1
|
Asadikorayem M, Brunel LG, Weber P, Heilshorn SC, Zenobi-Wong M. Porosity dominates over microgel stiffness for promoting chondrogenesis in zwitterionic granular hydrogels. Biomater Sci 2024; 12:5504-5520. [PMID: 39347711 PMCID: PMC11441418 DOI: 10.1039/d4bm00233d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024]
Abstract
Granular hydrogels comprised of jammed, crosslinked microgels offer great potential as biomaterial scaffolds for cell-based therapies, including for cartilage tissue regeneration. As stiffness and porosity of hydrogels affect the phenotype of encapsulated cells and the extent of tissue regeneration, the design of tunable granular hydrogels to control and optimize these parameters is highly desirable. We hypothesized that chondrogenesis could be modulated using a granular hydrogel platform based on biocompatible, zwitterionic materials with independent intra- and inter-microgel crosslinking mechanisms. Microgels are made with mechanical fragmentation of photocrosslinked zwitterionic carboxybetaine acrylamide (CBAA) and sulfobetaine methacrylate (SBMA) hydrogels, and secondarily crosslinked in the presence of cells using horseradish peroxide (HRP) to produce cell-laden granular hydrogels. We varied the intra-microgel crosslinking density to produce microgels with varied stiffnesses (1-3 kPa) and swelling properties. These microgels, when resuspended at the same weight fraction and secondarily crosslinked, resulted in granular hydrogels with distinct porosities (5-40%) due to differing swelling properties. The greatest extent of chondrogenesis was achieved in scaffolds with the highest microgel stiffness and highest porosity. However, when scaffold porosity was kept constant and just microgel stiffness varied, cell phenotype and chondrogenesis were similar across scaffolds. These results indicate the dominant role of granular scaffold porosity on chondrogenesis, whereas microgel stiffness appears to play a relatively minor role. These observations are in contrast to cells encapsulated within conventional bulk hydrogels, where stiffness has been shown to significantly affect chondrocyte response. In summary, we introduce chemically-defined, zwitterionic biomaterials to fabricate versatile granular hydrogels allowing for tunable scaffold porosity and microgel stiffness to study and influence chondrogenesis.
Collapse
Affiliation(s)
- Maryam Asadikorayem
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
| | - Lucia G Brunel
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Patrick Weber
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Marcy Zenobi-Wong
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
2
|
Kemler BR, Johnson EE, Evert BM, Dees AN, Giakas AM, Hanna AJ, D’Amore T, Freedman KB, Hammoud S. Analysis of Patients Who Undergo Index Arthroscopy With Biopsy but Not Implantation for Staged Chondrocyte Cell Transplantation. Orthop J Sports Med 2024; 12:23259671241271705. [PMID: 39328884 PMCID: PMC11425744 DOI: 10.1177/23259671241271705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 09/28/2024] Open
Abstract
Background Autologous chondrocyte implantation (ACI) and matrix-induced autologous chondrocyte implantation (MACI) are 2-stage procedures requiring an index full-thickness cartilage biopsy. Only a portion of patients ultimately undergo second-stage ACI/MACI. Purpose To identify patients with articular cartilage defects who underwent arthroscopic debridement with biopsy for ACI/MACI and compare those who did with those who did not proceed with implantation within 2 years after biopsy. Additionally, the authors sought to identify why patients did not proceed with implantation. Study Design Case-control study; Level of evidence, 3. Methods Patients who underwent arthroscopy and autologous chondrocyte biopsy from January 1, 2015, to December 31, 2019, and who had minimum 2-year follow-up data were grouped into those who proceeded with second-stage ACI/MACI (implant group; n = 97) and those who did not (biopsy group; n = 63). Demographic factors, cartilage defect characteristics, and preoperative International Knee Documentation Committee (IKDC) scores were analyzed. Patients in both groups were evaluated postoperatively using the IKDC, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Single Assessment Numeric Evaluation (SANE), and visual analog scale (VAS) for pain, and patients who did not undergo implantation were asked for their reasoning. Results Body mass index (BMI) (P < .001) and Outerbridge grades at index arthroscopy (P = .047) were significantly higher for the implant group than the biopsy group. Both groups had significantly improved IKDC scores from their initial presentation to final follow-up (implant group: 46.4 ± 16.2 preoperative vs 69.6 ± 20.6 postoperative [P < .001]; biopsy group: 47.2 ± 15.9 preoperative vs 70.7 ± 19.1 postoperative [P < .001]); however, the level of improvement did not differ significantly between groups. Postoperative WOMAC, SANE, and VAS pain scores were also similar between groups. In the biopsy group, 23 patients (37%) cited symptom resolution or activity level improvement after initial arthroscopy as the reason for not proceeding with implantation. Conclusion Patients who proceeded to the second stage of chondrocyte implantation via either ACI or MACI had higher-grade articular defects and higher BMI compared with those who underwent biopsy with concomitant debridement chondroplasty alone. Postoperative outcomes were similar between the groups.
