1
|
Cianni L, Di Gialleonardo E, Coppola D, Capece G, Libutti E, Nannerini M, Maccauro G, Vitiello R. Current Evidence Using Pulsed Electromagnetic Fields in Osteoarthritis: A Systematic Review. J Clin Med 2024; 13:1959. [PMID: 38610722 PMCID: PMC11012419 DOI: 10.3390/jcm13071959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
(1) Background: Osteoarthritis (OA) significantly impacts patients' quality of life and negatively affects public healthcare costs. The aim of this systematic review is to identify the effectiveness of pulsed electromagnetic fields (PEMFs) in OA treatment across different anatomical districts, determining pain reduction and overall improvement in the patient's quality of life. (2) Methods: In this systematic review following PRISMA guidelines, PubMed and Google Scholar were searched for randomized controlled trials involving patients with osteoarthritis undergoing PEMF therapy. Seventeen studies (1197 patients) were included. (3) Results: PEMF therapy demonstrated positive outcomes across various anatomical districts, primarily in knee osteoarthritis. Pain reduction, assessed through VAS and WOMAC scores, showed significant improvement (60% decrease in VAS, 42% improvement in WOMAC). The treatment duration varied (15 to 90 days), with diverse PEMF devices used. Secondary outcomes included improvements in quality of life, reduced medication usage, and enhanced physical function. (4) Conclusions: Diverse PEMF applications revealed promising results, emphasizing pain reduction and improvement in the quality of life of patients. The variability in the treatment duration and device types calls for further investigation. This review informs future research directions and potential advancements in optimizing PEMF therapies for diverse osteoarthritic manifestations.
Collapse
Affiliation(s)
- Luigi Cianni
- Orthopaedics and Trauma Surgery Unit, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.C.); (E.D.G.); (D.C.); (G.M.); (R.V.)
- Department of Ageing, Neurosciences, Head-Neck and Orthopedics Sciences, Orthopedics and Trauma Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Emidio Di Gialleonardo
- Orthopaedics and Trauma Surgery Unit, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.C.); (E.D.G.); (D.C.); (G.M.); (R.V.)
| | - Donato Coppola
- Orthopaedics and Trauma Surgery Unit, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.C.); (E.D.G.); (D.C.); (G.M.); (R.V.)
| | - Giacomo Capece
- Orthopaedics and Trauma Surgery Unit, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.C.); (E.D.G.); (D.C.); (G.M.); (R.V.)
| | | | | | - Giulio Maccauro
- Orthopaedics and Trauma Surgery Unit, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.C.); (E.D.G.); (D.C.); (G.M.); (R.V.)
- Department of Ageing, Neurosciences, Head-Neck and Orthopedics Sciences, Orthopedics and Trauma Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Raffaele Vitiello
- Orthopaedics and Trauma Surgery Unit, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.C.); (E.D.G.); (D.C.); (G.M.); (R.V.)
- Department of Ageing, Neurosciences, Head-Neck and Orthopedics Sciences, Orthopedics and Trauma Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
2
|
Maiullari S, Cicirelli A, Picerno A, Giannuzzi F, Gesualdo L, Notarnicola A, Sallustio F, Moretti B. Pulsed Electromagnetic Fields Induce Skeletal Muscle Cell Repair by Sustaining the Expression of Proteins Involved in the Response to Cellular Damage and Oxidative Stress. Int J Mol Sci 2023; 24:16631. [PMID: 38068954 PMCID: PMC10706358 DOI: 10.3390/ijms242316631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Pulsed electromagnetic fields (PEMF) are employed as a non-invasive medicinal therapy, especially in the orthopedic field to stimulate bone regeneration. However, the effect of PEMF on skeletal muscle cells (SkMC) has been understudied. Here, we studied the potentiality of 1.5 mT PEMF to stimulate early regeneration of human SkMC. We showed that human SkMC stimulated with 1.5 mT PEMF for four hours repeated for two days can stimulate cell proliferation without inducing cell apoptosis or significant impairment of the metabolic activity. Interestingly, when we simulated physical damage of the muscle tissue by a scratch, we found that the same PEMF treatment can speed up the regenerative process, inducing a more complete cell migration to close the scratch and wound healing. Moreover, we investigated the molecular pattern induced by PEMF among 26 stress-related cell proteins. We found that the expression of 10 proteins increased after two consecutive days of PEMF stimulation for 4 h, and most of them were involved in response processes to oxidative stress. Among these proteins, we found that heat shock protein 70 (HSP70), which can promote muscle recovery, inhibits apoptosis and decreases inflammation in skeletal muscle, together with thioredoxin, paraoxonase, and superoxide dismutase (SOD2), which can also promote skeletal muscle regeneration following injury. Altogether, these data support the possibility of using PEMF to increase SkMC regeneration and, for the first time, suggest a possible molecular mechanism, which consists of sustaining the expression of antioxidant enzymes to control the important inflammatory and oxidative process occurring following muscle damage.
Collapse
Affiliation(s)
- Silvia Maiullari
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.C.); (A.P.); (F.G.)
| | - Antonella Cicirelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.C.); (A.P.); (F.G.)
| | - Angela Picerno
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.C.); (A.P.); (F.G.)
| | - Francesca Giannuzzi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.C.); (A.P.); (F.G.)
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Angela Notarnicola
- Orthopaedic and Trauma Unit, Department of Translational Biomedicine and Neuroscience “DiBraiN”, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy; (A.N.); (B.M.)
| | - Fabio Sallustio
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Biagio Moretti
- Orthopaedic and Trauma Unit, Department of Translational Biomedicine and Neuroscience “DiBraiN”, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy; (A.N.); (B.M.)
| |
Collapse
|
3
|
Di Martino A, Villari E, Poluzzi R, Brunello M, Rossomando V, D’Agostino C, Ruta F, Faldini C. Role of biophysical stimulation in multimodal management of vertebral compression fractures. Comput Struct Biotechnol J 2023; 21:5650-5661. [PMID: 38047233 PMCID: PMC10692617 DOI: 10.1016/j.csbj.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
Raised life expectancy and aging of the general population are associated with an increased concern for fragility fractures due to factors such as osteoporosis, reduced bone density, and an higher risk of falls. Among these, the most frequent are vertebral compression fractures (VCF), which can be clinically occult. Once the diagnosis is made, generally thorough antero-posterior and lateral views of the affected spine at the radiographs, a comprehensive workup to assess the presence of a metabolic bone disease or secondary causes of osteoporosis and bone frailty is required. Treatment uses a multimodal management consisting of a combination of brace, pain management, bone metabolism evaluation, osteoporosis medication and has recently incorporated biophysical stimulation, a noninvasive technique that uses induced electric stimulation to improve bone recovery through the direct and indirect upregulation of bone morphogenic proteins, stimulating bone formation and remodeling. It contributes to the effectiveness of the therapy, promoting accelerated healing, supporting the reduction of bed rest and pain medications, improving patients' quality of life, and reducing the risk to undergo surgery in patients affected by VCFs. Therefore, the aim of this review is to outline the fundamental concepts of multimodal treatment for VCF, as well as the present function and significance of biophysical stimulation in the treatment of VCF patients.
Collapse
Affiliation(s)
- Alberto Di Martino
- 1st Orthopaedic and Traumatologic Department, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Eleonora Villari
- 1st Orthopaedic and Traumatologic Department, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Riccardo Poluzzi
- 1st Orthopaedic and Traumatologic Department, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Matteo Brunello
- 1st Orthopaedic and Traumatologic Department, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Valentino Rossomando
- 1st Orthopaedic and Traumatologic Department, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Claudio D’Agostino
- 1st Orthopaedic and Traumatologic Department, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Federico Ruta
- 1st Orthopaedic and Traumatologic Department, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Cesare Faldini
- 1st Orthopaedic and Traumatologic Department, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| |
Collapse
|
4
|
Di Martino A, Brunello M, Villari E, Cataldi P, D'Agostino C, Faldini C. Bone marrow edema of the hip: a narrative review. Arch Orthop Trauma Surg 2023; 143:6901-6917. [PMID: 37378892 DOI: 10.1007/s00402-023-04961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
Bone marrow edema (BME) of the hip is a radiological-clinical condition with symptoms ranging from asymptomatic to severe, and it is characterized by increased interstitial fluid within the bone marrow, usually at the femur. Depending on the etiology it can be classified as primary or secondary. The primary cause of BME is unknown, while the secondary forms include traumatic, degenerative, inflammatory, vascular, infectious, metabolic, iatrogenic, and neoplastic etiologies. BME could be classified as reversible or progressive. Reversible forms include transient BME syndrome and regional migratory BME syndrome. Progressive forms include avascular necrosis of the femoral head (AVNH), subchondral insufficiency fracture, and hip degenerative arthritis. The diagnosis can be difficult, because at the beginning, the outbreak of hip pain, typically acute and disabling without any prior trauma or exceptional physical activity, is poorly supported by radiographic findings. MRI is the gold standard, and it shows an area of intermediate signal on T1-weighted MRI scans and a high signal on T2-weighted scans, usually lacking sharps margins. In the reversible form, BME is typically self-limiting, and it can be managed conservatively by means of pharmacological and physical therapy. Surgery is generally required for progressive forms in patients who failed non-operative treatment, and it ranges from femoral head and neck core decompression to total hip arthroplasty.
