimum of 6 months to identify those with good or poor outcomes, using clinical functional scores and follow-up magnetic resonance imaging to confirm failure to heal or retear. Gene expression differences between 8 patients with poor outcomes and 28 patients with good outcomes were assessed using a multiplex gene expression analysis via NanoString and a custom-curated panel of 145 genes related to various stages of rotator cuff healing. RESULTS Although significant differences in the expression of individual genes were not observed, gene set enrichment analysis highlighted major differences in gene sets. Patients who had poor healing outcomes showed greater expression of gene sets related to extracellular matrix production (P < .0001) and cellular biosynthetic pathways (P < .001), while patients who had good healing outcomes showed greater expression of genes associated with the proinflammatory (M1) macrophage phenotype (P < .05). CONCLUSION These results suggest that a more proinflammatory, fibrotic environment before repair may play a role in poor healing outcome. With validation in a larger cohort, these results may ultimately lead to diagnostic methods to preoperatively predict those at risk for poor surgical outcomes.
Collapse
Affiliation(s)
- Jessica M Eager
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | | | - Carly B Deusenbery
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | | | - Arjun Singh
- Rothman Orthopaedic Institute, Philadelphia, Pennsylvania, USA
| | - Joseph A Abboud
- Rothman Orthopaedic Institute, Philadelphia, Pennsylvania, USA
| | - Kara L Spiller
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Flück M, Fitze D, Ruoss S, Valdivieso P, von Rechenberg B, Bratus-Neuenschwander A, Opitz L, Hu J, Laczko E, Wieser K, Gerber C. Down-Regulation of Mitochondrial Metabolism after Tendon Release Primes Lipid Accumulation in Rotator Cuff Muscle. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1513-1529. [PMID: 32305353 DOI: 10.1016/j.ajpath.2020.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 02/14/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Atrophy and fat accumulation are debilitating aspects of muscle diseases and are rarely prevented. Using a vertical approach combining anatomic techniques with omics methodology in a tenotomy-induced sheep model of rotator cuff disease, we tested whether mitochondrial dysfunction is implicated in muscle wasting and perturbed lipid metabolism, speculating that both can be prevented by the stimulation of β-oxidation with l-carnitine. The infraspinatus muscle lost 22% of its volume over the first 6 weeks after tenotomy before the area-percentage of lipid increased from 8% to 18% at week 16. Atrophy was associated with the down-regulation of mitochondrial transcripts and protein and a slow-to-fast shift in muscle composition. Correspondingly, amino acid levels were increased 2 weeks after tendon release, when the levels of high-energy phosphates and glycerophospholipids were lowered. l-Carnitine administration (0.9 g/kg per day) prevented atrophy over the first 2 weeks, and mitigated alterations of glutamate, glycerophospholipids, and carnitine levels in released muscle, but did not prevent the level decrease in high-energy phosphates or protein constituents of mitochondrial respiration, promoting the accumulation of longer lipids with an increasing saturation. We conclude that the early phase of infraspinatus muscle degeneration after tendon release involves the elimination of oxidative characteristics associated with an aberrant accumulation of lipid species but is largely unrelated to the prevention of atrophy with oral l-carnitine administration.
Collapse
Affiliation(s)
- Martin Flück
- Laboratory for Muscle Plasticity, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
| | - Daniel Fitze
- Laboratory for Muscle Plasticity, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Severin Ruoss
- Laboratory for Muscle Plasticity, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Paola Valdivieso
- Laboratory for Muscle Plasticity, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Brigitte von Rechenberg
- Vetsuisse Faculty, Musculoskeletal Research Unit, Competence Center for Applied Biotechnology, University of Zurich, Zurich, Switzerland
| | | | - Lennart Opitz
- Functional Genomics Center Zurich, ETH Zurich, University of Zurich, Zurich, Switzerland
| | - Junmin Hu
- Functional Genomics Center Zurich, ETH Zurich, University of Zurich, Zurich, Switzerland
| | - Endre Laczko
- Functional Genomics Center Zurich, ETH Zurich, University of Zurich, Zurich, Switzerland
| | - Karl Wieser
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
| | - Christian Gerber
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
7
|
Virk MS, Luo W, Sikes KJ, Li J, Plaas A, Cole BJ. Gene expression profiling of progenitor cells isolated from rat rotator cuff musculotendinous junction. BMC Musculoskelet Disord 2020; 21:194. [PMID: 32222148 PMCID: PMC7102440 DOI: 10.1186/s12891-020-03190-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 03/05/2020] [Indexed: 01/08/2023] Open
Abstract
Background Rotator cuff tendon tears are typically degenerative and usually affect the region of tendon insertion on bone. The remnant torn tendon is degenerative and may not be an ideal source for progenitor cells for cell-based therapies. Therefore, the aim of this study was to determine if musculotendinous junction (MTJ), which is adjacent to tendon would be a viable alternate source of progenitor stem cells. We also sought to study the gene expression profile MTJ progenitors and compare it with progenitors isolated from RC tendon, RC muscle and other existing tissue sources (bone marrow, adipose tissue, and Achilles tendon). Methods Rotator cuff tendon (RCT), muscle (RCM), and RCMTJ as well as Achilles tendon (AT) tissues were harvested from healthy male Lewis rats and progenitor cultures were established from these tissues and also from bone marrow and adipose tissue. Quantitative RT-PCR was performed on RNA extracts from intact tissues and progenitor cells using a custom array for the mesenchymal stem cell (MSC) differentiation marker genes. The gene expression profile of MSC differentiation markers within four tissues types, six progenitor cells, and between tissue and their corresponding progenitors were compared. Results Progenitors cells can be isolated from rat rotator cuff musculotendinous tissue and their pattern of MSC gene expression was similar to the rotator cuff tendon progenitors for majority of the genes tested. However, there were significant differences between the MSC gene expression patterns of RCMTJ and RCM progenitors. Furthermore, there were differences in gene expression between the RCMTJ tissue and its progenitor cells with respect to MSC differentiation markers. The gene expression pattern of RCMTJ tissue was similar to RCM tissue with respect to markers of chondrogenesis, myogenesis, tenogenesis, and MSC specific markers. Conclusion We demonstrate that the musculotendinous junction contains distinct set of progenitor cells and their MSC gene expression pattern is similar to rotator cuff tendon progenitors. RCMTJ progenitors will be an attractive option for cell-based regenerative treatment of chronic rotator cuff tears.
Collapse
Affiliation(s)
- Mandeep S Virk
- Department of Orthopaedic Surgery, Division of Shoulder & Elbow, New York University Langone Orthopedic Hospital, 301 East 17th street, New York, 10003, NY, USA.
| | - Wei Luo
- Dept of Internal Medicine, Rush University Medical Center, 1735 W Harrison St Jelke 1302, Chicago, 60612, IL, USA
| | - Katie J Sikes
- Department of Clinical Sciences, Colorado State University, Translational Medicine Institute, Fort Collins, 80523, CO, USA
| | - Jun Li
- Dept of Internal Medicine, Rush University Medical Center, 1735 W Harrison St Jelke 1302, Chicago, 60612, IL, USA
| | - Anna Plaas
- Dept of Internal Medicine, Rush University Medical Center, 1735 W Harrison St Jelke 1302, Chicago, 60612, IL, USA
| | - Brian J Cole
- Department of Orthopaedic Surgery, Sports and Shoulder and Elbow Division, Midwest Orthopaedics at Rush University, 1611 West Harrison Suite 300, Chicago, IL, USA
| |
Collapse
|
8
|
Abstract
Skeletal muscle atrophy is a common side effect of most human diseases. Muscle loss is not only detrimental for the quality of life but it also dramatically impairs physiological processes of the organism and decreases the efficiency of medical treatments. While hypothesized for years, the existence of an atrophying programme common to all pathologies is still incompletely solved despite the discovery of several actors and key regulators of muscle atrophy. More than a decade ago, the discovery of a set of genes, whose expression at the mRNA levels were similarly altered in different catabolic situations, opened the way of a new concept: the presence of atrogenes, i.e. atrophy-related genes. Importantly, the atrogenes are referred as such on the basis of their mRNA content in atrophying muscles, the regulation at the protein level being sometimes more complicate to elucidate. It should be noticed that the atrogenes are markers of atrophy and that their implication as active inducers of atrophy is still an open question for most of them. While the atrogene family has grown over the years, it has mostly been incremented based on data coming from rodent models. Whether the rodent atrogenes are valid for humans still remain to be established. An "atrogene" was originally defined as a gene systematically up- or down-regulated in several catabolic situations. Even if recent works often restrict this notion to the up-regulation of a limited number of proteolytic enzymes, it is important to keep in mind the big picture view. In this review, we provide an update of the validated and potential rodent atrogenes and the metabolic pathways they belong, and based on recent work, their relevance in human physio-pathological situations. We also propose a more precise definition of the atrogenes that integrates rapid recovery when catabolic stimuli are stopped or replaced by anabolic ones.