Collapse
Affiliation(s)
- Bryson R. Kemler
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute at Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Emma E. Johnson
- Sidney Kimmel Medical College at Thomas Jefferson University; Philadelphia, Pennsylvania, USA
| | - Brad M. Evert
- Sidney Kimmel Medical College at Thomas Jefferson University; Philadelphia, Pennsylvania, USA
| | - Azra N. Dees
- Sidney Kimmel Medical College at Thomas Jefferson University; Philadelphia, Pennsylvania, USA
| | - Alec M. Giakas
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute at Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Adeeb Jacob Hanna
- Sidney Kimmel Medical College at Thomas Jefferson University; Philadelphia, Pennsylvania, USA
| | - Taylor D’Amore
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute at Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Kevin B. Freedman
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute at Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Sommer Hammoud
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute at Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
van der Weiden G, Mastbergen S, Both S, Karperien M, Lafeber F, van Egmond N, Custers R. Dextran-tryamine hydrogel maintains position and integrity under simulated loading in a human cadaver knee model. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100492. [PMID: 38946794 PMCID: PMC11211881 DOI: 10.1016/j.ocarto.2024.100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Objective This dextran-tyramine hydrogel is a novel cartilage repair technique, filling focal cartilage defects to provide a cell-free scaffold for subsequent cartilage repair. We aim to asses this techniques' operative feasibility in the knee joint and its ability to maintain position and integrity under expected loading conditions. Method Seven fresh-frozen human cadaver legs (age range 55-88) were used to create 30 cartilage defects on the medial and lateral femoral condyles dependent of cartilage quality, starting with 1.0 cm2; augmenting to 1.5 cm2 and eventually 2.0 cm2. The defects were operatively filled with the injectable hydrogel scaffold. The knees were subsequently placed on a continues passive motion machine for 30 min of non-load bearing movement, mimicking post-operative rehabilitation. High resolution digital photographs documented the hydrogel scaffold after placement and directly after movement. Three independent observers blinded for the moment compared the photographs on outline attachment, area coverage and hydrogel integrity. Results The operative procedure was uncomplicated in all defects, application of the hydrogel was straightforward and comparable to common cartilage repair techniques. No macroscopic iatrogenic damage was observed. The hydrogel scaffold remained predominately unchanged after non-load bearing movement. Outline attachment, area coverage and hydrogel integrity were unaffected in 87%, 93% and 83% of defects respectively. Larger defects appear to be more affected than smaller defects, although not statistically significant (p > 0.05). Conclusion The results of this study show operative feasibility of this cell-free hydrogel scaffold for chondral defects of the knee joint. Sustained outline attachment, area coverage and hydrogel integrity were observed after non-load bearing knee movement.
Collapse
Affiliation(s)
- G.S. van der Weiden
- Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Developmental BioEngineering, University of Twente, Enschede, the Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - S.C. Mastbergen
- Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - S.K. Both
- Developmental BioEngineering, University of Twente, Enschede, the Netherlands
| | - M. Karperien
- Developmental BioEngineering, University of Twente, Enschede, the Netherlands
| | - F.P. Lafeber
- Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - N. van Egmond
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - R.J.H. Custers
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
4
|
Kolevar MP, Koshar A, Hirsch J, Choe RH, Wu J, Rocca MS, McLoughlin S, Venable-Croft A, Fisher JP, Packer JD. Development of a patient specific cartilage graft using magnetic resonance imaging and 3D printing. J ISAKOS 2024; 9:519-525. [PMID: 38556170 DOI: 10.1016/j.jisako.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/25/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVES The goal of this project was to develop and validate a patient-specific, anatomically correct graft for cartilage restoration using magnetic resonance imaging (MRI) data and 3-dimensional (3D) printing technology. The specific aim was to test the accuracy of a novel method for 3D printing and implanting individualized, anatomically shaped bio-scaffolds to treat cartilage defects in a human cadaveric model. We hypothesized that an individualized, anatomic 3D-printed scaffold designed from MRI data would provide a more optimal fill for a large cartilage defect compared to a generic flat scaffold. METHODS Four focal cartilage defects (FCDs) were created in paired human cadaver knees, age <40 years, in the weight-bearing surfaces of the medial femoral condyle (MFC), lateral femoral condyle (LFC), patella, and trochlea of each knee. MRIs were obtained, anatomic grafts were designed and 3D printed for the left knee as an experimental group, and generic flat grafts for the right knee as a control group. Grafts were implanted into corresponding defects and fixed using tissue adhesive. Repeat post-implant MRIs were obtained. Graft step-off was measured as the distance in mm between the surface of the graft and the native cartilage surface in a direction perpendicular to the subchondral bone. Graft contour was measured as the gap between the undersurface of the graft and the subchondral bone in a direction perpendicular to the joint surface. RESULTS Graft step-off was statistically significantly better for the anatomic grafts compared to the generic grafts in the MFC (0.0 ± 0.2 mm vs. 0.7 ± 0.5 mm, p < 0.001), LFC (0.1 ± 0.3 mm vs. 1.0 ± 0.2 mm, p < 0.001), patella (-0.2 ± 0.3 mm vs. -1.2 ± 0.4 mm, p < 0.001), and trochlea (-0.4 ± 0.3 vs. 0.4 ± 0.7, p = 0.003). Graft contour was statistically significantly better for the anatomic grafts in the LFC (0.0 ± 0.0 mm vs. 0.2 ± 0.4 mm, p = 0.022) and trochlea (0.0 ± 0.0 mm vs. 1.4 ± 0.7 mm, p < 0.001). The anatomic grafts had an observed maximum step-off of -0.9 mm and a maximum contour mismatch of 0.8 mm. CONCLUSION This study validates a process designed to fabricate anatomically accurate cartilage grafts using MRI and 3D printing technology. Anatomic grafts demonstrated superior fit compared to generic flat grafts. LEVEL OF EVIDENCE Level IV.