Collapse
Affiliation(s)
- Alberto Di Martino
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136, Bologna, Italy.
- Department of Biomedical and Neuromotor Science-DIBINEM, University of Bologna, Bologna, Italy.
| | - Matteo Brunello
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136, Bologna, Italy
- Department of Biomedical and Neuromotor Science-DIBINEM, University of Bologna, Bologna, Italy
| | - Eleonora Villari
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136, Bologna, Italy
- Department of Biomedical and Neuromotor Science-DIBINEM, University of Bologna, Bologna, Italy
| | - Piergiorgio Cataldi
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136, Bologna, Italy
- Department of Biomedical and Neuromotor Science-DIBINEM, University of Bologna, Bologna, Italy
| | - Claudio D'Agostino
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136, Bologna, Italy
- Department of Biomedical and Neuromotor Science-DIBINEM, University of Bologna, Bologna, Italy
| | - Cesare Faldini
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via G.B. Pupilli 1, 40136, Bologna, Italy
- Department of Biomedical and Neuromotor Science-DIBINEM, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Di Gioia S, Milillo L, Hossain MN, Carbone A, Petruzzi M, Conese M. Blood Clotting Dissolution in the Presence of a Magnetic Field and Preliminary Study with MG63 Osteoblast-like Cells-Further Developments for Guided Bone Regeneration? Bioengineering (Basel) 2023; 10:888. [PMID: 37627773 PMCID: PMC10451701 DOI: 10.3390/bioengineering10080888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The influence of a magnetic field on the activation of bone cells and remodelling of alveolar bone is known to incite bone regeneration. Guided Bone Regeneration (GBR) aims to develop biomimetic scaffolds to allow for the functioning of the barrier and the precise succession of wound healing steps, including haemostasis. The effect of a magnetic field on blood clot dissolution has not been studied yet. METHODS We conducted a methodological study on the clot stability in the presence of a static magnetic field (SMF). Preformed whole blood (WB) clots were treated with either a broad proteolytic enzyme (trypsin) or a specific fibrinolytic agent, i.e., tissue-type plasminogen activator (t-PA). MG63 osteoblast-like cells were added to preformed WB clots to assess cell proliferation. RESULTS After having experienced a number of clotting and dissolution protocols, we obtained clot stability exerted by SMF when tissue factor (for clotting) and t-PA + plasminogen (for fibrinolysis) were used. WB clots allowed osteoblast-like cells to survive and proliferate, however no obvious effects of the magnetic field were noted. CONCLUSIONS Paramagnetic properties of erythrocytes may have influenced the reduction in clot dissolution. Future studies are warranted to fully exploit the combination of magnetic forces, WB clot and cells in GBR applied to orthodontics and prosthodontics.
Collapse
Affiliation(s)
- Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.N.H.); (A.C.)
| | | | - Md Niamat Hossain
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.N.H.); (A.C.)
| | - Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.N.H.); (A.C.)
| | - Massimo Petruzzi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70126 Bari, Italy;
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.N.H.); (A.C.)
| |
Collapse
|
6
|
Zhang T, Zhao Z, Wang T. Pulsed electromagnetic fields as a promising therapy for glucocorticoid-induced osteoporosis. Front Bioeng Biotechnol 2023; 11:1103515. [PMID: 36937753 PMCID: PMC10020513 DOI: 10.3389/fbioe.2023.1103515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is considered the third type of osteoporosis and is accompanied by high morbidity and mortality. Long-term usage of glucocorticoids (GCs) causes worsened bone quality and low bone mass via their effects on bone cells. Currently, there are various clinical pharmacological treatments to regulate bone mass and skeletal health. Pulsed electromagnetic fields (PEMFs) are applied to treat patients suffering from delayed fracture healing and non-unions. PEMFs may be considered a potential and side-effect-free therapy for GIOP. PEMFs inhibit osteoclastogenesis, stimulate osteoblastogenesis, and affect the activity of bone marrow mesenchymal stem cells (BMSCs), osteocytes and blood vessels, ultimately leading to the retention of bone mass and strength. However, the underlying signaling pathways via which PEMFs influence GIOP remain unclear. This review attempts to summarize the underlying cellular mechanisms of GIOP. Furthermore, recent advances showing that PEMFs affect bone cells are discussed. Finally, we discuss the possibility of using PEMFs as therapy for GIOP.
Collapse
Affiliation(s)
- Tianxiao Zhang
- Innovation Center for Wound Repair, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiliang Zhao
- Innovation Center for Wound Repair, West China Hospital, Sichuan University, Chengdu, China
| | - Tiantian Wang
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Tiantian Wang,
| |
Collapse
|
7
|
Oltean-Dan D, Dogaru GB, Jianu EM, Riga S, Tomoaia-Cotisel M, Mocanu A, Barbu-Tudoran L, Tomoaia G. Biomimetic Composite Coatings for Activation of Titanium Implant Surfaces: Methodological Approach and In Vivo Enhanced Osseointegration. MICROMACHINES 2021; 12:mi12111352. [PMID: 34832764 PMCID: PMC8618198 DOI: 10.3390/mi12111352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Innovative nanomaterials are required for the coatings of titanium (Ti) implants to ensure the activation of Ti surfaces for improved osseointegration, enhanced bone fracture healing and bone regeneration. This paper presents a systematic investigation of biomimetic composite (BC) coatings on Ti implant surfaces in a rat model of a diaphyseal femoral fracture. Methodological approaches of surface modification of the Ti implants via the usual joining methods (e.g., grit blasting and acid etching) and advanced physicochemical coating via a self-assembled dip-coating method were used. The biomimetic procedure used multi-substituted hydroxyapatite (ms-HAP) HAP-1.5 wt% Mg-0.2 wt% Zn-0.2 wt% Si nanoparticles (NPs), which were functionalized using collagen type 1 molecules (COL), resulting in ms-HAP/COL (core/shell) NPs that were embedded into a polylactic acid (PLA) matrix and finally covered with COL layers, obtaining the ms-HAP/COL@PLA/COL composite. To assess the osseointegration issue, first, the thickness, surface morphology and roughness of the BC coating on the Ti implants were determined using AFM and SEM. The BC-coated Ti implants and uncoated Ti implants were then used in Wistar albino rats with a diaphyseal femoral fracture, both in the absence and the presence of high-frequency pulsed electromagnetic shortwave (HF-PESW) stimulation. This study was performed using a bone marker serum concentration and histological and computer tomography (micro-CT) analysis at 2 and 8 weeks after surgical implantation. The implant osseointegration was evaluated through the bone–implant contact (BIC). The bone–implant interface was investigated using FE-SEM images and EDX spectra of the retrieved surgical implants at 8 weeks in the four animal groups. The obtained results showed significantly higher bone–implants contact and bone volume per tissue volume, as well as a greater amount of newly formed bone, in the BC-coated Ti implants than in the uncoated Ti implants. Direct bone–implant contact was also confirmed via histological examination. The results of this study confirmed that these biomimetic composite coatings on Ti implants were essential for a significant enhancement of osseointegration of BC-coated Ti implants and bone regeneration. This research provides a novel strategy for the treatment of bone fractures with possible orthopedic applications.
Collapse
Affiliation(s)
- Daniel Oltean-Dan
- Department of Orthopedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, 47 General Traian Mosoiu Street, 400132 Cluj-Napoca, Romania;
| | - Gabriela-Bombonica Dogaru
- Department of Medical Rehabilitation, Iuliu Hatieganu University of Medicine and Pharmacy, 46-50 Viilor Street, 400347 Cluj-Napoca, Romania;
| | - Elena-Mihaela Jianu
- Department of Histology, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Sorin Riga
- Research Center of Physical Chemistry, Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania; (S.R.); (A.M.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050085 Bucharest, Romania
| | - Maria Tomoaia-Cotisel
- Research Center of Physical Chemistry, Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania; (S.R.); (A.M.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050085 Bucharest, Romania
- Correspondence: (M.T.-C.); (G.T.)
| | - Aurora Mocanu
- Research Center of Physical Chemistry, Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania; (S.R.); (A.M.)
| | - Lucian Barbu-Tudoran
- Electron Microscopy Laboratory Prof. C. Craciun, Faculty of Biology and Geology, Babes-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania;
| | - Gheorghe Tomoaia
- Department of Orthopedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, 47 General Traian Mosoiu Street, 400132 Cluj-Napoca, Romania;
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050085 Bucharest, Romania
- Correspondence: (M.T.-C.); (G.T.)