Collapse
Affiliation(s)
- Daniel Taillandier
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000, Clermont-Ferrand, France.
| | - Cécile Polge
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000, Clermont-Ferrand, France
| |
Collapse
|
9
|
Rhee SM, Kim DH, Kim SH, Jeong HJ, Oh JH. The Clinical Outcomes and Their Associated Factors in Staged Bilateral Arthroscopic Rotator Cuff Repair. Arthroscopy 2018; 34:2799-2807. [PMID: 30195959 DOI: 10.1016/j.arthro.2018.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE To compare perioperative characteristics and postoperative outcomes of both shoulders in patients who underwent arthroscopic bilateral rotator cuff repair sequentially and to assess the associated factors that would affect the anatomic healing in staged bilateral rotator cuff repair. METHODS The study enrolled 64 patients who underwent bilateral rotator cuff repair with follow-up imaging at least 12 months postoperatively. We allocated the shoulders operated on first to the surgery I group and those operated on second to the surgery II group. Visual analog scale (VAS) pain and satisfaction scores, range of motion, the American Shoulder and Elbow Surgeons score, the Simple Shoulder Test score, and healing failure were evaluated. RESULTS Range of motion improved with no significant between-group differences (all P > .05). In the surgery II group, VAS pain and VAS satisfaction scores were significantly worse at 6 months postoperatively (P = .048 and P = .041, respectively) but were comparable at final follow-up (P = .598 and P = .065, respectively). American Shoulder and Elbow Surgeons and Simple Shoulder Test scores at 6 months were worse in the surgery II group (P = .038 and P = .048, respectively) but similar at final follow-up (P = .786 and P = .087, respectively). Tear size was similar between the 2 surgical procedures (κ = 0.537, P < .001). Of the 11 patients with nonhealing in the surgery I group, 7 (63.6%) had subsequent failure in the other shoulder, and if one shoulder had healing failure, the other shoulder had a high possibility of healing failure as well (κ = 0.373, P = .004). CONCLUSIONS Bilateral arthroscopic rotator cuff repair showed good outcomes at final follow-up on both sides. Tear size was closely related in both shoulders, and healing failure after the first rotator cuff repair was an associated factor with healing failure after the second operation. LEVEL OF EVIDENCE Level IV, case series.
Collapse
Affiliation(s)
- Sung-Min Rhee
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | | | - Sae Hoon Kim
- Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyeon Jang Jeong
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Joo Han Oh
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea.
| |
Collapse
|
10
|
Jancuska J, Matthews J, Miller T, Kluczynski MA, Bisson LJ. A Systematic Summary of Systematic Reviews on the Topic of the Rotator Cuff. Orthop J Sports Med 2018; 6:2325967118797891. [PMID: 30320144 PMCID: PMC6154263 DOI: 10.1177/2325967118797891] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The number of systematic reviews and meta-analyses published on the rotator cuff (RC) has increased markedly. PURPOSE To quantify the number of systematic reviews and meta-analyses published on the RC and to provide a qualitative summary of the literature. STUDY DESIGN Systematic review; Level of evidence, 4. METHODS A systematic search for all systematic reviews and meta-analyses pertaining to the RC published between January 2007 and September 2017 was performed with PubMed, MEDLINE, and the Cochrane Database of Systematic Reviews. Narrative reviews and non-English language articles were excluded. RESULTS A total of 1078 articles were found, of which 196 met the inclusion criteria. Included articles were summarized and divided into 15 topics: anatomy and function, histology and genetics, diagnosis, epidemiology, athletes, nonoperative versus operative treatment, surgical repair methods, concomitant conditions and surgical procedures, RC tears after total shoulder arthroplasty, biological augmentation, postoperative rehabilitation, outcomes and complications, patient-reported outcome measures, cost-effectiveness of RC repair, and quality of randomized controlled trials. CONCLUSION A qualitative summary of the systematic reviews and meta-analyses published on the RC can provide surgeons with a single source of the most current literature.
Collapse
Affiliation(s)
- Jeffrey Jancuska
- Department of Orthopaedics, Jacobs School of Medicine and Biomedical
Science, University at Buffalo, Buffalo, New York, USA
| | - John Matthews
- Department of Orthopaedics, Jacobs School of Medicine and Biomedical
Science, University at Buffalo, Buffalo, New York, USA
| | - Tyler Miller
- Department of Orthopaedics, Jacobs School of Medicine and Biomedical
Science, University at Buffalo, Buffalo, New York, USA
| | - Melissa A. Kluczynski
- Department of Orthopaedics, Jacobs School of Medicine and Biomedical
Science, University at Buffalo, Buffalo, New York, USA
| | - Leslie J. Bisson
- Department of Orthopaedics, Jacobs School of Medicine and Biomedical
Science, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
11
|
Valencia AP, Lai JK, Iyer SR, Mistretta KL, Spangenburg EE, Davis DL, Lovering RM, Gilotra MN. Fatty Infiltration Is a Prognostic Marker of Muscle Function After Rotator Cuff Tear. Am J Sports Med 2018; 46:2161-2169. [PMID: 29750541 PMCID: PMC6397750 DOI: 10.1177/0363546518769267] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Massive rotator cuff tears (RCTs) begin as primary tendon injuries and cause a myriad of changes in the muscle, including atrophy, fatty infiltration (FI), and fibrosis. However, it is unclear which changes are most closely associated with muscle function. PURPOSE To determine if FI of the supraspinatus muscle after acute RCT relates to short-term changes in muscle function. STUDY DESIGN Controlled laboratory study. METHODS Unilateral RCTs were induced in female rabbits via tenotomy of the supraspinatus and infraspinatus. Maximal isometric force and rate of fatigue were measured in the supraspinatus in vivo at 6 and 12 weeks after tenotomy. Computed tomography scanning was performed, followed by histologic analysis of myofiber size, FI, and fibrosis. RESULTS Tenotomy resulted in supraspinatus weakness, reduced myofiber size, FI, and fibrosis, but no differences were evident between 6 and 12 weeks after tenotomy except for increased collagen content at 12 weeks. FI was a predictor of supraspinatus weakness and was strongly correlated to force, even after accounting for muscle cross-sectional area. While muscle atrophy accounted for the loss in force in tenotomized muscles with minimal FI, it did not account for the greater loss in force in tenotomized muscles with the most FI. Collagen content was not strongly correlated with maximal isometric force, even when normalized to muscle size. CONCLUSION After RCT, muscle atrophy results in the loss of contractile force from the supraspinatus, but exacerbated weakness is observed with increased FI. Therefore, the level of FI can help predict contractile function of torn rotator cuff muscles. CLINICAL RELEVANCE Markers to predict contractile function of RCTs will help determine the appropriate treatment to improve functional recovery after RCTs.