Collapse
Affiliation(s)
- Matthew P Kolevar
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Antoan Koshar
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jeffrey Hirsch
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Robert H Choe
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Jocelyn Wu
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Michael S Rocca
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shannon McLoughlin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | | | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Jonathan D Packer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
5
|
Jabari E, Choe RH, Kuzemchak B, Venable-Croft A, Choi JY, McLoughlin S, Packer JD, Fisher JP. Strategies for the Codelivery of Osteoclasts and Mesenchymal Stem Cells in 3D-Printable Osteochondral Scaffolds. Tissue Eng Part C Methods 2024; 30:323-334. [PMID: 39078319 DOI: 10.1089/ten.tec.2024.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Osteochondral defects, characterized by structural compromises to articular cartilage and subchondral bone, can cause pain and lead to progressive cartilage damage and eventual osteoarthritis. Unfortunately, repairing these defects remains difficult because of the poor regenerative properties of cartilage and complex mechanical demands of the joint. As such, the field of tissue engineering aims to develop multiphasic implants that replace pathological cartilage and bone tissue and restore mechanical functionality to the joint. Recent bone physiology investigations have demonstrated that osteoclast (OC) lineage cells are inextricably involved in osteoblastic bone formation through an extensive network of anabolic signaling pathways, and so the codelivery OC and osteoblast (OB) lineage cells within scaffolds is being actively explored for bone tissue engineering purposes. However, it remains unclear how these cells can be incorporated into the design of multiphasic osteochondral scaffolds to potentially enhance subchondral bone formation and subsequent implant osseointegration. To explore this question, we examined direct surface seeding and hydrogel encapsulation as potential scaffold cellularization strategies. First, we examined how OC precursor cells and peripheral blood monocytes (PBMCs) influence early-stage bone matrix development and osteogenesis in 2D coculture. Then, we evaluated the osteogenic potential of mesenchymal stem cells (MSCs) and PBMCs cocultures encapsulated within a gelatin methacrylate (GelMA) hydrogel system. Our findings demonstrate that coculturing PBMCs with MSCs in 2D cultures significantly enhanced cell proliferation, early bone matrix deposition, and the formation of cell clusters by Day 28. However, we observed no significant difference in type I collagen deposition between GelMA hydrogel scaffolds cultured in basal and OC conditions during the same period. In addition, we found that the GelMA hydrogel system with MSC/PBMC cocultures in OC conditions exhibited decreased osteogenic activity by Day 28. Collectively, our findings support the osteogenic potential of OC-lineage cells in 2D culture conditions, and the potential benefits of surface-seeding for the codelivery of OC-lineage cells and MSCs in osteo-scaffolds for enhanced osteochondral regeneration and broader bone tissue engineering purposes.
Collapse
Affiliation(s)
- Erfan Jabari
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Robert H Choe
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Blake Kuzemchak
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Alejandro Venable-Croft
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Ji Young Choi
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Shannon McLoughlin
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Jonathan D Packer
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
6
|
Li CJ, Park JH, Jin GS, Mandakhbayar N, Yeo D, Lee JH, Lee JH, Kim HS, Kim HW. Strontium/Silicon/Calcium-Releasing Hierarchically Structured 3D-Printed Scaffolds Accelerate Osteochondral Defect Repair. Adv Healthc Mater 2024; 13:e2400154. [PMID: 38647029 DOI: 10.1002/adhm.202400154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/24/2024] [Indexed: 04/25/2024]
Abstract
Articular cartilage defects are a global challenge, causing substantial disability. Repairing large defects is problematic, often exceeding cartilage's self-healing capacity and damaging bone structures. To tackle this problem, a scaffold-mediated therapeutic ion delivery system is developed. These scaffolds are constructed from poly(ε-caprolactone) and strontium (Sr)-doped bioactive nanoglasses (SrBGn), creating a unique hierarchical structure featuring macropores from 3D printing, micropores, and nanotopologies due to SrBGn integration. The SrBGn-embedded scaffolds (SrBGn-µCh) release Sr, silicon (Si), and calcium (Ca) ions, which improve chondrocyte activation, adhesion, proliferation, and maturation-related gene expression. This multiple ion delivery significantly affects metabolic activity and maturation of chondrocytes. Importantly, Sr ions may play a role in chondrocyte regulation through the Notch signaling pathway. Notably, the scaffold's structure and topological cues expedite the recruitment, adhesion, spreading, and proliferation of chondrocytes and bone marrow-derived mesenchymal stem cells. Si and Ca ions accelerate osteogenic differentiation and blood vessel formation, while Sr ions enhance the polarization of M2 macrophages. The findings show that SrBGn-µCh scaffolds accelerate osteochondral defect repair by delivering multiple ions and providing structural/topological cues, ultimately supporting host cell functions and defect healing. This scaffold holds great promise for osteochondral repair applications.
Collapse
Affiliation(s)
- Cheng Ji Li
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Gang Shi Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Donghyeon Yeo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
7
|
Soubih HO, Al-Saed AM, Ghazaly SAE, Sobhy MH, Kamel ME, Ebied WF, Haroun HK. Fresh osteochondral allograft transplantation for knee full-thickness articular cartilage lesions using femoral head of living donors: short-term results. Arch Orthop Trauma Surg 2024; 144:3479-3489. [PMID: 39008075 PMCID: PMC11417053 DOI: 10.1007/s00402-024-05413-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Fresh osteochondral allograft transplantation is a good treatment option of cartilage defects. However, this treatment option is not available in all countries due to limited graft availability and tissue banks limitations. The purpose of this study is to assess the short term functional and imaging outcomes of fresh osteochondral allograft transplantation in the knee using the femoral head of living donors. HYPOTHESIS Fresh osteochondral allografts from the femoral heads of living donors is a valid graft source for management of distal Femur cartilage defects. This technique can improve functional knee scores with good radiological outcomes. STUDY DESIGN Prospective case series. METHODS Fifteen patients with full thickness cartilage defects of the distal femur underwent osteochondral allograft transplantation from the femoral heads of living donors. Grafts were transplanted by both shell and multiple dowels techniques. The average follow up duration was 18.3 months (range, 12-25 months). Patients were evaluated by Lysholm and International Knee Documentation Committee (IKDC) scores, radiography and MR imaging using Osteochondral Allograft MRI Scoring System (OCAMRISS). RESULTS There was a statistically significant improvement (P < 0.001) in both Lysholm and IKDC average scores at 6 months and 12 months postoperative. Postoperative MRI was done at an average 6.8 months (range, 5-11 months) postoperative. The mean total OCAMRISS score was 3.4 (range, 1-7). A second look arthroscopy was done in four patients and showed intact articular cartilage in all three patients. CONCLUSION Femoral head of living donors is a valid new source for fresh osteochondral allograft transplantation of knee osteochondral lesions. Short term results showed improvement in clinical assessment scores. Follow up imaging showed graft incorporation and good MRI scores.