| |
Collapse
|
8
|
Evaluation of Pulsed Electromagnetic Field Effects: A Systematic Review and Meta-Analysis on Highlights of Two Decades of Research In Vitro Studies. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6647497. [PMID: 34368353 PMCID: PMC8342182 DOI: 10.1155/2021/6647497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 05/30/2021] [Accepted: 06/27/2021] [Indexed: 12/13/2022]
Abstract
Pulsed electromagnetic field (PEMF) therapy is a type of physical stimulation that affects biological systems by producing interfering or coherent fields. Given that cell types are significantly distinct, which represents an important factor in stimulation, and that PEMFs can have different effects in terms of frequency and intensity, time of exposure, and waveform. This study is aimed at investigating if distinct positive and negative responses would correspond to specific characteristics of cells, frequency and flux density, time of exposure, and waveform. Necessary data were abstracted from the experimental observations of cell-based in vitro models. The observations were obtained from 92 publications between the years 1999 and 2019, which are available on PubMed and Web of Science databases. From each of the included studies, type of cells, pulse frequency of exposure, exposure flux density, and assayed cell responses were extracted. According to the obtained data, most of the experiments were carried out on human cells, and out of 2421 human cell experiments, cell changes were observed only in 51.05% of the data. In addition, the results pointed out the potential effects of PEMFs on some human cell types such as MG-63 human osteosarcoma cells (p value < 0.001) and bone marrow mesenchymal stem cells. However, human osteogenic sarcoma SaOS-2 (p < 0.001) and human adipose-derived mesenchymal stem cells (AD-MSCs) showed less sensitivity to PEMFs. Nevertheless, the evidence suggests that frequencies higher than 100 Hz, flux densities between 1 and 10 mT, and chronic exposure more than 10 days would be more effective in establishing a cellular response. This study successfully reported useful information about the role of cell type and signal characteristic parameters, which were of high importance for targeted therapies using PEMFs. Our findings would provide a deeper understanding about the effect of PEMFs in vitro, which could be useful as a reference for many in vivo experiments or preclinical trials.
Collapse
|
9
|
Zhou Y, Yang L, Wang H, Chen X, Jiang W, Wang Z, Liu S, Liu Y. Alterations in DNA methylation profiles in cancellous bone of postmenopausal women with osteoporosis. FEBS Open Bio 2020; 10:1516-1531. [PMID: 32496000 PMCID: PMC7396431 DOI: 10.1002/2211-5463.12907] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/11/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is characterized by systemic microarchitecture impairment and bone loss, which ultimately lead to fragility fractures. This disease is most common in older people, especially in postmenopausal women. Cancellous bone is affected by osteoporosis earlier than cortical bone, and DNA methylation microarray analysis of the hip cancellous bone of patients with osteoarthritis revealed differential methylation. In view of the important role of cancellous bone in bone development, we examined genome‐wide DNA methylation profiles in the cancellous bone from patients with postmenopausal osteoporosis versus healthy postmenopausal women using Illumina 850K methylation microarray analysis. Under a threshold of P < 0.05, we obtained a total of 8973 differentially methylated genes, such as SOX6, ACE, SYK and TGFB3. Under a threshold of P < 0.05 and |△β| > 0.2, a total of 17 and 34 key differentially methylated genes were further identified at the promoter region and cytosine‐ phosphate‐ guanine (CpG) islands (such as PRKCZ, GNA11 and COL4A1), respectively. PLEKHA2, PLEKHB1, PNPLA7, SCD, MGST3 and TSNAX were the most common differentially methylated genes at both the promoter region and CpG islands. Five important signaling pathways, including the calcium signaling pathway, the cyclic guanosine phospho‐protein kinase G (cGMP‐PKG) signaling pathway, endocytosis, the Rap1 signaling pathway and the AMPK signaling pathway were identified. Our study may be suitable as a basis for exploring the mechanisms underlying osteoporosis in postmenopausal women.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Orthopedics, People's Hospital of Deyang City, China
| | - Ling Yang
- Department of Orthopedics, People's Hospital of Deyang City, China
| | - Hong Wang
- Department of Orthopedics, People's Hospital of Deyang City, China
| | - Xi Chen
- Department of Orthopedics, People's Hospital of Deyang City, China
| | - Wei Jiang
- Department of Orthopedics, People's Hospital of Deyang City, China
| | - Zhicong Wang
- Department of Orthopedics, People's Hospital of Deyang City, China
| | - Shuping Liu
- Department of Orthopedics, People's Hospital of Deyang City, China
| | - Yuehong Liu
- Department of Orthopedics, People's Hospital of Deyang City, China
| |
Collapse
|
10
|
Lullini G, Cammisa E, Setti S, Sassoli I, Zaffagnini S, Marcheggiani Muccioli GM. Role of pulsed electromagnetic fields after joint replacements. World J Orthop 2020; 11:285-293. [PMID: 32572365 PMCID: PMC7298453 DOI: 10.5312/wjo.v11.i6.285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Although the rate of patients reporting satisfaction is generally high after joint replacement surgery, up to 23% after total hip replacement and 34% after total knee arthroplasty of treated subjects report discomfort or pain 1 year after surgery. Moreover, chronic or subacute inflammation is reported in some cases even a long time after surgery. Another open and debated issue in prosthetic surgery is implant survivorship, especially when related to good prosthesis bone ingrowth. Pulsed Electro Magnetic Fields (PEMFs) treatment, although initially recommended after total joint replacement to promote bone ingrowth and to reduce inflammation and pain, is not currently part of usual clinical practice. The purpose of this review was to analyze existing literature on PEMFs effects in joint replacement surgery and to report results of clinical studies and current indications. We selected all currently available prospective studies or RCT on the use of PEMFs in total joint replacement with the purpose of investigating effects of PEMFs on recovery, pain relief and patients’ satisfaction following hip, knee or shoulder arthroplasty. All the studies analyzed reported no adverse effects, and good patient compliance to the treatment. The available literature shows that early control of joint inflammation process in the first days after surgery through the use of PEMFs should be considered an effective completion of the surgical procedure to improve the patient’s functional recovery.
Collapse
Affiliation(s)
- Giada Lullini
- Laboratorio di Analisi del Movimento e di valutazione funzionale protesi, IRCCS Istituto Ortopedico Rizzoli - DIBINEM - University of Bologna, Bologna 40100, Italy
| | - Eugenio Cammisa
- II Orthopaedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli - DIBINEM - University of Bologna, Bologna 40100, Italy
| | - Stefania Setti
- Laboratory of Clinical Biophysics, IGEA S.p.A. Clinical Biophysics, 41012 Carpi (Mo), Italy
| | - Iacopo Sassoli
- II Orthopaedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli - DIBINEM - University of Bologna, Bologna 40100, Italy
| | - Stefano Zaffagnini
- II Orthopaedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli - DIBINEM - University of Bologna, Bologna 40100, Italy
| | | |
Collapse
|
11
|
Castro N, Fernandes MM, Ribeiro C, Correia V, Minguez R, Lanceros-Méndez S. Magnetic Bioreactor for Magneto-, Mechano- and Electroactive Tissue Engineering Strategies. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3340. [PMID: 32545551 PMCID: PMC7349750 DOI: 10.3390/s20123340] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 01/15/2023]
Abstract
Biomimetic bioreactor systems are increasingly being developed for tissue engineering applications, due to their ability to recreate the native cell/tissue microenvironment. Regarding bone-related diseases and considering the piezoelectric nature of bone, piezoelectric scaffolds electromechanically stimulated by a bioreactor, providing the stimuli to the cells, allows a biomimetic approach and thus, mimicking the required microenvironment for effective growth and differentiation of bone cells. In this work, a bioreactor has been designed and built allowing to magnetically stimulate magnetoelectric scaffolds and therefore provide mechanical and electrical stimuli to the cells through magnetomechanical or magnetoelectrical effects, depending on the piezoelectric nature of the scaffold. While mechanical bioreactors need direct application of the stimuli on the scaffolds, the herein proposed magnetic bioreactors allow for a remote stimulation without direct contact with the material. Thus, the stimuli application (23 mT at a frequency of 0.3 Hz) to cells seeded on the magnetoelectric, leads to an increase in cell viability of almost 30% with respect to cell culture under static conditions. This could be valuable to mimic what occurs in the human body and for application in immobilized patients. Thus, special emphasis has been placed on the control, design and modeling parameters governing the bioreactor as well as its functional mechanism.
Collapse
Affiliation(s)
- Nelson Castro
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain;
| | - Margarida M. Fernandes
- Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.M.F.); (C.R.)
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Clarisse Ribeiro
- Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.M.F.); (C.R.)