Collapse
Affiliation(s)
- Ana P. Valencia
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Kinesiology, School of Public Health, University of Maryland, Baltimore, Maryland, USA
| | - Jim K. Lai
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Shama R. Iyer
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Katherine L. Mistretta
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Espen E. Spangenburg
- Department of Physiology, East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Derik L. Davis
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Richard M. Lovering
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Mohit N. Gilotra
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Orthopaedics, Baltimore Veteran Affairs Medical Center, Baltimore, Maryland, USA
- Address correspondence to Mohit N. Gilotra, MD, Department of Orthopaedics, School of Medicine and VA Maryland Health Care System, University of Maryland, AHB, Rm 540, 100 Penn St, Baltimore, MD 21201, USA ()
| | | |
Collapse
|
12
|
Ditsios K. Basic Science in Rotator Cuff Tears. MOJ ORTHOPEDICS & RHEUMATOLOGY 2017; 9. [DOI: 10.15406/mojor.2017.09.00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
|
13
|
Shah SA, Kormpakis I, Cavinatto L, Killian ML, Thomopoulos S, Galatz LM. Rotator cuff muscle degeneration and tear severity related to myogenic, adipogenic, and atrophy genes in human muscle. J Orthop Res 2017; 35:2808-2814. [PMID: 28470887 PMCID: PMC5671367 DOI: 10.1002/jor.23593] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/17/2017] [Indexed: 02/04/2023]
Abstract
Large rotator cuff tear size and advanced muscle degeneration can affect reparability of tears and compromise tendon healing. Clinicians often rely on direct measures of rotator cuff tear size and muscle degeneration from magnetic resonance imaging (MRI) to determine whether the rotator cuff tear is repairable. The objective of this study was to identify the relationship between gene expression changes in rotator cuff muscle degeneration to standard data available to clinicians. Radiographic assessment of preoperative rotator cuff tear severity was completed for 25 patients with varying magnitudes of rotator cuff tears. Tear width and retraction were measured using MRI, and Goutallier grade, tangent (tan) sign, and Thomazeau grade were determined. Expression of myogenic-, adipogenic-, atrophy-, and metabolism-related genes in biopsied muscles were correlated with tear width, tear retraction, Goutallier grade, tan sign, and Thomazeau grade. Tear width positively correlated with Goutallier grade in both the supraspinatus (r = 0.73) and infraspinatus (r = 0.77), along with tan sign (r = 0.71) and Thomazeau grade (r = 0.68). Decreased myogenesis (Myf5), increased adipogenesis (CEBPα, Lep, Wnt10b), and decreased metabolism (PPARα) correlated with radiographic assessments. Gene expression changes suggest that rotator cuff tears lead to a dramatic molecular response in an attempt to maintain normal muscle tissue, increase adipogenesis, and decrease metabolism. Fat accumulation and muscle atrophy appear to stem from endogenous changes rather than from changes mediated by infiltrating cells. Results suggest that chronic unloading of muscle, induced by rotator cuff tear, disrupts muscle homeostasis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2808-2814, 2017.
Collapse
Affiliation(s)
- Shivam A. Shah
- Department of Orthopaedic Surgery, Washington University in St. Louis, Saint Louis, Missouri
| | - Ioannis Kormpakis
- Department of Orthopaedic Surgery, Washington University in St. Louis, Saint Louis, Missouri
| | - Leonardo Cavinatto
- Department of Orthopaedic Surgery, Icahn School of Medicine, Mount Sinai Health System, 5 East 98th St, 9th floor, New York, New York 10029
| | - Megan L. Killian
- Department of Orthopaedic Surgery, Washington University in St. Louis, Saint Louis, Missouri,Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, Black Building 1408, 650 W 168 ST, New York, New York 10032
| | - Leesa M. Galatz
- Department of Orthopaedic Surgery, Icahn School of Medicine, Mount Sinai Health System, 5 East 98th St, 9th floor, New York, New York 10029
| |
Collapse
|
14
|
|
15
|
Kuenzler MB, Nuss K, Karol A, Schär MO, Hottiger M, Raniga S, Kenkel D, von Rechenberg B, Zumstein MA. Neer Award 2016: reduced muscle degeneration and decreased fatty infiltration after rotator cuff tear in a poly(ADP-ribose) polymerase 1 (PARP-1) knock-out mouse model. J Shoulder Elbow Surg 2017; 26:733-744. [PMID: 28131694 DOI: 10.1016/j.jse.2016.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/02/2016] [Accepted: 11/11/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND Disturbed muscular architecture, atrophy, and fatty infiltration remain irreversible in chronic rotator cuff tears even after repair. Poly (adenosine 5'-diphosphate-ribose) polymerase 1 (PARP-1) is a key regulator of inflammation, apoptosis, muscle atrophy, muscle regeneration, and adipocyte development. We hypothesized that the absence of PARP-1 would lead to a reduction in damage to the muscle subsequent to combined tenotomy and neurectomy in a PARP-1 knockout (KO) mouse model. METHODS PARP-1 KO and wild-type C57BL/6 (WT group) mice were analyzed at 1, 6, and 12 weeks (total n = 84). In all mice, the supraspinatus and infraspinatus muscles of the left shoulder were detached and denervated. Macroscopic analysis, magnetic resonance imaging, gene expression analysis, immunohistochemistry, and histology were used to assess the differences in PARP-1 KO and WT mice. RESULTS The muscles in the PARP-1 KO group had significantly less retraction, atrophy, and fatty infiltration after 12 weeks than in the WT group. Gene expression of inflammatory, apoptotic, adipogenic, and muscular atrophy genes was significantly decreased in PARP-1 KO mice in the first 6 weeks. DISCUSSION Absence of PARP-1 leads to a reduction in muscular architectural damage, early inflammation, apoptosis, atrophy, and fatty infiltration after combined tenotomy and neurectomy of the rotator cuff muscle. Although the macroscopic reaction to injury is similar in the first 6 weeks, the ability of the muscles to regenerate was much greater in the PARP-1 KO group, leading to a near-normalization of the muscle after 12 weeks.
Collapse
Affiliation(s)
- Michael B Kuenzler
- Shoulder, Elbow and Orthopaedic Sports Medicine, Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Musculoskeletal Research Unit (MSRU), Equine Department, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Katja Nuss
- Musculoskeletal Research Unit (MSRU), Equine Department, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Agnieszka Karol
- Musculoskeletal Research Unit (MSRU), Equine Department, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Michael O Schär
- Shoulder, Elbow and Orthopaedic Sports Medicine, Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael Hottiger
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Zürich, Switzerland; Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Equine Department, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Sumit Raniga
- Shoulder, Elbow and Orthopaedic Sports Medicine, Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Kenkel
- Department of Diagnostic and Interventional Radiology, University Hospital of Zürich, Zürich, Switzerland
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit (MSRU), Equine Department, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland; Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Equine Department, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Matthias A Zumstein
- Shoulder, Elbow and Orthopaedic Sports Medicine, Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Shoulder & Elbow Unit, SportsClinic #1 AG, Bern, Switzerland.
| |
Collapse
|
16
|
The biology of rotator cuff healing. Orthop Traumatol Surg Res 2017; 103:S1-S10. [PMID: 28043853 DOI: 10.1016/j.otsr.2016.11.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 06/13/2016] [Accepted: 11/04/2016] [Indexed: 02/02/2023]
Abstract
Despite advances in surgical reconstruction of chronic rotator cuff (RC) tears leading to improved clinical outcomes, failure rates of 13-94% have been reported. Reasons for this rather high failure rate include compromised healing at the bone-tendon interface, as well as the musculo-tendinous changes that occur after RC tears, namely retraction and muscle atrophy, as well as fatty infiltration. Significant research efforts have focused on gaining a better understanding of these pathological changes in order to design effective therapeutic solutions. Biological augmentation, including the application of different growth factors, platelet concentrates, cells, scaffolds and various drugs, or a combination of the above have been studied. It is important to note that instead of a physiological enthesis, an abundance of scar tissue is formed. Even though cytokines have demonstrated the potential to improve rotator cuff healing in animal models, there is little information about the correct concentration and timing of the more than 1500 cytokines that interact during the healing process. There is only minimal evidence that platelet concentrates may lead to improvement in radiographic, but not clinical outcome. Using stem cells to biologically augment the reconstruction of the tears might have a great potential since these cells can differentiate into various cell types that are integral for healing. However, further studies are necessary to understand how to enhance the potential of these stem cells in a safe and efficient way. This article intends to give an overview of the biological augmentation options found in the literature.
Collapse
|
17
|
Chaudhury S, Xia Z, Thakkar D, Hakimi O, Carr AJ. Gene expression profiles of changes underlying different-sized human rotator cuff tendon tears. J Shoulder Elbow Surg 2016; 25:1561-70. [PMID: 27131575 DOI: 10.1016/j.jse.2016.02.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 02/15/2016] [Accepted: 02/24/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND Progressive cellular and extracellular matrix (ECM) changes related to age and disease severity have been demonstrated in rotator cuff tendon tears. Larger rotator cuff tears demonstrate structural abnormalities that potentially adversely influence healing potential. This study aimed to gain greater insight into the relationship of pathologic changes to tear size by analyzing gene expression profiles from normal rotator cuff tendons, small rotator cuff tears, and large rotator cuff tears. METHODS We analyzed gene expression profiles of 28 human rotator cuff tendons using microarrays representing the entire genome; 11 large and 5 small torn rotator cuff tendon specimens were obtained intraoperatively from tear edges, which we compared with 12 age-matched normal controls. We performed real-time polymerase chain reaction and immunohistochemistry for validation. RESULTS Torn rotator cuff tendons demonstrated upregulation of a number of key genes, such as matrix metalloproteinase 3, 10, 12, 13, 15, 21, and 25; a disintegrin and metalloproteinase (ADAM) 12, 15, and 22; and aggrecan. Amyloid was downregulated in all tears. Small tears displayed upregulation of bone morphogenetic protein 5. Chemokines and cytokines that may play a role in chemotaxis were altered; interleukins 3, 10, 13, and 15 were upregulated in tears, whereas interleukins 1, 8, 11, 18, and 27 were downregulated. CONCLUSIONS The gene expression profiles of normal controls and small and large rotator cuff tear groups differ significantly. Extracellular matrix remodeling genes were found to contribute to rotator cuff tear pathogenesis. Rotator cuff tears displayed upregulation of a number of matrix metalloproteinase (3, 10, 12, 13, 15, 21, and 25), a disintegrin and metalloproteinase (ADAM 12, 15, and 22) genes, and downregulation of some interleukins (1, 8, and 27), which play important roles in chemotaxis. These gene products may potentially have a role as biomarkers of failure of healing or therapeutic targets to improve tendon healing.