Collapse
Affiliation(s)
- Hesham Ossama Soubih
- Orthopedic Department, Faculty of Medicine, Ain Shams University, Cairo Governorate, Egypt.
| | - Ahmed M Al-Saed
- Orthopedic Department, Faculty of Medicine, Ain Shams University, Cairo Governorate, Egypt
| | - Sherif A El Ghazaly
- Orthopedic Department, Faculty of Medicine, Ain Shams University, Cairo Governorate, Egypt
| | - Mohamed H Sobhy
- Orthopedic Department, Faculty of Medicine, Ain Shams University, Cairo Governorate, Egypt
| | - Muhammad Elsayed Kamel
- Orthopedic Department, Faculty of Medicine, Ain Shams University, Cairo Governorate, Egypt
| | - Wessam Fakhry Ebied
- Orthopedic Department, Faculty of Medicine, Ain Shams University, Cairo Governorate, Egypt
| | - Haitham K Haroun
- Orthopedic Department, Faculty of Medicine, Ain Shams University, Cairo Governorate, Egypt
| |
Collapse
|
8
|
Muthu S, Viswanathan VK, Chellamuthu G, Thabrez M. Clinical effectiveness of various treatments for cartilage defects compared with microfracture: a network meta-analysis of randomized controlled trials. JOURNAL OF CARTILAGE & JOINT PRESERVATION 2024; 4:100163. [DOI: 10.1016/j.jcjp.2023.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
|
9
|
Bianchini E, Ashley Sin YJ, Lee YJ, Lin C, Anil U, Hamill C, Cowman MK, Kirsch T. The Role of Hyaluronan/Receptor for Hyaluronan-Mediated Motility Interactions in the Modulation of Macrophage Polarization and Cartilage Repair. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1047-1061. [PMID: 38403161 PMCID: PMC11156159 DOI: 10.1016/j.ajpath.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Hyaluronan (HA), a negatively charged linear glycosaminoglycan, is a key macromolecular component of the articular cartilage extracellular matrix. The differential effects of HA are determined by a spatially/temporally regulated display of HA receptors, such as CD44 and receptor for hyaluronan-mediated motility (RHAMM). HA signaling through CD44 with RHAMM has been shown to stimulate inflammation and fibrotic processes. This study shows an increased expression of RHAMM in proinflammatory macrophages. Interfering with HA/RHAMM interactions using a 15-mer RHAMM-mimetic, HA-binding peptide, together with high-molecular-weight (HMW) HA reduced the expression and release of inflammatory markers and increased the expression of anti-inflammatory markers in proinflammatory macrophages. HA/RHAMM interactions were interfered in vivo during the regeneration of a full-thickness cartilage defect after microfracture surgery in rabbits using three intra-articular injections of 15-mer RHAMM-mimetic. HA-binding peptide together with HMWHA reduced the number of proinflammatory macrophages and increased the number of anti-inflammatory macrophages in the injured knee joint and greatly improved the repair of the cartilage defect compared with intra-articular injections of HMWHA alone. These findings suggest that HA/RHAMM interactions play a key role in cartilage repair/regeneration via stimulating inflammatory and fibrotic events, including increasing the ratio of proinflammatory/anti-inflammatory macrophages. Interfering with these interactions reduced inflammation and greatly improved cartilage repair.
Collapse
Affiliation(s)
- Emilia Bianchini
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, New York
| | - Yun Jin Ashley Sin
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, New York
| | - You Jin Lee
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Charles Lin
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Utkarsh Anil
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Cassie Hamill
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Mary K Cowman
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, New York; Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Thorsten Kirsch
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, New York; Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York.
| |
Collapse
|
10
|
Thacher RR, Pascual-Leone N, Rodeo SA. Treatment of Knee Chondral Defects in Athletes. Sports Med Arthrosc Rev 2024; 32:75-86. [PMID: 38978201 DOI: 10.1097/jsa.0000000000000405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cartilage lesions of the knee are a challenging problem, especially for active individuals and athletes who desire a return to high-load activities. They occur both through chronic repetitive loading of the knee joint or through acute traumatic injury and represent a major cause of pain and time lost from sport. They can arise as isolated lesions or in association with concomitant knee pathology. Management of these defects ultimately requires a sound understanding of their pathophysiologic underpinnings to help guide treatment. Team physicians should maintain a high index of suspicion for underlying cartilage lesions in any patient presenting with a knee effusion, whether painful or not. A thorough workup should include a complete history and physical examination. MRI is the most sensitive and specific imaging modality to assess these lesions and can provide intricate detail not only of the structure and composition of cartilage, but also of the surrounding physiological environment in the joint. Treatment of these lesions consists of both conservative or supportive measures, as well as surgical interventions designed to restore or regenerate healthy cartilage. Because of the poor inherent capacity for healing associated with hyaline cartilage, the vast majority of symptomatic lesions will ultimately require surgery. Surgical treatment options range from simple arthroscopic debridement to large osteochondral reconstructions. Operative decision-making is based on numerous patient- and defect-related factors and requires open lines of communication between the athlete, the surgeon, and the rest of the treatment team. Ultimately, a positive outcome is based on the creation of a durable, resistant repair that allows the athlete to return to pain-free sporting activities.