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Vítor Correia
- Algoritmi Research Centre, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal;
| | - Rikardo Minguez
- Department of Graphic Design and Engineering Projects, University of the Basque Country, E-48013 Bilbao, Spain
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain;
- IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao, Spain
| |
Collapse
|
12
|
Huegel J, Boorman-Padgett JF, Nuss CA, Raja HA, Chan PY, Kuntz AF, Waldorff EI, Zhang N, Ryaby JT, Soslowsky LJ. Effects of Pulsed Electromagnetic Field Therapy on Rat Achilles Tendon Healing. J Orthop Res 2020; 38:70-81. [PMID: 31595543 PMCID: PMC6917903 DOI: 10.1002/jor.24487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/20/2019] [Indexed: 02/04/2023]
Abstract
The Achilles tendon is frequently injured. Data to support specific treatment strategies for complete and partial tears is inconclusive. Regardless of treatment, patients risk re-rupture and typically have long-term functional deficits. We previously showed that pulsed electromagnetic field (PEMF) therapy improved tendon-to-bone healing in a rat rotator cuff model. This study investigated the effects of PEMF on rat ankle function and Achilles tendon properties after (i) complete Achilles tendon tear and repair with immobilization, (ii) partial Achilles tendon tear without repair and with immobilization, and (iii) partial Achilles tendon tear without repair and without immobilization. We hypothesized that PEMF would improve tendon properties, increase collagen organization, and improve joint function, regardless of injury type. After surgical injury, animals were assigned to a treatment group: (i) no treatment control, (ii) 1 h of PEMF per day, or (iii) 3 h of PEMF per day. Animals were euthanized at 1, 3, and 6 weeks post-injury. Joint mechanics and gait analysis were assessed over time, and fatigue testing and histology were performed at each time point. Results indicate no clear differences in Achilles healing with PEMF treatment. Some decreases in tendon mechanical properties and ankle function suggest PEMF may be detrimental after complete tear. Some early improvements were seen with PEMF after partial tear with immobilization; however, immobilization was found to be a confounding factor. This body of work emphasizes the distinct effects of PEMF on tendon-to-bone healing and supports trialing potential treatment strategies pre-clinically across tendons before applying them clinically. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:70-81, 2020.
Collapse
Affiliation(s)
- Julianne Huegel
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA USA
| | | | - Courtney A. Nuss
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA USA
| | - Harina A. Raja
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA USA
| | - Peter Y. Chan
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA USA
| | - Andrew F. Kuntz
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA USA
| | | | | | | | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
13
|
Fernandes MM, Correia DM, Ribeiro C, Castro N, Correia V, Lanceros-Mendez S. Bioinspired Three-Dimensional Magnetoactive Scaffolds for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45265-45275. [PMID: 31682095 DOI: 10.1021/acsami.9b14001] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bone tissue repair strategies are gaining increasing relevance due to the growing incidence of bone disorders worldwide. Biochemical stimulation is the most commonly used strategy for cell regeneration, while the application of physical cues, including magnetic, mechanical, or electrical fields, is a promising, however, scarcely investigated field. This work reports on novel magnetoactive three-dimensional (3D) porous scaffolds suitable for effective proliferation of osteoblasts in a biomimetic microenvironment. This physically active microenvironment is developed through the bone-mimicking structure of the scaffold combined with the physical stimuli provided by a magnetic custom-made bioreactor on a magnetoresponsive scaffold. Scaffolds are obtained through the development of nanocomposites comprised of a piezoelectric polymer, poly(vinylidene fluoride) (PVDF), and magnetostrictive particles of CoFe2O4, using a solvent casting method guided by the overlapping of nylon template structures with three different fiber diameter sizes (60, 80, and 120 μm), thus generating 3D scaffolds with different pore sizes. The magnetoactive composites show a structure very similar to trabecular bone with pore sizes that range from 5 to 20 μm, owing to the inherent process of crystallization of PVDF with the nanoparticles (NPs), interconnected with bigger pores, formed after removing the nylon templates. It is found that the materials crystallize in the electroactive β-phase of PVDF and promote the proliferation of preosteoblasts through the application of magnetic stimuli. This phenomenon is attributed to both local magnetomechanical and magnetoelectric response of the scaffolds, which induce a proper cellular mechano- and electro-transduction process.
Collapse
Affiliation(s)
- Margarida M Fernandes
- Centre of Biological Engineering , University of Minho , Campus de Gualtar , Braga 4710-057 , Portugal
- Centre of Physics , University of Minho , Braga 4710-057 , Portugal
| | - Daniela M Correia
- Centre of Physics , University of Minho , Braga 4710-057 , Portugal
- Centro de Química , Universidade de Trás-os-Montes e Alto Douro , Vila Real 5001-801 , Portugal
| | - Clarisse Ribeiro
- Centre of Biological Engineering , University of Minho , Campus de Gualtar , Braga 4710-057 , Portugal
- Centre of Physics , University of Minho , Braga 4710-057 , Portugal
| | - Nelson Castro
- BCMaterials, Basque Center for Materials, Applications and Nanostructures , UPV/EHU Science Park , Leioa 48940 , Spain
| | - Vitor Correia
- Centro Algoritmi , Universidade do Minho , Guimarães 4800-058 , Portugal
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures , UPV/EHU Science Park , Leioa 48940 , Spain
- Ikerbasque, Basque Foundation for Science , Bilbao 48013 , Spain
| |
Collapse
|
14
|
Ehnert S, Schröter S, Aspera-Werz RH, Eisler W, Falldorf K, Ronniger M, Nussler AK. Translational Insights into Extremely Low Frequency Pulsed Electromagnetic Fields (ELF-PEMFs) for Bone Regeneration after Trauma and Orthopedic Surgery. J Clin Med 2019; 8:jcm8122028. [PMID: 31756999 PMCID: PMC6947624 DOI: 10.3390/jcm8122028] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
The finding that alterations in electrical potential play an important role in the mechanical stimulation of the bone provoked hype that noninvasive extremely low frequency pulsed electromagnetic fields (ELF-PEMF) can be used to support healing of bone and osteochondral defects. This resulted in the development of many ELF-PEMF devices for clinical use. Due to the resulting diversity of the ELF-PEMF characteristics regarding treatment regimen, and reported results, exposure to ELF-PEMFs is generally not among the guidelines to treat bone and osteochondral defects. Notwithstanding, here we show that there is strong evidence for ELF-PEMF treatment. We give a short, confined overview of in vitro studies investigating effects of ELF-PEMF treatment on bone cells, highlighting likely mechanisms. Subsequently, we summarize prospective and blinded studies, investigating the effect of ELF-PEMF treatment on acute bone fractures and bone fracture non-unions, osteotomies, spinal fusion, osteoporosis, and osteoarthritis. Although these studies favor the use of ELF-PEMF treatment, they likewise demonstrate the need for more defined and better controlled/monitored treatment modalities. However, to establish indication-oriented treatment regimen, profound knowledge of the underlying mechanisms in the sense of cellular pathways/events triggered is required, highlighting the need for more systematic studies to unravel optimal treatment conditions.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Siegfried Weller Institute for Trauma Research, Depterment of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany; (S.S.); (R.H.A.-W.); (W.E.); (A.K.N.)
- Correspondence: or ; Tel.: +49-7071-606-1067
| | - Steffen Schröter
- Siegfried Weller Institute for Trauma Research, Depterment of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany; (S.S.); (R.H.A.-W.); (W.E.); (A.K.N.)
| | - Romina H. Aspera-Werz
- Siegfried Weller Institute for Trauma Research, Depterment of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany; (S.S.); (R.H.A.-W.); (W.E.); (A.K.N.)
| | - Wiebke Eisler
- Siegfried Weller Institute for Trauma Research, Depterment of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany; (S.S.); (R.H.A.-W.); (W.E.); (A.K.N.)
| | - Karsten Falldorf
- Sachtleben GmbH, Hamburg, Haus Spectrum am UKE, Martinistraße 64, D-20251 Hamburg, Germany; (K.F.); (M.R.)
| | - Michael Ronniger
- Sachtleben GmbH, Hamburg, Haus Spectrum am UKE, Martinistraße 64, D-20251 Hamburg, Germany; (K.F.); (M.R.)
| | - Andreas K. Nussler
- Siegfried Weller Institute for Trauma Research, Depterment of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany; (S.S.); (R.H.A.-W.); (W.E.); (A.K.N.)