Collapse
Affiliation(s)
- Salma Chaudhury
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Surgery, Nuffield Orthopaedic Center, University of Oxford, Oxford, UK.
| | | | - Dipti Thakkar
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Surgery, Nuffield Orthopaedic Center, University of Oxford, Oxford, UK
| | - Osnat Hakimi
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Surgery, Nuffield Orthopaedic Center, University of Oxford, Oxford, UK
| | - Andrew J Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Surgery, Nuffield Orthopaedic Center, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Thankam FG, Dilisio MF, Agrawal DK. Immunobiological factors aggravating the fatty infiltration on tendons and muscles in rotator cuff lesions. Mol Cell Biochem 2016; 417:17-33. [PMID: 27160936 DOI: 10.1007/s11010-016-2710-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 04/23/2016] [Indexed: 12/14/2022]
Abstract
Rotator cuff lesions (RCLs) are a common cause of shoulder pain and dysfunction. The rotator cuff tendons can degenerate and/or tear from the greater tuberosity of the humerus, which is associated with several anatomical, physiological, biochemical, and molecular changes in tendon and muscle. In this article, these pathways are critically reviewed and discussed with various management strategies of RCLs. The article also highlights the immunobiological responses following the RCL and the inherent repair mechanisms elicited by the body. The greatest difficulty in treating this pathology is that the muscle can undergo irreversible fatty infiltration in the setting of chronic tears that is associated with poor surgical outcomes. The article also investigates the key molecular pathways of the muscle homeostasis (mTOR, Rho kinase, AMPK, and Ca(2+)) with the energy metabolism to propose a possible mechanism for fatty infiltration. Future research is warranted to target the key players of these pathways in the management of fatty infiltration and thus RCL.
Collapse
Affiliation(s)
- Finosh G Thankam
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | - Matthew F Dilisio
- Department of Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K Agrawal
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE, USA.
- Department of Clinical & Translational Science, The Peekie Nash Carpenter Endowed Chair in Medicine, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
19
|
Sato EJ, Killian ML, Choi AJ, Lin E, Choo AD, Rodriguez-Soto AE, Lim CT, Thomopoulos S, Galatz LM, Ward SR. Architectural and biochemical adaptations in skeletal muscle and bone following rotator cuff injury in a rat model. J Bone Joint Surg Am 2015; 97:565-73. [PMID: 25834081 PMCID: PMC4372988 DOI: 10.2106/jbjs.m.01503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Injury to the rotator cuff can cause irreversible changes to the structure and function of the associated muscles and bones. The temporal progression and pathomechanisms associated with these adaptations are unclear. The purpose of this study was to investigate the time course of structural muscle and osseous changes in a rat model of a massive rotator cuff tear. METHODS Supraspinatus and infraspinatus muscle architecture and biochemistry and humeral and scapular morphological parameters were measured three days, eight weeks, and sixteen weeks after dual tenotomy with and without chemical paralysis via botulinum toxin A (BTX). RESULTS Muscle mass and physiological cross-sectional area increased over time in the age-matched control animals, decreased over time in the tenotomy+BTX group, and remained nearly the same in the tenotomy-alone group. Tenotomy+BTX led to increased extracellular collagen in the muscle. Changes in scapular bone morphology were observed in both experimental groups, consistent with reductions in load transmission across the joint. CONCLUSIONS These data suggest that tenotomy alone interferes with normal age-related muscle growth. The addition of chemical paralysis yielded profound structural changes to the muscle and bone, potentially leading to impaired muscle function, increased muscle stiffness, and decreased bone strength. CLINICAL RELEVANCE Structural musculoskeletal changes occur after tendon injury, and these changes are severely exacerbated with the addition of neuromuscular compromise.
Collapse
Affiliation(s)
- Eugene J. Sato
- Departments of Bioengineering (E.J.S., A.E.R.-S., and S.R.W.), Radiology (S.R.W.), and Orthopaedic Surgery (A.J.C., E.L., A.D.C., and S.R.W.), University of California San Diego, 9500 Gilman Drive (0610), La Jolla, CA 92093. E-mail address for S.R. Ward:
| | - Megan L. Killian
- Department of Orthopaedic Surgery, Washington University, 660 South Euclid Avenue, St. Louis, MO 63110. E-mail address for L.M. Galatz:
| | - Anthony J. Choi
- Departments of Bioengineering (E.J.S., A.E.R.-S., and S.R.W.), Radiology (S.R.W.), and Orthopaedic Surgery (A.J.C., E.L., A.D.C., and S.R.W.), University of California San Diego, 9500 Gilman Drive (0610), La Jolla, CA 92093. E-mail address for S.R. Ward:
| | - Evie Lin
- Departments of Bioengineering (E.J.S., A.E.R.-S., and S.R.W.), Radiology (S.R.W.), and Orthopaedic Surgery (A.J.C., E.L., A.D.C., and S.R.W.), University of California San Diego, 9500 Gilman Drive (0610), La Jolla, CA 92093. E-mail address for S.R. Ward:
| | - Alexander D. Choo
- Departments of Bioengineering (E.J.S., A.E.R.-S., and S.R.W.), Radiology (S.R.W.), and Orthopaedic Surgery (A.J.C., E.L., A.D.C., and S.R.W.), University of California San Diego, 9500 Gilman Drive (0610), La Jolla, CA 92093. E-mail address for S.R. Ward:
| | - Ana E. Rodriguez-Soto
- Departments of Bioengineering (E.J.S., A.E.R.-S., and S.R.W.), Radiology (S.R.W.), and Orthopaedic Surgery (A.J.C., E.L., A.D.C., and S.R.W.), University of California San Diego, 9500 Gilman Drive (0610), La Jolla, CA 92093. E-mail address for S.R. Ward:
| | - Chanteak T. Lim
- Department of Orthopaedic Surgery, Washington University, 660 South Euclid Avenue, St. Louis, MO 63110. E-mail address for L.M. Galatz:
| | - Stavros Thomopoulos
- Department of Orthopaedic Surgery, Washington University, 660 South Euclid Avenue, St. Louis, MO 63110. E-mail address for L.M. Galatz:
| | - Leesa M. Galatz
- Department of Orthopaedic Surgery, Washington University, 660 South Euclid Avenue, St. Louis, MO 63110. E-mail address for L.M. Galatz:
| | - Samuel R. Ward
- Departments of Bioengineering (E.J.S., A.E.R.-S., and S.R.W.), Radiology (S.R.W.), and Orthopaedic Surgery (A.J.C., E.L., A.D.C., and S.R.W.), University of California San Diego, 9500 Gilman Drive (0610), La Jolla, CA 92093. E-mail address for S.R. Ward:
| |
Collapse
|
20
|
Mendias CL, Roche SM, Harning JA, Davis ME, Lynch EB, Sibilsky Enselman ER, Jacobson JA, Claflin DR, Calve S, Bedi A. Reduced muscle fiber force production and disrupted myofibril architecture in patients with chronic rotator cuff tears. J Shoulder Elbow Surg 2015; 24:111-9. [PMID: 25193488 DOI: 10.1016/j.jse.2014.06.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/28/2014] [Accepted: 06/09/2014] [Indexed: 02/01/2023]
Abstract
BACKGROUND A persistent atrophy of muscle fibers and an accumulation of fat, collectively referred to as fatty degeneration, commonly occur in patients with chronic rotator cuff tears. The etiology of fatty degeneration and function of the residual rotator cuff musculature have not been well characterized in humans. We hypothesized that muscles from patients with chronic rotator cuff tears have reduced muscle fiber force production, disordered myofibrils, and an accumulation of fat vacuoles. METHODS The contractility of muscle fibers from biopsy specimens of supraspinatus muscles of 13 patients with chronic full-thickness posterosuperior rotator cuff tears was measured and compared with data from healthy vastus lateralis muscle fibers. Correlations between muscle fiber contractility, American Shoulder and Elbow Surgeons (ASES) scores, and tear size were analyzed. Histology and electron microscopy were also performed. RESULTS Torn supraspinatus muscles had a 30% reduction in maximum isometric force production and a 29% reduction in normalized force compared with controls. Normalized supraspinatus fiber force positively correlated with ASES score and negatively correlated with tear size. Disordered sarcomeres were noted, along with an accumulation of lipid-laden macrophages in the extracellular matrix surrounding supraspinatus muscle fibers. CONCLUSIONS Patients with chronic supraspinatus tears have significant reductions in muscle fiber force production. Force production also correlates with ASES scores and tear size. The structural and functional muscle dysfunction of the residual muscle fibers is independent of the additional area taken up by fibrotic tissue. This work may help establish future therapies to restore muscle function after the repair of chronically torn rotator cuff muscles.