Collapse
Affiliation(s)
- Ryan R Thacher
- Department of Orthopaedic Surgery, Sports Medicine Institute, Hospital for Special Surgery, New York, NY
| | | | | |
Collapse
|
11
|
Zhang F, Clair AJ, Dankert JF, Lee YJ, Campbell KA, Kirsch T. Cytokine Receptor-like Factor 1 (CRLF1) and Its Role in Osteochondral Repair. Cells 2024; 13:757. [PMID: 38727293 PMCID: PMC11083199 DOI: 10.3390/cells13090757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Since cytokine receptor-like factor 1 (CRLF1) has been implicated in tissue regeneration, we hypothesized that CRLF1 released by mesenchymal stem cells can promote the repair of osteochondral defects. METHODS The degree of a femoral osteochondral defect repair in rabbits after intra-articular injections of bone marrow-derived mesenchymal stem cells (BMSCs) that were transduced with empty adeno-associated virus (AAV) or AAV containing CRLF1 was determined by morphological, histological, and micro computer tomography (CT) analyses. The effects of CRLF1 on chondrogenic differentiation of BMSCs or catabolic events of interleukin-1beta-treated chondrocyte cell line TC28a2 were determined by alcian blue staining, gene expression levels of cartilage and catabolic marker genes using real-time PCR analysis, and immunoblot analysis of Smad2/3 and STAT3 signaling. RESULTS Intra-articular injections of BMSCs overexpressing CRLF1 markedly improved repair of a rabbit femoral osteochondral defect. Overexpression of CRLF1 in BMSCs resulted in the release of a homodimeric CRLF1 complex that stimulated chondrogenic differentiation of BMSCs via enhancing Smad2/3 signaling, whereas the suppression of CRLF1 expression inhibited chondrogenic differentiation. In addition, CRLF1 inhibited catabolic events in TC28a2 cells cultured in an inflammatory environment, while a heterodimeric complex of CRLF1 and cardiotrophin-like Cytokine (CLC) stimulated catabolic events via STAT3 activation. CONCLUSION A homodimeric CRLF1 complex released by BMSCs enhanced the repair of osteochondral defects via the inhibition of catabolic events in chondrocytes and the stimulation of chondrogenic differentiation of precursor cells.
Collapse
Affiliation(s)
- Fenglin Zhang
- Department of Urology, New York University Grossman School of Medicine, New York, NY 10010, USA;
| | | | - John F. Dankert
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10010, USA; (J.F.D.); (Y.J.L.); (K.A.C.)
| | - You Jin Lee
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10010, USA; (J.F.D.); (Y.J.L.); (K.A.C.)
| | - Kirk A. Campbell
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10010, USA; (J.F.D.); (Y.J.L.); (K.A.C.)
| | - Thorsten Kirsch
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10010, USA; (J.F.D.); (Y.J.L.); (K.A.C.)
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, NY 10010, USA
| |
Collapse
|
12
|
Muthu S, Viswanathan VK, Sakthivel M, Thabrez M. Does progress in microfracture techniques necessarily translate into clinical effectiveness? World J Orthop 2024; 15:266-284. [PMID: 38596189 PMCID: PMC10999967 DOI: 10.5312/wjo.v15.i3.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 03/15/2024] Open
Abstract
BACKGROUND Multitudinous advancements have been made to the traditional microfracture (MFx) technique, which have involved delivery of various acellular 2nd generation MFx and cellular MFx-III components to the area of cartilage defect. The relative benefits and pitfalls of these diverse modifications of MFx technique are still not widely understood. AIM To comparatively analyze the functional, radiological, and histological outcomes, and complications of various generations of MFx available for the treatment of cartilage defects. METHODS A systematic review was performed using PubMed, EMBASE, Web of Science, Cochrane, and Scopus. Patients of any age and sex with cartilage defects undergoing any form of MFx were considered for analysis. We included only randomized controlled trials (RCTs) reporting functional, radiological, histological outcomes or complications of various generations of MFx for the management of cartilage defects. Network meta-analysis (NMA) was conducted in Stata and Cochrane's Confidence in NMA approach was utilized for appraisal of evidence. RESULTS Forty-four RCTs were included in the analysis with patients of mean age of 39.40 (± 9.46) years. Upon comparing the results of the other generations with MFX-I as a constant comparator, we noted a trend towards better pain control and functional outcome (KOOS, IKDC, and Cincinnati scores) at the end of 1-, 2-, and 5-year time points with MFx-III, although the differences were not statistically significant (P > 0.05). We also noted statistically significant Magnetic resonance observation of cartilage repair tissue score in the higher generations of microfracture (weighted mean difference: 17.44, 95% confidence interval: 0.72, 34.16, P = 0.025; without significant heterogeneity) at 1 year. However, the difference was not maintained at 2 years. There was a trend towards better defect filling on MRI with the second and third generation MFx, although the difference was not statistically significant (P > 0.05). CONCLUSION The higher generations of traditional MFx technique utilizing acellular and cellular components to augment its potential in the management of cartilage defects has shown only marginal improvement in the clinical and radiological outcomes.