| |
Collapse
|
15
|
Galli C, Pedrazzi G, Guizzardi S. The cellular effects of Pulsed Electromagnetic Fields on osteoblasts: A review. Bioelectromagnetics 2019; 40:211-233. [PMID: 30908726 DOI: 10.1002/bem.22187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/08/2019] [Indexed: 12/12/2022]
Abstract
Electromagnetic fields (EMFs) have long been known to interact with living organisms and their cells and to bear the potential for therapeutic use. Among the most extensively investigated applications, the use of Pulsed EMFs (PEMFs) has proven effective to ameliorate bone healing in several studies, although the evidence is still inconclusive. This is due in part to our still-poor understanding of the mechanisms by which PEMFs act on cells and affect their functions and to an ongoing lack of consensus on the most effective parameters for specific clinical applications. The present review has compared in vitro studies on PEMFs on different osteoblast models, which elucidate potential mechanisms of action for PEMFs, up to the most recent insights into the role of primary cilia, and highlight the critical issues underlying at least some of the inconsistent results in the available literature. Bioelectromagnetics. 2019;9999:XX-XX. © 2019 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Carlo Galli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Pedrazzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefano Guizzardi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
16
|
Wang T, Yang L, Jiang J, Liu Y, Fan Z, Zhong C, He C. Pulsed electromagnetic fields: promising treatment for osteoporosis. Osteoporos Int 2019; 30:267-276. [PMID: 30603841 DOI: 10.1007/s00198-018-04822-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/18/2018] [Indexed: 02/05/2023]
Abstract
Osteoporosis (OP) is considered to be a well-defined disease which results in high morbidity and mortality. In patients diagnosed with OP, low bone mass and fragile bone strength have been demonstrated to significantly increase risk of fragility fractures. To date, various anabolic and antiresorptive therapies have been applied to maintain healthy bone mass and strength. Pulsed electromagnetic fields (PEMFs) are employed to treat patients suffering from delayed fracture healing and nonunions. Although PEMFs stimulate osteoblastogenesis, suppress osteoclastogenesis, and influence the activity of bone marrow mesenchymal stem cells (BMSCs) and osteocytes, ultimately leading to retention of bone mass and strength. However, whether PEMFs could be taken into clinical use to treat OP is still unknown. Furthermore, the deeper signaling pathways underlying the way in which PEMFs influence OP remain unclear.
Collapse
Affiliation(s)
- T Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - L Yang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - J Jiang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Y Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Z Fan
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - C Zhong
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - C He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China.
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
17
|
The Use of Pulsed Electromagnetic Fields to Promote Bone Responses to Biomaterials In Vitro and In Vivo. Int J Biomater 2018; 2018:8935750. [PMID: 30254677 PMCID: PMC6140132 DOI: 10.1155/2018/8935750] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Implantable biomaterials are extensively used to promote bone regeneration or support endosseous prosthesis in orthopedics and dentistry. Their use, however, would benefit from additional strategies to improve bone responses. Pulsed Electromagnetic Fields (PEMFs) have long been known to act on osteoblasts and bone, affecting their metabolism, in spite of our poor understanding of the underlying mechanisms. Hence, we have the hypothesis that PEMFs may also ameliorate cell responses to biomaterials, improving their growth, differentiation, and the expression of a mature phenotype and therefore increasing the tissue integration of the implanted devices and their clinical success. A broad range of settings used for PEMFs stimulation still represents a hurdle to better define treatment protocols and extensive research is needed to overcome this issue. The present review includes studies that investigated the effects of PEMFs on the response of bone cells to different classes of biomaterials and the reports that focused on in vivo investigations of biomaterials implanted in bone.
Collapse
|
18
|
Song ZH, Xie W, Zhu SY, Pan JJ, Zhou LY, He CQ. Effects of PEMFs on Osx, Ocn, TRAP, and CTSK gene expression in postmenopausal osteoporosis model mice. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:1784-1790. [PMID: 31938285 PMCID: PMC6958114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/12/2018] [Indexed: 06/10/2023]
Abstract
Objective: Ovariectomized mice were used to simulate the symptoms of postmenopausal women with osteoporosis, and observe the effects of PEMF treatment on expression of Osx, Ocn, TRAP, and CTSK in ovariectomized mice. Methods: Thirty-week-old wild-type C57BL/6 mice were randomly divided into three groups (n=10, each group): sham operation group, ovariectomy (OVX) group, and PEMF group. Mice in the sham group underwent sham ovariectomy, while mice in the remaining two groups were ovariectomized. On postoperative day two, mice in the PEMF treatment group received PEMF treatment at a frequency of 8 Hz and an intensity of 3.8 mT for one hour daily for four weeks. At the same time, mice in the remaining two groups were placed in the PEMF treatment area under power-down state daily, similar to that in the PEMF group. After four weeks, all relevant indicators were tested. Results: (1) Compared with mice in the sham group, the number of trabecular bones significantly decreased, the thickness of the trabecular bone became thinner, the number of osteoclasts significantly increased, the gene expression of Osx and Ocn significantly decreased, and the gene expression of TRAP and CTSK significantly increased in the OVX group (P<0.01). (2) Compared with the blank controls without operation, the number of osteoblasts increased in the PEMF group. (3) Compared with the OVX group, the number of osteoclasts significantly decreased, the expression of Osx and Ocn significantly increased, and the gene expression of TRAP and CTSK significantly decreased in the PEMF group (P<0.01). Conclusion: PEMF treatment can significantly promote bone formation, which may be realized through inhibition of osteoclast formation, achieving bone morphological protection. PEMFs can significantly upregulate Osx and Ocn osteogenesis-related genes, which affect bone formation, and downregulate TRAP and CTSK osteoclast-related genes, which affect bone resorption. PEMFs may be used to treat postmenopausal osteoporosis by regulating Osx, Ocn, TRAP, and CTSK gene expression.
Collapse
Affiliation(s)
- Zhen-Hua Song
- Rehabilitation Medicine Center, West China Hospital, Sichuan UniversityChengdu, China
- Central South University Xiangya School of Medicine Affiliated Haikou Hospital Rehabilitation Medicine DisciplineHaikou, China
| | - Wei Xie
- Rehabilitation Medicine Center, West China Hospital, Sichuan UniversityChengdu, China
| | - Si-Yi Zhu
- Rehabilitation Medicine Center, West China Hospital, Sichuan UniversityChengdu, China
| | - Jin-Jing Pan
- Central South University Xiangya School of Medicine Affiliated Haikou Hospital Rehabilitation Medicine DisciplineHaikou, China
| | | | - Cheng-Qi He
- Rehabilitation Medicine Center, West China Hospital, Sichuan UniversityChengdu, China
- Rehabilitation Medicine Center, West China Hospital, Sichuan UniversityNo. 37 Guoxue Xiang, Chengdu, China
| |
Collapse
|
19
|
Fan T, Huang G, Wu W, Guo R, Zeng Q. Combined treatment with extracorporeal shock‑wave therapy and bone marrow mesenchymal stem cell transplantation improves bone repair in a rabbit model of bone nonunion. Mol Med Rep 2017; 17:1326-1332. [PMID: 29115642 DOI: 10.3892/mmr.2017.7984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 06/08/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to analyze whether extracorporeal shock‑wave therapy (ESWT) combined with bone marrow mesenchymal stem cell (BMMSC) transplantation improves bone repair in a rabbit bone nonunion model. ESWT combined with BMMSC effectively enhanced mechanical strength, fracture stiffness and histological scores, and increased alkaline phosphatase activity, and osteopontin, runt related transcription factor 2 and collagen type I α1 chain protein expression levels in a rabbit bone nonunion model. In addition, ESWT combined with BMMSC effectively enhanced insulin‑like growth factor 1 and vascular endothelial growth factor contents, promoted transforming growth factor‑β (TGF‑β) contents, and induced the growth factors, bone morphogenetic protein (BMP)‑2, BMP‑4 and purinergic receptor P2X7 (P2X7) protein expression in the rabbit bone nonunion model. Thus, the present study demonstrated that ESWT combined with BMMSC transplantation improves bone repair in a rabbit bone nonunion model via the BMPs and P2X7 signaling pathways.
Collapse
Affiliation(s)
- Tao Fan
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Guozhi Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Wen Wu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Rong Guo
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
20
|
Zhu S, He H, Zhang C, Wang H, Gao C, Yu X, He C. Effects of pulsed electromagnetic fields on postmenopausal osteoporosis. Bioelectromagnetics 2017; 38:406-424. [PMID: 28665487 DOI: 10.1002/bem.22065] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 06/05/2017] [Indexed: 02/05/2023]
Abstract
Postmenopausal osteoporosis (PMOP) is considered to be a well-defined subject that has caused high morbidity and mortality. In elderly women diagnosed with PMOP, low bone mass and fragile bone strength have been proven to significantly increase risk of fragility fractures. Currently, various anabolic and anti-resorptive therapies have been employed in an attempt to retain healthy bone mass and strength. Pulsed electromagnetic fields (PEMFs), first applied in treating patients with delayed fracture healing and nonunions, may turn out to be another potential and effective therapy for PMOP. PEMFs can enhance osteoblastogenesis and inhibit osteoclastogenesis, thus contributing to an increase in bone mass and strength. However, accurate mechanisms of the positive effects of PEMFs on PMOP remain to be further elucidated. This review attempts to summarize recent advances of PEMFs in treating PMOP based on clinical trials, and animal and cellular studies. Possible mechanisms are also introduced, and the future possibility of application of PEMFs on PMOP are further explored and discussed. Bioelectromagnetics. 38:406-424, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Siyi Zhu
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P. R. China
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Hongchen He
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Chi Zhang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Haiming Wang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Chengfei Gao
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Chengqi He
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
21
|
Adenosine Receptors as a Biological Pathway for the Anti-Inflammatory and Beneficial Effects of Low Frequency Low Energy Pulsed Electromagnetic Fields. Mediators Inflamm 2017; 2017:2740963. [PMID: 28255202 PMCID: PMC5309410 DOI: 10.1155/2017/2740963] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/12/2017] [Indexed: 12/22/2022] Open
Abstract
Several studies explored the biological effects of low frequency low energy pulsed electromagnetic fields (PEMFs) on human body reporting different functional changes. Much research activity has focused on the mechanisms of interaction between PEMFs and membrane receptors such as the involvement of adenosine receptors (ARs). In particular, PEMF exposure mediates a significant upregulation of A2A and A3ARs expressed in various cells or tissues involving a reduction in most of the proinflammatory cytokines. Of particular interest is the observation that PEMFs, acting as modulators of adenosine, are able to increase the functionality of the endogenous agonist. By reviewing the scientific literature on joint cells, a double role for PEMFs could be hypothesized in vitro by stimulating cell proliferation, colonization of the scaffold, and production of tissue matrix. Another effect could be obtained in vivo after surgical implantation of the construct by favoring the anabolic activities of the implanted cells and surrounding tissues and protecting the construct from the catabolic effects of the inflammatory status. Moreover, a protective involvement of PEMFs on hypoxia damage in neuron-like cells and an anti-inflammatory effect in microglial cells have suggested the hypothesis of a positive impact of this noninvasive biophysical stimulus.