Collapse
Affiliation(s)
- Christopher L Mendias
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Stuart M Roche
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Julie A Harning
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Max E Davis
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Evan B Lynch
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Jon A Jacobson
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dennis R Claflin
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Surgery, Section of Plastic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sarah Calve
- School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Asheesh Bedi
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Thakkar D, Grant TM, Hakimi O, Carr AJ. Distribution and expression of type VI collagen and elastic fibers in human rotator cuff tendon tears. Connect Tissue Res 2014; 55:397-402. [PMID: 25166893 DOI: 10.3109/03008207.2014.959119] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
There is increasing evidence for a progressive extracellular matrix change in rotator cuff disease progression. Directly surrounding the cell is the pericellular matrix, where assembly of matrix aggregates typically occurs making it critical in the response of tendon cells to pathological conditions. Studies in animal models have identified type VI collagen, fibrillin-1 and elastin to be located in the pericellular matrix of tendon and contribute in maintaining the structural and biomechanical integrity of tendon. However, there have been no reports on the localization of these proteins in human tendon biopsies. This study aimed to characterize the distribution of these ECM components in human rotator cuffs and gain greater insight into the relationship of pathology to tear size by analyzing the distribution and expression profiles of these ECM components. Confocal microscopy confirmed the localization of these structural molecules in the pericellular matrix of the human rotator cuff. Tendon degeneration led to an increased visibility of these components with a significant disorganization in the distribution of type VI collagen. At the genetic level, an increase in tear size was linked to an increased transcription of type VI collagen and fibrillin-1 with no significant alteration in the elastin levels. This is the first study to confirm the localization of type VI collagen, elastin and fibrillin-1 in the pericellular region of human supraspinatus tendon and assesses the effect of tendon degeneration on these structures, thus providing a useful insight into the composition of human rotator cuff tears which can be instrumental in predicting disease prognosis.
Collapse
Affiliation(s)
- Dipti Thakkar
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford , Oxford , UK and
| | | | | | | |
Collapse
|
22
|
Blaine TA. Basic training in shoulder surgery: investigating molecular mechanisms of rotator cuff disease. J Bone Joint Surg Am 2014; 96:e163. [PMID: 25232093 DOI: 10.2106/jbjs.n.00733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Theodore A Blaine
- Yale University Orthopaedics, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
23
|
Choo A, McCarthy M, Pichika R, Sato EJ, Lieber RL, Schenk S, Lane JG, Ward SR. Muscle gene expression patterns in human rotator cuff pathology. J Bone Joint Surg Am 2014; 96:1558-65. [PMID: 25232080 PMCID: PMC4159966 DOI: 10.2106/jbjs.m.01585] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Rotator cuff pathology is a common source of shoulder pain with variable etiology and pathoanatomical characteristics. Pathological processes of fatty infiltration, muscle atrophy, and fibrosis have all been invoked as causes for poor outcomes after rotator cuff tear repair. The aims of this study were to measure the expression of key genes associated with adipogenesis, myogenesis, and fibrosis in human rotator cuff muscle after injury and to compare the expression among groups of patients with varied severities of rotator cuff pathology. METHODS Biopsies of the supraspinatus muscle were obtained arthroscopically from twenty-seven patients in the following operative groups: bursitis (n = 10), tendinopathy (n = 7), full-thickness rotator cuff tear (n = 8), and massive rotator cuff tear (n = 2). Quantitative polymerase chain reaction (qPCR) was performed to characterize gene expression pathways involved in myogenesis, adipogenesis, and fibrosis. RESULTS Patients with a massive tear demonstrated downregulation of the fibrogenic, adipogenic, and myogenic genes, indicating that the muscle was not in a state of active change and may have difficulty responding to stimuli. Patients with a full-thickness tear showed upregulation of fibrotic and adipogenic genes; at the tissue level, these correspond to the pathologies most detrimental to outcomes of surgical repair. Patients with bursitis or tendinopathy still expressed myogenic genes, indicating that the muscle may be attempting to accommodate the mechanical deficiencies induced by the tendon tear. CONCLUSIONS Gene expression in human rotator cuff muscles varied according to tendon injury severity. Patients with bursitis and tendinopathy appeared to be expressing pro-myogenic genes, whereas patients with a full-thickness tear were expressing genes associated with fatty atrophy and fibrosis. In contrast, patients with a massive tear appeared to have downregulation of all gene programs except inhibition of myogenesis. CLINICAL RELEVANCE These data highlight the difficulty in treating massive tears and suggest that the timing of treatment may be important for muscle recovery. Specifically, earlier interventions to address tendon injury may allow muscles to respond more appropriately to mechanical stimuli.
Collapse
Affiliation(s)
- Alexander Choo
- Departments of Orthopaedic Surgery (A.C., M.M., R.P., S.S., and J.G.L.), Bioengineering (E.J.S. and R.L.L.), and Radiology (S.R.W.), University of California San Diego, 9500 Gilman Drive (0610), La Jolla, CA 92093. E-mail address for S.R. Ward:
| | - Meagan McCarthy
- Departments of Orthopaedic Surgery (A.C., M.M., R.P., S.S., and J.G.L.), Bioengineering (E.J.S. and R.L.L.), and Radiology (S.R.W.), University of California San Diego, 9500 Gilman Drive (0610), La Jolla, CA 92093. E-mail address for S.R. Ward:
| | - Rajeswari Pichika
- Departments of Orthopaedic Surgery (A.C., M.M., R.P., S.S., and J.G.L.), Bioengineering (E.J.S. and R.L.L.), and Radiology (S.R.W.), University of California San Diego, 9500 Gilman Drive (0610), La Jolla, CA 92093. E-mail address for S.R. Ward:
| | - Eugene J. Sato
- Departments of Orthopaedic Surgery (A.C., M.M., R.P., S.S., and J.G.L.), Bioengineering (E.J.S. and R.L.L.), and Radiology (S.R.W.), University of California San Diego, 9500 Gilman Drive (0610), La Jolla, CA 92093. E-mail address for S.R. Ward:
| | - Richard L. Lieber
- Departments of Orthopaedic Surgery (A.C., M.M., R.P., S.S., and J.G.L.), Bioengineering (E.J.S. and R.L.L.), and Radiology (S.R.W.), University of California San Diego, 9500 Gilman Drive (0610), La Jolla, CA 92093. E-mail address for S.R. Ward:
| | - Simon Schenk
- Departments of Orthopaedic Surgery (A.C., M.M., R.P., S.S., and J.G.L.), Bioengineering (E.J.S. and R.L.L.), and Radiology (S.R.W.), University of California San Diego, 9500 Gilman Drive (0610), La Jolla, CA 92093. E-mail address for S.R. Ward:
| | - John G. Lane
- Departments of Orthopaedic Surgery (A.C., M.M., R.P., S.S., and J.G.L.), Bioengineering (E.J.S. and R.L.L.), and Radiology (S.R.W.), University of California San Diego, 9500 Gilman Drive (0610), La Jolla, CA 92093. E-mail address for S.R. Ward:
| | - Samuel R. Ward
- Departments of Orthopaedic Surgery (A.C., M.M., R.P., S.S., and J.G.L.), Bioengineering (E.J.S. and R.L.L.), and Radiology (S.R.W.), University of California San Diego, 9500 Gilman Drive (0610), La Jolla, CA 92093. E-mail address for S.R. Ward:
| |
Collapse
|
24
|
Gumucio JP, Korn MA, Saripalli AL, Flood MD, Phan AC, Roche SM, Lynch EB, Claflin DR, Bedi A, Mendias CL. Aging-associated exacerbation in fatty degeneration and infiltration after rotator cuff tear. J Shoulder Elbow Surg 2014; 23:99-108. [PMID: 23790676 PMCID: PMC3785561 DOI: 10.1016/j.jse.2013.04.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/27/2013] [Accepted: 04/17/2013] [Indexed: 02/01/2023]
Abstract
BACKGROUND Rotator cuff tears are one of the most common musculoskeletal complaints and a substantial source of morbidity in elderly patients. Chronic cuff tears are associated with muscle atrophy and an infiltration of fat to the area, a condition known as "fatty degeneration." To improve the treatment of cuff tears in elderly patients, a greater understanding of the changes in the contractile properties of muscle fibers and the molecular regulation of fatty degeneration is essential. METHODS Using a full-thickness, massive supraspinatus and infraspinatus tear model in elderly rats, we measured fiber contractility and determined changes in fiber type distribution that develop 30 days after tear. We also measured the expression of messenger RNA and micro-RNA transcripts involved in muscle atrophy, lipid accumulation, and matrix synthesis. We hypothesized that a decrease in specific force of muscle fibers, an accumulation of type IIb fibers, and an upregulation in atrophic, fibrogenic, and inflammatory gene expression would occur in torn cuff muscles. RESULTS Thirty days after the tear, we observed a reduction in muscle fiber force and an induction of RNA molecules that regulate atrophy, fibrosis, lipid accumulation, inflammation, and macrophage recruitment. A marked accumulation of advanced glycation end products and a significant accretion of macrophages in areas of fat accumulation were observed. CONCLUSIONS The extent of degenerative changes in old rats was greater than that observed in adults. In addition, we identified that the ectopic fat accumulation that occurs in chronic cuff tears does not occur by activation of canonical intramyocellular lipid storage and synthesis pathways.