Collapse
Affiliation(s)
- Sathish Muthu
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
- Department of Orthopaedics, Government Medical College, Karur 639004, Tamil Nadu, India
| | | | - Manoharan Sakthivel
- Department of Orthopaedics, Government Medical College, Karur 639004, Tamil Nadu, India
| | - Mohammed Thabrez
- Department of Medical Oncology, Aster Medcity Hospital, Kochi 682034, India
| |
Collapse
|
13
|
Eremeev A, Pikina A, Ruchko Y, Bogomazova A. Clinical Potential of Cellular Material Sources in the Generation of iPSC-Based Products for the Regeneration of Articular Cartilage. Int J Mol Sci 2023; 24:14408. [PMID: 37833856 PMCID: PMC10572671 DOI: 10.3390/ijms241914408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 10/15/2023] Open
Abstract
Inflammatory joint diseases, among which osteoarthritis and rheumatoid arthritis are the most common, are characterized by progressive degeneration of the cartilage tissue, resulting in the threat of limited or lost joint functionality in the absence of treatment. Currently, treating these diseases is difficult, and a number of existing treatment and prevention measures are not entirely effective and are complicated by the patients' conditions, the multifactorial nature of the pathology, and an incomplete understanding of the etiology. Cellular technologies based on induced pluripotent stem cells (iPSCs) can provide a vast cellular resource for the production of artificial cartilage tissue for replacement therapy and allow the possibility of a personalized approach. However, the question remains whether a number of etiological abnormalities associated with joint disease are transmitted from the source cell to iPSCs and their chondrocyte derivatives. Some data state that there is no difference between the iPSCs and their derivatives from healthy and sick donors; however, there are other data indicating a dissimilarity. Therefore, this topic requires a thorough study of the differentiation potential of iPSCs and the factors influencing it, the risk factors associated with joint diseases, and a comparative analysis of the characteristics of cells obtained from patients. Together with cultivation optimization methods, these measures can increase the efficiency of obtaining cell technology products and make their wide practical application possible.
Collapse
Affiliation(s)
- Artem Eremeev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow 119435, Russia; (A.P.); (A.B.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia;
| | - Arina Pikina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow 119435, Russia; (A.P.); (A.B.)
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, GSP-1 Leninskie Gory, Moscow 119991, Russia
| | - Yevgeny Ruchko
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia;
| | - Alexandra Bogomazova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow 119435, Russia; (A.P.); (A.B.)
| |
Collapse
|
14
|
Chen Z, Sax OC, Bains SS, Delanois RE, Nace J. Cartilage Restoration Prior to Primary Total Knee Arthroplasty. Orthopedics 2023; 46:250-255. [PMID: 36719413 DOI: 10.3928/01477447-20230125-04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cartilage restoration procedures are effective for articular defects of the knee. However, studies suggest decreased clinical improvements after total knee arthroplasty (TKA). The purpose of this study was to compare patients who had a prior cartilage restoration undergoing TKA with patients who had TKA without a prior cartilage restoration procedure. We specifically assessed (1) 90-day and 1-year medical/surgical complications; (2) 90-day and 1-year revision rates; and (3) 90-day costs. A search using a national, all-payer database examined matched cohorts of patients who underwent cartilage restoration procedures prior to TKA (n=22,072) and controls who did not (n=220,364) between January 1, 2010, and April 30, 2020. Cartilage restoration procedures included autologous chondrocyte implantation, microfracture, osteochondral autograft transfer system operations, or open and arthroscopic osteochondral allograft transplantation. Outcomes studied included lengths of stay, 30-day readmission rates, 90-day costs, and medical and surgical complications to include 90-day and 1-year prosthetic joint infections, pathologic fractures, dislocations, knee manipulations, and revisions. Comparable rates of 90-day and 1-year medical and surgical complications were found for TKAs after cartilage restoration. Additionally, 90-day and 1-year revision surgery rates were similar. These patients were also found to have 90-day costs almost identical to those of patients who did not have cartilage restoration. This large analysis of patients with cartilage restoration procedures prior to TKA demonstrated that the complication rates may be similar to those of patients who do not have these operations before TKA. These findings provide valuable information to surgeons and patients when deciding to proceed with TKA after cartilage restoration. [Orthopedics. 2023;46(4):250-255.].
Collapse
|
15
|
Ozturk T, Erpala F, Bozduman O, Gedikbas M, Eren MB, Zengin EC. Arthroscopic Treatment of Femoral Condyle Chondral Lesions: Microfracture Versus Liquid Bioscaffold. Indian J Orthop 2023; 57:975-982. [PMID: 37214380 PMCID: PMC10192492 DOI: 10.1007/s43465-023-00878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 03/17/2023] [Indexed: 05/24/2023]
Abstract
Purpose This study aims to compare the microfracture (MF) technique with the bioscaffold solution application (BST-CarGel) in treating femoral chondral lesions. Methods Thirty-eight patients ages 18-45 with isolated single femoral condyle full-thickness (ICRS grade 3-4) chondral lesions were included in the study. Patients were divided into two groups as MF applied (Group I = 21) and bioscaffold combined with MF (Group II = 17). The visual analog scale (VAS), Western-Ontario, and McMaster Osteoarthritis Index (WOMAC) were used in clinical evaluation. The location, size, and depth of lesions were evaluated with preoperative magnetic resonance imaging (MRI). Magnetic resonance observation of cartilage repair tissue (MOCART) score was used for postoperative evaluation. Results The mean age was 32.5 (range 19-44) years. Mean follow-up was 14.9 months (range 12-24). Lesion size was 3 cm2 in group I and 2.9 cm2 in group II. There were no differences between groups regarding demographic characteristics but BMI (Body Mass Index) was lower in group II which was significant. The duration of surgery was longer in group II (p < 0.001). Postoperative statistical significant improvements were found in WOMAC and VAS scores in groups, but there was no statistical difference. Although there was no significant radiological difference in the group II according to the MOCART score, higher scores were obtained compared to group I. Conclusion No difference was found, clinical and radiological, in terms of short-term outcomes. MF is a method to be applied as a primary treatment with its cost-effective, simple and short surgery technique, and effective clinical results up to 4 cm2. Level of Evidence Level III: retrospective comparative study.