Collapse
|
22
|
Jauregui JJ, Ventimiglia AV, Grieco PW, Frumberg DB, Herzenberg JE. Regenerate bone stimulation following limb lengthening: a meta-analysis. BMC Musculoskelet Disord 2016; 17:407. [PMID: 27686373 PMCID: PMC5043605 DOI: 10.1186/s12891-016-1259-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/14/2016] [Indexed: 12/23/2022] Open
Abstract
Background Limb lengthening with external fixation is performed to treat patients with leg length discrepancy or short stature. Although the procedure has a high rate of success, one potential drawback from limb lengthening is the amount of time spent in the fixation device while regenerate bone consolidates. Although some studies have assessed different treatment modalities, there has not been a study that has systematically evaluated whether low intensity pulsed ultrasound (LIPUS) or pulsed electromagnetic fields (PEMF) have significant effects on regenerate bone growth. The purpose of this study was to evaluate these two non-pharmacological treatment options to stimulate regenerate bone, and to assess whether they affect the treatment time in limb lengthening. Methods Utilizing the electronic databases Medline, Embase and Ovid, we performed a literature search for studies describing the application of LIPUS or PEMF following limb lengthening. With the aid of a statistical software package, Forest-Plots were generated to compare the differences in bone healing index with and without the use of regenerate bone stimulation. Results A total of 7 studies assessed these two bone stimulation modalities in a cohort of 153 patients. Overall, the mean healing index was 11.7 days/cm faster when using bone stimulation that in the comparison cohorts (33.7 vs 45.4 day, standardized mean difference of 1.16; p = 0.003). Conclusion Amongst the drawbacks from limb lengthening is the relatively high rate of non- and delayed-union. Several methods, both pharmacological and non-pharmacological, have been investigated for their potential to stimulate the growth of regenerate bone. After systematically evaluating the limited and heterogeneous current literature, we found that LIPUS and PEMF both decreased the time for bone healing (healing index in days/cm) of the newly formed regenerate bone in an adequately selected cohort of patients that underwent limb lengthening. However, a high number of complications should be noted, which could be attributed to the lengthening procedure or to the additional bone stimulation. PROSPERO registration number CRD42016039024 Electronic supplementary material The online version of this article (doi:10.1186/s12891-016-1259-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julio J Jauregui
- Department of Orthopaedics, University of Maryland Medical Center, 110 S. Paca Street, 6th Floor, Suite 300, Baltimore, Maryland, 21201, USA
| | - Anthony V Ventimiglia
- SUNY Downstate Medical Center, Department of Orthopaedic Surgery and Rehabilitation, 450 Clarkson Avenue, Brooklyn, New York, 11203, USA
| | - Preston W Grieco
- SUNY Downstate Medical Center, Department of Orthopaedic Surgery and Rehabilitation, 450 Clarkson Avenue, Brooklyn, New York, 11203, USA
| | - David B Frumberg
- SUNY Downstate Medical Center, Department of Orthopaedic Surgery and Rehabilitation, 450 Clarkson Avenue, Brooklyn, New York, 11203, USA
| | - John E Herzenberg
- Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, 2401 West Belvedere Avenue, Baltimore, Maryland, 21215, USA.
| |
Collapse
|
23
|
Bique AM, Kaivosoja E, Mikkonen M, Paulasto-Kröckel M. Choice of osteoblast model critical for studying the effects of electromagnetic stimulation on osteogenesis in vitro. Electromagn Biol Med 2016; 35:353-64. [PMID: 27355896 DOI: 10.3109/15368378.2016.1138124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The clinical benefits of electromagnetic field (EMF) therapy in enhancing osteogenesis have been acknowledged for decades, but agreement regarding the underlying mechanisms continues to be sought. Studies have shown EMFs to promote osteoblast-like cell proliferation, or contrarily, to induce differentiation and enhance mineralization. Typically these disparities have been attributed to methodological differences. The present paper argues the possibility that the chosen osteoblast model impacts stimulation outcome. Phenotypically immature cells, particularly at low seeding densities, appear to be prone to EMF-amplified proliferation. Conversely, mature cells at higher densities seem to be predisposed to earlier onset differentiation and mineralization. This suggests that EMFs augment ongoing processes in cell populations. To test this hypothesis, mature SaOS-2 cells and immature MC3T3-E1 cells at various densities, with or without osteo-induction, were exposed to sinusoidal 50 Hz EMF. The exposure stimulated the proliferation of MC3T3-E1 and inhibited the proliferation of SaOS-2 cells. Baseline alkaline phosphatase (ALP) expression of SaOS-2 cells was high and rapidly further increased with EMF exposure, whereas ALP effects in MC3T3-E1 cells were not seen until the second week. Thus both cell types responded differently to EMF stimulation, corroborating the hypothesis that the phenotypic maturity and culture stage of cells influence stimulation outcome.
Collapse
Affiliation(s)
- Anna-Maria Bique
- a Aalto University Department of Electrical Engineering and Automation , School of Electrical Engineering , Espoo , Finland
| | - Emilia Kaivosoja
- a Aalto University Department of Electrical Engineering and Automation , School of Electrical Engineering , Espoo , Finland
| | - Marko Mikkonen
- a Aalto University Department of Electrical Engineering and Automation , School of Electrical Engineering , Espoo , Finland
| | - Mervi Paulasto-Kröckel
- a Aalto University Department of Electrical Engineering and Automation , School of Electrical Engineering , Espoo , Finland
| |
Collapse
|
24
|
de Girolamo L, Viganò M, Galliera E, Stanco D, Setti S, Marazzi MG, Thiebat G, Corsi Romanelli MM, Sansone V. In vitro functional response of human tendon cells to different dosages of low-frequency pulsed electromagnetic field. Knee Surg Sports Traumatol Arthrosc 2015; 23:3443-53. [PMID: 24957914 DOI: 10.1007/s00167-014-3143-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 06/12/2014] [Indexed: 11/29/2022]
Abstract
PURPOSE Chronic tendinopathy is a degenerative process causing pain and disability. Current treatments include biophysical therapies, such as pulsed electromagnetic fields (PEMF). The aim of this study was to compare, for the first time, the functional in vitro response of human tendon cells to different dosages of PEMF, varying in field intensity and duration and number of exposures. METHODS Tendon cells, isolated from human semitendinosus and gracilis tendons (hTCs; n = 6), were exposed to different PEMF treatments (1.5 or 3 mT for 8 or 12 h, single or repeated treatments). Scleraxis (SCX), COL1A1, COL3A1 and vascular endothelial growth factor-A (VEGF-A) expression and cytokine production were assessed. RESULTS None of the different dosages provoked apoptotic events. Proliferation of hTCs was enhanced by all treatments, whereas only 3 mT-PEMF treatment increased cell viability. However, the single 1.5 mT-PEMF treatment elicited the highest up-regulation of SCX, VEGF-A and COL1A1 expression, and it significantly reduced COL3A1 expression with respect to untreated cells. The treated hTCs showed a significantly higher release of IL-1β, IL-6, IL-10 and TGF-β. Interestingly, the repeated 1.5 mT-PEMF significantly further increased IL-10 production. CONCLUSIONS 1.5 mT-PEMF treatment was able to give the best results in in vitro healthy human tendon cell culture. Although the clinical relevance is not direct, this investigation should be considered an attempt to clarify the effect of different PEMF protocols on tendon cells, in particular focusing on the potential applicability of this cell source for regenerative medicine purpose, both in surgical and in conservative treatment for tendon disorders.