Collapse
Affiliation(s)
- Jonathan P Gumucio
- Department Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael A Korn
- Department Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anjali L Saripalli
- Department Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael D Flood
- Department Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anthony C Phan
- Department Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stuart M Roche
- Department Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Evan B Lynch
- Department Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dennis R Claflin
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA; Section of Plastic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Asheesh Bedi
- Department Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christopher L Mendias
- Department Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
The science of rotator cuff tears: translating animal models to clinical recommendations using simulation analysis. Knee Surg Sports Traumatol Arthrosc 2013; 21:1610-9. [PMID: 22842677 DOI: 10.1007/s00167-012-2145-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/16/2012] [Indexed: 12/16/2022]
Abstract
PURPOSE The purpose of this article is to review basic science studies using various animal models for rotator cuff research and to describe structural, biomechanical, and functional changes to muscle following rotator cuff tears. The use of computational simulations to translate the findings from animal models to human scale is further detailed. METHODS A comprehensive review was performed of the basic science literature describing the use of animal models and simulation analysis to examine muscle function following rotator cuff injury and repair in the ageing population. RESULTS The findings from various studies of rotator cuff pathology emphasize the importance of preventing permanent muscular changes with detrimental results. In vivo muscle function, electromyography, and passive muscle-tendon unit properties were studied before and after supraspinatus tenotomy in a rodent rotator cuff injury model (acute vs chronic). Then, a series of simulation experiments were conducted using a validated computational human musculoskeletal shoulder model to assess both passive and active tension of rotator cuff repairs based on surgical positioning. CONCLUSION Outcomes of rotator cuff repair may be improved by earlier surgical intervention, with lower surgical repair tensions and fewer electromyographic neuromuscular changes. An integrated approach of animal experiments, computer simulation analyses, and clinical studies may allow us to gain a fundamental understanding of the underlying pathology and interpret the results for clinical translation.
Collapse
|
26
|
Gumucio JP, Davis ME, Bradley JR, Stafford PL, Schiffman CJ, Lynch EB, Claflin DR, Bedi A, Mendias CL. Rotator cuff tear reduces muscle fiber specific force production and induces macrophage accumulation and autophagy. J Orthop Res 2012; 30:1963-70. [PMID: 22696414 PMCID: PMC3449033 DOI: 10.1002/jor.22168] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/21/2012] [Indexed: 02/04/2023]
Abstract
Full-thickness tears to the rotator cuff can cause severe pain and disability. Untreated tears progress in size and are associated with muscle atrophy and an infiltration of fat to the area, a condition known as "fatty degeneration." To improve the treatment of rotator cuff tears, a greater understanding of the changes in the contractile properties of muscle fibers and the molecular regulation of fatty degeneration is essential. Using a rat model of rotator cuff injury, we measured the force generating capacity of individual muscle fibers and determined changes in muscle fiber type distribution that develop after a full thickness rotator cuff tear. We also measured the expression of mRNA and miRNA transcripts involved in muscle atrophy, lipid accumulation, and matrix synthesis. We hypothesized that a decrease in specific force of rotator cuff muscle fibers, an accumulation of type IIb fibers, and an upregulation in fibrogenic, adipogenic, and inflammatory gene expression occur in torn rotator cuff muscles. Thirty days following rotator cuff tear, we observed a reduction in muscle fiber force production, an induction of fibrogenic, adipogenic, and autophagocytic mRNA and miRNA molecules, and a dramatic accumulation of macrophages in areas of fat accumulation.
Collapse
Affiliation(s)
- Jonathan P Gumucio
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor,Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor
| | - Max E Davis
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor
| | - Joshua R Bradley
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor
| | | | - Corey J Schiffman
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor
| | - Evan B Lynch
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor
| | - Dennis R Claflin
- Department of Surgery, Section of Plastic Surgery, University of Michigan, Ann Arbor,Department of Biomedical Engineering, University of Michigan, Ann Arbor
| | - Asheesh Bedi
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor
| | - Christopher L Mendias
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor,Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor,Corresponding author: Christopher L Mendias, PhD, Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, MI 48109-2200, , 734-764-3250 office, 734-647-0003 fax
| |
Collapse
|
27
|
Schär A, Schär MO, Zumstein MA. [Influence of chronic, structural changes of the muscle-tendon unit on the indication and technique of rotator cuff reconstruction]. OPERATIVE ORTHOPADIE UND TRAUMATOLOGIE 2012; 24:527-35. [PMID: 23111441 DOI: 10.1007/s00064-012-0159-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rotator cuff lesions are common and the incidence increases with age. After tendon rupture of the rotator cuff, the muscle-tendon unit retracts, which is accompanied by muscle fatty infiltration, atrophy, and interstitial fibrosis of the musculature, thus, fundamentally changing the muscle architecture. These changes are important prognostic factors for the operative rotator cuff reconstruction outcome. Selection of the correct time point for reconstruction as well as the optimal mechanical fixation technique are decisive for successful attachment at the tendon-to-bone insertion site. Thus, knowledge of the pathophysiological processes plays an important role. The goal of this article is to establish a relationship between currently existing evidence with respect to the preoperatively existing changes of the muscle-tendon unit and the choice of the time for the operation and the operative technique.
Collapse
Affiliation(s)
- A Schär
- Sportorthopädie, Departement für Orthopädische Chirurgie und Traumatologie, Universität Bern, Inselspital, Bern, Schweiz
| | | | | |
Collapse
|
28
|
Schaer M, Schober M, Berger S, Boileau P, Zumstein MA. Biologically based strategies to augment rotator cuff tears. INTERNATIONAL JOURNAL OF SHOULDER SURGERY 2012; 6:51-60. [PMID: 22787334 PMCID: PMC3391785 DOI: 10.4103/0973-6042.96995] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lesions of the rotator cuff (RC) are among the most frequent tendon injuries. In spite of the developments in both open and arthroscopic surgery, RC repair still very often fails. In order to reduce the failure rate after surgery, several experimental in vitro and in vivo therapy methods have been developed for biological improvement of the reinsertion. This article provides an overview of the current evidence for augmentation of RC reconstruction with growth factors. Furthermore, potential future therapeutic approaches are discussed. We performed a comprehensive search of the PubMed database using various combinations of the keywords “tendon,” “rotator cuff,” “augmentation,” “growth factor,” “platelet-rich fibrin,” and “platelet-rich plasma” for publications up to 2011. Given the linguistic capabilities of the research team, we considered publications in English, German, French, and Spanish. We excluded literature reviews, case reports, and letters to the editor.