Collapse
Affiliation(s)
- Tahir Ozturk
- Tokat, Turkey Department of Orthopaedics and Traumatology, Gaziosmanpasa University School of Medicine
| | - Firat Erpala
- Department of Orthopaedics and Traumatology, Cesme Alpercizgenakat State Hospital, 35930 Cesme, Izmir Turkey
| | - Omer Bozduman
- Tokat, Turkey Department of Orthopaedics and Traumatology, Gaziosmanpasa University School of Medicine
| | - Mete Gedikbas
- Department of Orthopaedics and Traumatology, Turhal State Hospital, Tokat, Turkey
| | - Mehmet Burtac Eren
- Tokat, Turkey Department of Orthopaedics and Traumatology, Gaziosmanpasa University School of Medicine
| | - Eyup Cagatay Zengin
- Tokat, Turkey Department of Orthopaedics and Traumatology, Gaziosmanpasa University School of Medicine
| |
Collapse
|
16
|
Patel S, Marrone W. The Evolution of Rehabilitation and Return to Sport Following Cartilage Surgery. Int J Sports Phys Ther 2023; V18:551-557. [PMID: 37425101 PMCID: PMC10324289 DOI: 10.26603/001c.77508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
Rehabilitation after knee cartilage repair or restoration can be a challenging and nuanced process. Historically, conservative rehabilitation protocols have been characterized by limited weightbearing and restricted range of motion (ROM) were created to primarily protect the repaired cartilage but did little for progression into higher level activity. Recent literature has supported accelerated protocols in a variety of cartilage procedures ranging from osteochondral allograft (OCA) Osteochondral autograft surgery (OATS) to matrix-based scaffolding procedures such as Matrix Induced Chondrocyte Implantation (MACI) or Denovo procedures. Advances in technology such as blood flow restriction (BFR) and testing equipment with progressive rehabilitation from the acute phase through the return to sport continuum have made it possible to return to a higher level of activity and performance than first thought of for these procedures. This clinical viewpoint discusses the evolution of knee cartilage rehabilitation characterized by early but progressive weightbearing and early ROM while maintaining early homeostasis in the knee, and then its progression to return to sport and performance in the higher-level athlete. Level of evidence V.
Collapse
Affiliation(s)
- Snehal Patel
- Sports Rehabilitation Center Hospital for Special Surgery
| | | |
Collapse
|
17
|
Tao H, Zhao Y, Tao F, Xiang W, Cao H, Zhang Z. Effect of autogenous osteochondral mosaicplasty on the balance control of patients with cartilage defects of the knee: a pilot study. J Orthop Surg Res 2023; 18:336. [PMID: 37149624 PMCID: PMC10164316 DOI: 10.1186/s13018-023-03821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Autogenous osteochondral mosaicplasty (AOM) is a widely used optimal surgical technique for cartilage repair in young patients with focal articular cartilage defects. However, the alterations in balance control in these patients after AOM have not been sufficiently investigated. This study aimed to compare different balance control performances between the patients with knee cartilage defects and healthy controls before and after AOM, as well as evaluate the influence of AOM on balance control in these patients. METHODS Static posturographic tests were performed in twenty-four patients who were scheduled for AOM two weeks pre-, three months, and one year postoperatively, along with thirty matched controls, respectively. All participants underwent posturography under four standing conditions: eyes open and closed, without and with foam support to assess the balance control ability. Subsequently, patient-reported outcome measures (PROMs) were synchronously obtained and analyzed. RESULTS Compared to the control subjects, less efficient balance control was observed in study patients at three testing phases (p < 0.05), whereas no alterations in postural control were visible in these patients within a year following AOM (p > 0.05). Significant improvements were found in all PROMs such as the International Knee Documentation Committee, the Lysholm Knee Score, and the visual analogue scale in the study patients postoperatively (p < 0.01). CONCLUSION The results indicated that patients with knee cartilage defects have a prominent balance control deficit compared to healthy individuals. Furthermore, AOM does not improve balance control in these patients for at least one year postoperatively, and more effective approaches for postural regulation are required for the management of cartilage defect patients.
Collapse
Affiliation(s)
- Hai Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Yingchun Zhao
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Hui Cao
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Zheng Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
18
|
Seewoonarain S, Ganesh D, Perera E, Popat R, Jones J, Sugand K, Gupte C. Scaffold-associated procedures are superior to microfracture in managing focal cartilage defects in the knee: A systematic review & meta-analysis. Knee 2023; 42:320-338. [PMID: 37148615 DOI: 10.1016/j.knee.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/10/2023] [Accepted: 04/02/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Debate continues as to whether surgical treatment with chondral-regeneration devices is superior to microfracture for focal articular cartilage defects in the knee. PURPOSE To evaluate the superiority of scaffold-associated chondral-regeneration procedures over microfracture by assessing: (1) Patient-reported outcomes; (2) Intervention failure; (3) Histological quality of cartilage repair. STUDY DESIGN A three-concept keyword search strategy was designed, in accordance with PRISMA guidelines: (i) knee (ii) microfracture (iii) scaffold. Four databases (Ovid Medline, Embase, CINAHL and Scopus) were searched for comparative clinical trials (Level I-III evidence). Critical appraisal used two Cochrane tools: the Risk of Bias tool (RoB2) for randomized control trials and the Risk of Bias in Non-randomized Studies-of Interventions (ROBINS-I). Study heterogeneity permitted qualitative analysis with the exception of three patient-reported scores, for which a meta-analysis was performed. RESULTS Twenty-one studies were identified (1699 patients, age range 18-66 years): ten randomized control trials and eleven non-randomized study interventions. Meta-analyses of the International Knee Documentation Committee (IKDC), Knee Injury And Osteoarthritis Outcome Score (KOOS) for pain and activities of daily living, and Lysholm score demonstrated statistically significant improvement in outcomes for scaffold procedures compared to microfracture at two years. No statistical difference was seen at five years. CONCLUSION Despite the limitations of study heterogeneity, scaffold-associated procedures appear to be superior to MF in terms of patient-reported outcomes at two years though similar at five years. Future evaluation would benefit from studies using validated clinical scoring systems, reporting failure, adverse events and long-term clinical follow up to determine technique safety and superiority.