Collapse
Affiliation(s)
- L de Girolamo
- Orthopaedic Biotechnology Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi, 4, 20161, Milan, Italy.
| | - M Viganò
- Orthopaedic Biotechnology Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi, 4, 20161, Milan, Italy
| | - E Galliera
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - D Stanco
- Orthopaedic Biotechnology Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi, 4, 20161, Milan, Italy
| | - S Setti
- IGEA SpA, Clinical Biophysics, Carpi, Italy
| | - M G Marazzi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - G Thiebat
- Sport Traumatology Unit, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - M M Corsi Romanelli
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy.,IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - V Sansone
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy.,Orthopaedic Department, Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
25
|
Effects of PEMF exposure at different pulses on osteogenesis of MC3T3-E1 cells. Arch Oral Biol 2014; 59:921-7. [DOI: 10.1016/j.archoralbio.2014.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 04/29/2014] [Accepted: 05/10/2014] [Indexed: 11/20/2022]
|
26
|
The effects of pulsed electromagnetic field on the functions of osteoblasts on implant surfaces with different topographies. Acta Biomater 2014; 10:975-85. [PMID: 24140610 DOI: 10.1016/j.actbio.2013.10.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 12/16/2022]
Abstract
The use of pulsed electromagnetic fields (PEMFs) is a promising approach to promote osteogenesis. However, few studies have reported the effects of this technique on the osseointegration of endosseous implants, especially with regard to different implant topographies. We focused on how the initial interaction between cells and the titanium surface is enhanced by a PEMF and the possible regulatory mechanisms in this study. Rat osteoblasts were cultured on three types of titanium surfaces (Flat, Micro and Nano) under PEMF stimulation or control conditions. Protein adsorption was significantly increased by the PEMF. The number of osteoblasts attached to the surfaces in the PEMF group was substantially greater than that in the control group after 1.5h incubation. PEMF stimulation oriented the osteoblasts perpendicular to the electromagnetic field lines and increased the number of microfilaments and pseudopodia formed by the osteoblasts. The cell proliferation on the implant surfaces was significantly promoted by the PEMF. Significantly increased extracellular matrix mineralization nodules were observed under PEMF stimulation. The expression of osteogenesis-related genes, including BMP-2, OCN, Col-1,ALP, Runx2 and OSX, were up-regulated on all the surfaces by PEMF stimulation. Our findings suggest that PEMFs enhance the osteoblast compatibility on titanium surfaces but to different extents with regard to implant surface topographies. The use of PEMFs might be a potential adjuvant treatment for improving the osseointegration process.
Collapse
|
27
|
Griffin M, Sebastian A, Colthurst J, Bayat A. Enhancement of differentiation and mineralisation of osteoblast-like cells by degenerate electrical waveform in an in vitro electrical stimulation model compared to capacitive coupling. PLoS One 2013; 8:e72978. [PMID: 24039834 PMCID: PMC3770651 DOI: 10.1371/journal.pone.0072978] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/17/2013] [Indexed: 01/17/2023] Open
Abstract
Electrical stimulation (ES) is effective in enhancing bone healing, however the best electrical waveform, mode of application and mechanisms remains unclear. We recently reported the in vitro differential healing response of a novel electrical waveform called degenerate sine wave (DW) compared to other forms of ES. This study further explores this original observation on osteoblast cells. Here, we electrically stimulated SaOS-2 osteoblast-like cells with DW in an in vitro ES chamber (referred to as ‘DW stimulation’) and compared the intracellular effects to capacitive coupling (CC) stimulation. ES lasted for 4 h, followed by an incubation period of 20 h and subsequent ES for 4 additional hours. Cytotoxicity, proliferation, differentiation and mineralisation of the osteoblast-like cells were evaluated to determine the cell maturation process. DW significantly enhanced the differentiation of cells when compared to CC stimulation with increased alkaline phosphatase and collagen I gene expression by quantitative real time- polymerase chain reaction analysis (p<0.01). Moreover, DW significantly increased the mineralisation of cells compared to CC stimulation. Furthermore the transcription of osteocalcin, osteonectin, osteopontin and bone sialoprotein (p<0.05) was also up regulated by DW. However, ES did not augment the proliferation of cells. Translational analysis by immunocytochemistry and Western blotting showed increased collagen I, osteocalcin and osteonectin expression after DW than CC stimulation. In summary, we have demonstrated for the first time that DW stimulation in an in vitro ES chamber has a significant effect on maturation of osteoblast-like cells compared to CC stimulation of the same magnitude.
Collapse
Affiliation(s)
- Michelle Griffin
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Anil Sebastian
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | | | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
- Department of Plastic and Reconstructive Surgery, South Manchester University Hospital Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
- Institute of Inflammation and Repair, University of Manchester, Manchester Academic Health Science Centre, South Manchester University Hospital Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Fini M, Pagani S, Giavaresi G, De Mattei M, Ongaro A, Varani K, Vincenzi F, Massari L, Cadossi M. Functional Tissue Engineering in Articular Cartilage Repair: Is There a Role for Electromagnetic Biophysical Stimulation? TISSUE ENGINEERING PART B-REVIEWS 2013; 19:353-67. [DOI: 10.1089/ten.teb.2012.0501] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Milena Fini
- Laboratory of Preclinical and Surgical Studies, Technological Innovations, and Advanced Therapies, Rizzoli Orthopaedic Institute, Bologna, Italy
- Laboratory of Biocompatibility, Technological Innovations, and Advanced Therapies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Stefania Pagani
- Laboratory of Preclinical and Surgical Studies, Technological Innovations, and Advanced Therapies, Rizzoli Orthopaedic Institute, Bologna, Italy
- Laboratory of Biocompatibility, Technological Innovations, and Advanced Therapies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Gianluca Giavaresi
- Laboratory of Preclinical and Surgical Studies, Technological Innovations, and Advanced Therapies, Rizzoli Orthopaedic Institute, Bologna, Italy
- Laboratory of Biocompatibility, Technological Innovations, and Advanced Therapies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Monica De Mattei
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alessia Ongaro
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Katia Varani
- Department of Clinical and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Fabrizio Vincenzi
- Department of Clinical and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Leo Massari
- Department of Biomedical Sciences and Advanced Therapies, St. Anna Hospital, Ferrara, Italy
| | - Matteo Cadossi
- II Orthopaedics and Trauma Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
| |
Collapse
|
29
|
Sundelacruz S, Levin M, Kaplan DL. Depolarization alters phenotype, maintains plasticity of predifferentiated mesenchymal stem cells. Tissue Eng Part A 2013; 19:1889-908. [PMID: 23738690 DOI: 10.1089/ten.tea.2012.0425.rev] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although adult stem cell transplantation has been implemented as a therapy for tissue repair, it is limited by the availability of functional adult stem cells. A potential approach to generate stem and progenitor cells may be to modulate the differentiated status of somatic cells. Therefore, there is a need for a better understanding of how the differentiated phenotype of mature cells is regulated. We hypothesize that bioelectric signaling plays an important role in the maintenance of the differentiated state, as it is a functional regulator of the differentiation process in various cells and tissues. In this study, we asked whether the mature phenotype of osteoblasts and adipocytes derived from human mesenchymal stem cells (hMSCs) could be altered by modulation of their membrane potential. hMSC-derived osteoblasts and adipocytes were depolarized by treatment with ouabain, a Na(+)/K(+) ATPase inhibitor, or by treatment with high concentrations of extracellular K(+). To characterize the effect of voltage modulation on the differentiated state, the depolarized cells were evaluated for (1) the loss of differentiation markers; (2) the up-regulation of stemness markers and stem properties; and (3) differences in gene expression profiles in response to voltage modulation. hMSC-derived osteoblasts and adipocytes exhibited significant down-regulation of bone and fat tissue markers in response to depolarization, despite the presence of differentiation-inducing soluble factors, suggesting that bioelectric signaling overrides biochemical signaling in the maintenance of cell state. Suppression of the osteoblast or adipocyte phenotype was not accompanied by up-regulation of genes associated with the stem state. Thus, depolarization does not activate the stem cell genetic signature and, therefore, does not induce a full reprogramming event. However, after transdifferentiating the depolarized cells to evaluate for multi-lineage potential, depolarized osteoblasts demonstrated improved ability to achieve correct adipocyte morphology compared with nondepolarized osteoblasts. The present study thus demonstrates that depolarization reduces the differentiated phenotype of hMSC-derived cells and improves their transdifferentiation capacity, but does not restore a stem-like genetic profile. Through global transcript profiling of depolarized osteoblasts, we identified pathways that may mediate the effects of voltage signaling on cell state, which will require a detailed mechanistic inquiry in future studies.