Collapse
Affiliation(s)
- M Schaer
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern, Switzerland
| | | | | | | | | |
Collapse
|
29
|
Gurkan UA, Golden R, Kishore V, Riley CP, Adamec J, Akkus O. Immune and inflammatory pathways are involved in inherent bone marrow ossification. Clin Orthop Relat Res 2012; 470:2528-40. [PMID: 22798134 PMCID: PMC3830098 DOI: 10.1007/s11999-012-2459-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Bone marrow plays a key role in bone formation and healing. Although a subset of marrow explants ossifies in vitro without excipient osteoinductive factors, some explants do not undergo ossification. The disparity of outcome suggests a significant heterogeneity in marrow tissue in terms of its capacity to undergo osteogenesis. QUESTIONS/PURPOSES We sought to identify: (1) proteins and signaling pathways associated with osteogenesis by contrasting the proteomes of ossified and poorly ossified marrow explants; and (2) temporal changes in proteome and signaling pathways of marrow ossification in the early and late phases of bone formation. METHODS Explants of marrow were cultured. Media conditioned by ossified (n = 4) and poorly ossified (n = 4) subsets were collected and proteins unique to each group were identified by proteomic analysis. Proteomic data were processed to assess proteins specific to the early phase (Days 1-14) and late phase (Days 15-28) of the culture period. Pathways involved in bone marrow ossification were identified through bioinformatics. RESULTS Twenty-eight proteins were unique to ossified samples and eight were unique to poorly ossified ones. Twelve proteins were expressed during the early phase and 15 proteins were specific to the late phase. Several identified pathways corroborated those reported for bone formation in the literature. Immune and inflammatory pathways were specific to ossified samples. CONCLUSIONS The marrow explant model indicates the inflammatory and immune pathways to be an integral part of the osteogenesis process.
Collapse
Affiliation(s)
- Umut Atakan Gurkan
- />Harvard-MIT Division of Health Sciences and Technology, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, PRB 252, Cambridge, MA 02139 USA
| | - Ryan Golden
- />Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
| | - Vipuil Kishore
- />Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| | - Catherine P. Riley
- />Department of Research and Development Pathology Associates, Medical Laboratories, Spokane, WA 99204 USA
| | - Jiri Adamec
- />Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE USA
| | - Ozan Akkus
- />Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 USA
- />Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 USA
- />Department of Orthopaedics, University Hospitals of Cleveland, Cleveland, OH USA
| |
Collapse
|
30
|
Liu X, Joshi SK, Samagh SP, Dang YX, Laron D, Lovett DH, Bodine SC, Kim HT, Feeley BT. Evaluation of Akt/mTOR activity in muscle atrophy after rotator cuff tears in a rat model. J Orthop Res 2012; 30:1440-6. [PMID: 22378614 DOI: 10.1002/jor.22096] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 02/02/2012] [Indexed: 02/04/2023]
Abstract
Atrophy of the rotator cuff muscles is a factor that complicates the treatment of a massive rotator cuff tear (RCT). However, the molecular mechanisms that govern the development of muscle atrophy after RCTs have not been well defined. The Akt/mammalian target of rapamycin (mTOR) signaling pathway plays a central role in maintaining muscle mass in response to mechanical loading. The role of this pathway in the development of muscle atrophy after a massive RCT remains unknown. The purpose of this study was to investigate the regulation of the Akt/mTOR pathway in the development of muscle atrophy after a RCT and suprascapular nerve (SSN) injury. We evaluated the activity of the Akt/mTOR signaling pathway and how this pathway interacts with two atrophy-related genes, MuRF-1 and MAFbx, in supraspinatus muscles of rats that underwent unilateral complete rotator cuff tendon transection or SSN transection. Akt/mTOR activity was significantly reduced after tendon rupture, but increased after nerve injury. MuRF-1 and MAFbx were only up-regulated following denervation. These results suggest that tendon transection leads to a decrease in protein synthesis with down-regulation of the Akt/mTOR signaling pathway, whereas denervation leads to an increase in protein degradation via up-regulation of expression of MuRF-1 and MAFbx.
Collapse
Affiliation(s)
- Xuhui Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, Califronia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dean BJF, Franklin SL, Carr AJ. A systematic review of the histological and molecular changes in rotator cuff disease. Bone Joint Res 2012; 1:158-66. [PMID: 23610686 PMCID: PMC3626275 DOI: 10.1302/2046-3758.17.2000115] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/30/2012] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The pathogenesis of rotator cuff disease (RCD) is complex and not fully understood. This systematic review set out to summarise the histological and molecular changes that occur throughout the spectrum of RCD. METHODS We conducted a systematic review of the scientific literature with specific inclusion and exclusion criteria. RESULTS A total of 101 studies met the inclusion criteria: 92 studies used human subjects exclusively, seven used animal overuse models, and the remaining two studies involved both humans and an animal overuse model. A total of 58 studies analysed supraspinatus tendon exclusively, 16 analysed subacromial bursal tissue exclusively, while the other studies analysed other tissue or varying combinations of tissue types including joint fluid and muscle. The molecular biomarkers that were altered in RCD included matrix substances, growth factors, enzymes and other proteins including certain neuropeptides. CONCLUSIONS The pathogenesis of RCD is being slowly unravelled as a result of the significant recent advances in molecular medicine. Future research aimed at further unlocking these key molecular processes will be pivotal in developing new surgical interventions both in terms of the diagnosis and treatment of RCD.
Collapse
Affiliation(s)
- B J F Dean
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD, UK
| | | | | |
Collapse
|
32
|
Laron D, Samagh SP, Liu X, Kim HT, Feeley BT. Muscle degeneration in rotator cuff tears. J Shoulder Elbow Surg 2012; 21:164-74. [PMID: 22244059 DOI: 10.1016/j.jse.2011.09.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/21/2011] [Accepted: 09/24/2011] [Indexed: 02/01/2023]
Abstract
Rotator cuff tears are among the most common injuries seen by orthopedic surgeons. Although small- and medium-sized tears do well after arthroscopic and open repair, large and massive tears have been shown to develop marked muscle atrophy and fatty infiltration within the rotator cuff muscles. These pathologic changes have been found to be independent predictors of failed surgical repair with poor functional outcomes. To understand the pathophysiology of rotator cuff disease, we must first develop an understanding of the changes that occur within the cuff muscles themselves. The purpose of this review is to summarize the molecular pathways behind muscular degeneration and emphasize new findings related to the clinical relevance of muscle atrophy and fatty infiltration seen with rotator cuff tears. Understanding these molecular pathways will help guide further research and treatment options that can aim to alter expression of these pathways and improve outcomes after surgical repair of massive rotator cuff tears.
Collapse
Affiliation(s)
- Dominique Laron
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
33
|
Chaudhury S, Carr AJ. Lessons we can learn from gene expression patterns in rotator cuff tears and tendinopathies. J Shoulder Elbow Surg 2012; 21:191-9. [PMID: 22244062 DOI: 10.1016/j.jse.2011.10.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 10/22/2011] [Accepted: 10/23/2011] [Indexed: 02/06/2023]
Abstract
Persistently high failure rates that are reported after rotator cuff repairs have encouraged greater understanding of the pathophysiology that underlies rotator cuff tears. Biologic changes that contribute to the pathogenesis of rotator cuff tears and tendinopathies, as well as adaptation after these changes, have been well described. A subset of patients with a genetic predisposition to early onset of rotator cuff tears and earlier symptom and disease progression have been identified. Many biologic changes occurring at the gene level have been identified. Pathways that are believed to contribute to rotator cuff tendinopathies include extracellular matrix remodeling, angiogenesis, changes in metabolism, apoptosis, and stress-related genes. Metaplasia of rotator cuff cells is contributed to by changes in gene expression. Modification of these gene changes may be possible through mechanical loading, drugs, or cellular manipulation. Gene changes may offer greater insight into why certain tears fail to heal and help to identify therapeutic targets.
Collapse
Affiliation(s)
- Salma Chaudhury
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Musculoskeletal Biomedical Research Unit, National Institute for Health Research, University of Oxford, Oxford, UK.
| | | |
Collapse
|
34
|
Shirachi I, Gotoh M, Mitsui Y, Yamada T, Nakama K, Kojima K, Okawa T, Higuchi F, Nagata K. Collagen production at the edge of ruptured rotator cuff tendon is correlated with postoperative cuff integrity. Arthroscopy 2011; 27:1173-9. [PMID: 21752571 DOI: 10.1016/j.arthro.2011.03.078] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 03/13/2011] [Accepted: 03/16/2011] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose was to evaluate the correlation between messenger RNA (mRNA) expression of collagen at the edge of the ruptured rotator cuff tendon and postoperative cuff integrity. METHODS The edge of the ruptured tendon was sampled during open rotator cuff surgery in 12 patients with full-thickness rotator cuff tears (mean age, 58.2 years). The mean period from symptom onset was 9.3 months (range, 1 to 36 months), and the mean tear size was 4.1 cm. As controls, rotator cuff tendons with no gross rupture were taken from 5 fresh cadavers. Production of type I and type III collagen was examined by real-time reverse transcription polymerase chain reaction. By use of magnetic resonance imaging, postoperative cuff integrity was evaluated based on the classification of Sugaya et al. and then scored, ranging from 5 points for type I to 1 point for type V. RESULTS Looking at the mRNA of type I and type III collagen in tendons, we found that the expression of mRNA for both collagen types in ruptured tendons was significantly greater than in control tendons (P = .0462 for type I collagen and P = .0306 for type III collagen). Correlating the mRNA of type I and type III collagen with repaired cuff integrity on postoperative magnetic resonance imaging, we found a close relation between expression of mRNA for both collagen types and postoperative rotator cuff integrity (r = 0.63 [P = .038] for type I collagen and r = 0.626 [P = .03] for type III collagen). Furthermore, expression of type I collagen mRNA showed a significant inverse correlation with the period from symptom onset (r = -0.845, P < .0005). CONCLUSIONS This study showed that expression of mRNA for type I and type III collagen at the edge of the ruptured rotator cuff tendon was significantly correlated with postoperative cuff integrity and that mRNA expression for type I collagen was significantly associated with the period from symptom onset. These results may suggest that conservative treatment should not be prolonged if patients do not respond within a certain period. LEVEL OF EVIDENCE Level III, prognostic case-control study.
Collapse
Affiliation(s)
- Isao Shirachi
- Department of Orthopedic Surgery, Kurume University, Kurume, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rotator cuff changes in a full thickness tear rat model: verification of the optimal time interval until reconstruction for comparison to the healing process of chronic lesions in humans. Arch Orthop Trauma Surg 2011; 131:429-35. [PMID: 21190029 DOI: 10.1007/s00402-010-1246-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Indexed: 02/09/2023]
Abstract
BACKGROUND The aim of the study was to develop a standardized rat model for chronic rotator cuff tears. Therefore, a time point of degenerative changes that shows comparable histological changes to the chronic tendon tears in humans had to be determined. The rat shoulder has already been described as a standardized model for investigation of the healing behavior in acute supraspinatus lesions. Little data exist about the possibility of generating a chronic rotator cuff lesion. METHODS We performed a complete detachment of the supraspinatus tendon in 45 Sprague-Dawley rats. After an interval of 3, 6 and 9 weeks (15 rats in each group), the macroscopic and histological changes were analyzed. The histological investigation included atrophy and fatty muscle degeneration, tendon degeneration and the grade of inflammatory changes. For evaluation of tendon degeneration, a modified MOVIN-Score was used. The contralateral shoulder provided as control group. RESULTS Macroscopically the defect showed an increasing coverage with scar tissue over time with a complete closure in 73% after 9 weeks. The 3 week group showed the highest rate of persisting defects (80%). The atrophy of the supraspinatus muscle decreased from initial slight atrophy to a nearly normal muscle status in the 9 week group. Fatty infiltration was found in three animals per group regardless of the time interval after detachment. Tendon degeneration (modified MOVIN-Score) showed no significant difference between 3 and 6 weeks (p = 0.93) whereas after 9 weeks a significant increased degeneration was found (p < 0.01). In the early phase (3 and 6 weeks), inflammatory cells could be detected more frequently. CONCLUSIONS The results show that a chronic tear of the human rotator cuff can be imitated in the rat model with some exclusion. The rapid self-healing response in the rat and the fatty infiltration of the human muscle are the main differences. However, tendon degeneration, inflammation and muscle atrophy combined with a persisting defect at 3 weeks after detachment are comparable to the chronic tendon tears in humans. This model can serve as a basis for further research in the field of rotator cuff repair for chronic lesions.
Collapse
|
36
|
Chaudhury S, Dicko C, Burgess M, Vollrath F, Carr AJ. Fourier transform infrared spectroscopic analysis of normal and torn rotator-cuff tendons. ACTA ACUST UNITED AC 2011; 93:370-7. [DOI: 10.1302/0301-620x.93b3.25470] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have used Fourier transform infrared spectroscopy (FTIR) to characterise the chemical and structural composition of the tendons of the rotator cuff and to identify structural differences among anatomically distinct tears. Such information may help to identify biomarkers of tears and to provide insight into the rates of healing of different sizes of tear. The infrared spectra of 81 partial, small, medium, large and massive tears were measured using FTIR and compared with 11 uninjured control tendons. All the spectra were classified using standard techniques of multivariate analysis. FTIR readily differentiates between normal and torn tendons, and different sizes of tear. We identified the key discriminating molecules and spectra altered in torn tendons to be carbohydrates/phospholipids (1030 cm−1 to 1200 cm−1), collagen (1300 cm−1 to 1700 cm−1 and 3000 cm−1 to 3350 cm−1) and lipids (2800 cm−1 to 3000 cm−1). Our study has shown that FTIR spectroscopy can identify tears of the rotator cuff of varying size based upon distinguishable chemical and structural features. The onset of a tear is mainly associated with altered structural arrangements of collagen, with changes in lipids and carbohydrates. The approach described is rapid and has the potential to be used peri-operatively to determine the quality of the tendon and the extent of the disease, thus guiding surgical repair.
Collapse
Affiliation(s)
- S. Chaudhury
- Department of Orthopaedics, Nuffield Orthopaedic Centre, University of Oxford, Oxford OX3 7LD, UK
| | - C. Dicko
- Department of Zoology University of Oxford, Oxford OX1 3PS, UK
| | - M. Burgess
- Department of Orthopaedics, Nuffield Orthopaedic Centre, University of Oxford, Oxford OX3 7LD, UK
| | - F. Vollrath
- Department of Zoology University of Oxford, Oxford OX1 3PS, UK
| | - A. J. Carr
- Department of Orthopaedics, Nuffield Orthopaedic Centre, University of Oxford, Oxford OX3 7LD, UK
| |
Collapse
|
37
|
Abstract
STUDY DESIGN Controlled laboratory study. OBJECTIVES To measure the architectural properties of rat supraspinatus muscle after a complete detachment of its distal tendon. METHODS Supraspinatus muscles were released from the left humerus of 29 Sprague-Dawley rats (mass, 400-450 g), and the animals were returned to cage activity for 2 weeks (n=12), 4 weeks (n=9), or 9 weeks (n=8), before euthanasia. Measurements of muscle mass, pennation angle, fiber bundle length (sarcomere number), and sarcomere length permitted calculation of normalized fiber length, serial sarcomere number, and physiological cross-sectional area. RESULTS Coronal oblique sections of the supraspinatus confirmed surgical transection of the supraspinatus muscle at 2 weeks, with reattachment by 4 weeks. Muscle mass and length were significantly lower in released muscles at 2 weeks, 4 weeks, and 9 weeks. Sarcomere lengths in released muscles were significantly shorter at 2 weeks but not different by 4 weeks. Sarcomere number was significantly reduced at 2 and 4 weeks, but returned to control values by 9 weeks. The opposing effects of smaller mass and shorter fibers produced significantly smaller physiological cross-sectional area at 2 weeks, but physiological cross-sectional area returned to control levels by 4 weeks. CONCLUSIONS Release of the supraspinatus muscle produced early radial and longitudinal atrophy of the muscle. The functional implications of these adaptations would be most profound at early time points (particularly relevant for rehabilitation), when the muscle remains smaller in cross-sectional area and, due to reduced sarcomere number, would be forced to operate over a wider range of the length-tension curve and at higher velocities, all adaptations resulting in compromised force-generating capacity. These data are relevant to physical therapy because they provide tissue-level insights into impaired muscle and shoulder function following rotator cuff injury.
Collapse
|
38
|
Current world literature. Curr Opin Neurol 2009; 22:554-61. [PMID: 19755870 DOI: 10.1097/wco.0b013e3283313b14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|