Collapse
Affiliation(s)
- Sarah Sundelacruz
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | | | |
Collapse
|
30
|
Pulsed electromagnetic fields increased the anti-inflammatory effect of A₂A and A₃ adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. PLoS One 2013; 8:e65561. [PMID: 23741498 PMCID: PMC3669296 DOI: 10.1371/journal.pone.0065561] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/27/2013] [Indexed: 12/30/2022] Open
Abstract
Adenosine receptors (ARs) have an important role in the regulation of inflammation and their activation is involved in the inhibition of pro-inflammatory cytokine release. The effects of pulsed electromagnetic fields (PEMFs) on inflammation have been reported and we have demonstrated that PEMFs increased A2A and A3AR density and functionality in different cell lines. Chondrocytes and osteoblasts are two key cell types in the skeletal system that play important role in cartilage and bone metabolism representing an interesting target to study the effect of PEMFs. The primary aim of the present study was to evaluate if PEMF exposure potentiated the anti-inflammatory effect of A2A and/or A3ARs in T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. Immunofluorescence, mRNA analysis and saturation binding assays revealed that PEMF exposure up-regulated A2A and A3AR expression. A2A and A3ARs were able to modulate cAMP production and cell proliferation. The activation of A2A and A3ARs resulted in the decrease of some of the most relevant pro-inflammatory cytokine release such as interleukin (IL)-6 and IL-8, following the treatment with IL-1β as an inflammatory stimuli. In human chondrocyte and osteoblast cell lines, the inhibitory effect of A2A and A3AR stimulation on the release of prostaglandin E2 (PGE2), an important lipid inflammatory mediator, was observed. In addition, in T/C-28a2 cells, the activation of A2A or A3ARs elicited an inhibition of vascular endothelial growth factor (VEGF) secretion. In hFOB 1.19 osteoblasts, PEMF exposure determined an increase of osteoprotegerin (OPG) production. The effect of the A2A or A3AR agonists in the examined cells was enhanced in the presence of PEMFs and completely blocked by using well-known selective antagonists. These results demonstrated that PEMF exposure significantly increase the anti-inflammatory effect of A2A or A3ARs suggesting their potential therapeutic use in the therapy of inflammatory bone and joint disorders.
Collapse
|
31
|
Low Frequency Pulsed Electromagnetic Field Affects Proliferation, Tissue-Specific Gene Expression, and Cytokines Release of Human Tendon Cells. Cell Biochem Biophys 2013; 66:697-708. [DOI: 10.1007/s12013-013-9514-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Barnaba S, Papalia R, Ruzzini L, Sgambato A, Maffulli N, Denaro V. Effect of Pulsed Electromagnetic Fields on Human Osteoblast Cultures. PHYSIOTHERAPY RESEARCH INTERNATIONAL 2012; 18:109-14. [DOI: 10.1002/pri.1536] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 04/29/2012] [Accepted: 08/23/2012] [Indexed: 11/05/2022]
Affiliation(s)
- Simona Barnaba
- Department of Orthopaedic and Trauma Surgery; Campus Biomedico University of Rome; Via Alvaro del Portillo 200 Rome Italy
| | - Rocco Papalia
- Department of Orthopaedic and Trauma Surgery; Campus Biomedico University of Rome; Via Alvaro del Portillo 200 Rome Italy
| | - Laura Ruzzini
- Department of Orthopaedic and Trauma Surgery; Campus Biomedico University of Rome; Via Alvaro del Portillo 200 Rome Italy
| | - Alessandro Sgambato
- Giovanni XXIII Cancer Research Center-Institute of General Pathology; Catholic University, School of Medicine; Largo Agostino Gemelli, 8 Rome Italy
| | - Nicola Maffulli
- The Centre for Sports and Exercise Medicine Barts and The London School of Medicine and Dentistry; Mile End Hospital; London UK
| | - Vincenzo Denaro
- Department of Orthopaedic and Trauma Surgery; Campus Biomedico University of Rome; Via Alvaro del Portillo 200 Rome Italy
| |
Collapse
|
33
|
A Novel Approach for In Vitro Studies Applying Electrical Fields to Cell Cultures by Transformer-Like Coupling. Cell Biochem Biophys 2012; 64:223-32. [DOI: 10.1007/s12013-012-9388-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Chalidis B, Sachinis N, Assiotis A, Maccauro G. Stimulation of bone formation and fracture healing with pulsed electromagnetic fields: biologic responses and clinical implications. Int J Immunopathol Pharmacol 2011; 24:17-20. [PMID: 21669132 DOI: 10.1177/03946320110241s204] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pulsed electromagnetic fields (PEMF) have been used for several years to supplement bone healing. However, the mode of action of this non-invasive method is still debated and quantification of its effect on fracture healing is widely varied. At cellular and molecular level, PEMF has been advocated to promote the synthesis of extracellular matrix proteins and exert a direct effect on the production of proteins that regulate gene transcription. Electromagnetic fields may also affect several membrane receptors and stimulate osteoblasts to secrete several growth factors such as bone morphogenic proteins 2 and 4 and TGF-beta. They could also accelerate intramedullary angiogenesis and improve the load to failure and stiffness of the bone. Although healing rates have been reported in up to 87 % of delayed unions and non-unions, the efficacy of the method is significantly varied while patient or fracture related variables could not be clearly associated with a successful outcome.
Collapse
Affiliation(s)
- B Chalidis
- Interbalkan Medical Center, Orthopaedic Department, Thessaloniki, Greece
| | | | | | | |
Collapse
|
35
|
Zhou J, Ming LG, Ge BF, Wang JQ, Zhu RQ, Wei Z, Ma HP, Xian CJ, Chen KM. Effects of 50 Hz sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts. Bone 2011; 49:753-61. [PMID: 21726678 DOI: 10.1016/j.bone.2011.06.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/17/2011] [Accepted: 06/18/2011] [Indexed: 11/25/2022]
Abstract
Electromagnetic fields (EMFs) have been used clinically to slow down osteoporosis and promote fracture healing for many years. However, the underlying action mechanisms and optimal parameters of the EMF applications are unclear. In this study, we investigated the effects of treatment for different durations with 50 Hz sinusoidal electromagnetic fields (SEMFs) at different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts. Osteoblasts isolated from neonatal rats were treated with SEMFs (50 Hz at 0.9 mT-4.8 mT, 0.3 mT interval, 30 min/day up to 15 days). Compared to untreated control, SEMFs inhibited osteoblast proliferation (after 3 days' treatment) but increased alkaline phosphatase (ALP) activity (after treatment for 9 days) from 0.9 mT to 1.8 mT, declined from 1.8 mT until 3.0 mT, and then increased again from 3.0 mT to 3.6 mT and decreased once again from 3.6 mT to 4.8 mT. Numbers of colonies stained positive for ALP after 8 days and mineralized nodules stained by Alizarin red after 10 days showed the same bimodal tendency as with the ALP activity, with two peaks at 1.8 mT and 3.6 mT. SEMFs also bimodally increased Runx-2, Col1α2 and Bmp-2 mRNA expression levels in osteoblasts at 12, 24 and 96 h after exposure. The results indicated that while exposure to 50 Hz SEMFs inhibits the osteoblast proliferation, it significantly promotes differentiation and mineralization potentials of osteoblasts in an intensity-dependent manner with peak activity at 1.8 mT and 3.6 mT.
Collapse
Affiliation(s)
- Jian Zhou
- Institute of Orthopaedics, Lanzhou General Hospital, [corrected] Lanzhou Command of CPLA, Lanzhou 730050, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ongaro A, Pellati A, Masieri FF, Caruso A, Setti S, Cadossi R, Biscione R, Massari L, Fini M, De Mattei M. Chondroprotective effects of pulsed electromagnetic fields on human cartilage explants. Bioelectromagnetics 2011; 32:543-51. [PMID: 21412809 DOI: 10.1002/bem.20663] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 02/14/2011] [Indexed: 11/11/2022]
Abstract
This study investigated the effects of pulsed electromagnetic fields (PEMFs) on proteoglycan (PG) metabolism of human articular cartilage explants from patients with osteoarthritis (OA). Human cartilage explants, recovered from lateral and medial femoral condyles, were classified according to the International Cartilage Repair Society (ICRS) and graded based on Outerbridge scores. Explants cultured in the absence and presence of IL-1β were treated with PEMF (1.5 mT, 75 Hz) or IGF-I alone or in combination for 1 and 7 days. PG synthesis and release were determined. Results showed that explants derived from lateral and medial condyles scored OA grades I and III, respectively. In OA grade I explants, after 7 days exposure, PEMF and IGF-I significantly increased (35) S-sulfate incorporation 49% and 53%, respectively, compared to control, and counteracted the inhibitory effect of IL 1β (0.01 ng/ml). The combined exposure to PEMF and IGF-I was additive in all conditions. Similar results were obtained in OA grade III cartilage explants. In conclusion, PEMF and IGF-I augment cartilage explant anabolic activities, increase PG synthesis, and counteract the catabolic activity of IL-1β in OA grades I and III. We hypothesize that both IGF-I and PEMF have chondroprotective effects on human articular cartilage, particularly in early stages of OA.
Collapse
Affiliation(s)
- Alessia Ongaro
- Department of Morphology and Embryology, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|