Collapse
Affiliation(s)
- Sheena Seewoonarain
- MsK Lab, Dept of Medicine and Surgery, Sir Michael Uren Hub, Imperial College, London W12 0BZ, United Kingdom
| | - Divolka Ganesh
- MsK Lab, Dept of Medicine and Surgery, Sir Michael Uren Hub, Imperial College, London W12 0BZ, United Kingdom.
| | - Edward Perera
- MsK Lab, Dept of Medicine and Surgery, Sir Michael Uren Hub, Imperial College, London W12 0BZ, United Kingdom.
| | - Ravi Popat
- MsK Lab, Dept of Medicine and Surgery, Sir Michael Uren Hub, Imperial College, London W12 0BZ, United Kingdom.
| | - Julian Jones
- MsK Lab, Dept of Medicine and Surgery, Sir Michael Uren Hub, Imperial College, London W12 0BZ, United Kingdom.
| | - Kapil Sugand
- MsK Lab, Dept of Medicine and Surgery, Sir Michael Uren Hub, Imperial College, London W12 0BZ, United Kingdom.
| | - Chinmay Gupte
- MsK Lab, Dept of Medicine and Surgery, Sir Michael Uren Hub, Imperial College, London W12 0BZ, United Kingdom.
| |
Collapse
|
19
|
Snow M, Middleton L, Mehta S, Roberts A, Gray R, Richardson J, Kuiper JH, Smith A, White S, Roberts S, Griffiths D, Mohammed A, Moholkar K, Ashraf T, Green M, Hutchinson J, Bhullar T, Chitnis S, Shaw A, van Niekerk L, Hui A, Drogset JO, Knutsen G, McNicholas M, Bowditch M, Johnson D, Turner P, Chugh S, Hunt N, Ali S, Palmer S, Perry A, Davidson A, Hill P, Deo S, Satish V, Radford M, Langstaff R, Houlihan-Burne D, Spicer D, Phaltankar P, Hegab A, Marsh D, Cannon S, Briggs T, Pollock R, Carrington R, Skinner J, Bentley G, Price A, Schranz P, Mandalia V, O'Brien S. A Randomized Trial of Autologous Chondrocyte Implantation Versus Alternative Forms of Surgical Cartilage Management in Patients With a Failed Primary Treatment for Chondral or Osteochondral Defects in the Knee. Am J Sports Med 2023; 51:367-378. [PMID: 36661257 DOI: 10.1177/03635465221141907] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND There are limited randomized controlled trials with long-term outcomes comparing autologous chondrocyte implantation (ACI) versus alternative forms of surgical cartilage management within the knee. PURPOSE To determine at 5 years after surgery whether ACI was superior to alternative forms of cartilage management in patients after a failed previous treatment for chondral or osteochondral defects in the knee. STUDY DESIGN Randomized controlled trial; Level of evidence, 1. METHODS In total, 390 participants were randomly assigned to receive either ACI or alternative management. Patients aged 18 to 55 years with one or two symptomatic cartilage defects who had failed 1 previous therapeutic surgical procedure in excess of 6 months prior were included. Dual primary outcome measures were used: (1) patient-completed Lysholm knee score and (2) time from surgery to cessation of treatment benefit. Secondary outcome measures included International Knee Documentation Committee and Cincinnati Knee Rating System scores, as well as number of serious adverse events. Analysis was performed on an intention-to-treat basis. RESULTS Lysholm scores were improved by 1 year in both groups (15.4 points [95% CI, 11.9 to 18.8] and 15.2 points [95% CI, 11.6 to 18.9]) for ACI and alternative, with this improvement sustained over the duration of the trial. However, no evidence of a difference was found between the groups at 5 years (2.9 points; 95% CI, -1.8 to 7.5; P = .46). Approximately half of the participants (55%; 95% CI, 47% to 64% with ACI) were still experiencing benefit at 5 years, with time to cessation of treatment benefit similar in both groups (hazard ratio, 0.97; 95% CI, 0.72 to 1.32; P > .99). There was a differential effect on Lysholm scores in patients without previous marrow stimulation compared with those with marrow stimulation (P = .03; 6.4 points in favor of ACI; 95% CI, -0.4 to 13.1). More participants experienced a serious adverse event with ACI (P = .02). CONCLUSION Over 5 years, there was no evidence of a difference in Lysholm scores between ACI and alternative management in patients who had previously failed treatment. Previous marrow stimulation had a detrimental effect on the outcome of ACI. REGISTRATION International Standard Randomised Controlled Trial Number: 48911177.
Collapse
Affiliation(s)
- Martyn Snow
- Orthopaedics Department, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK; School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
| | - Lee Middleton
- Birmingham Clinical Trials Unit, Birmingham University, Midlands, UK
| | - Samir Mehta
- Birmingham Clinical Trials Unit, Birmingham University, Midlands, UK
| | - Andrew Roberts
- Orthopaedics Department, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK
| | - Richard Gray
- Nuffield Department of Population Health, Oxford University, Oxfordshire, UK
| | - James Richardson
- Orthopaedics Department, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK; School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
| | - Jan Herman Kuiper
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
| | | | - Anthony Smith
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry
| | - Steve White
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry
| | - Simon Roberts
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry
| | - David Griffiths
- County Hospital, Stafford, University Hospitals of North Midlands NHS Trust, Stoke
| | - Aslam Mohammed
- Wrightington Wigan and Leigh teaching hospitals NHSFT, Wigan
| | | | | | - Marcus Green
- Royal Orthopaedic Hospital Birmingham, Birmingham
| | - James Hutchinson
- Edith Cavell Hospital Peterborough [now Peterborough City Hospital], NW Anglia NHSFT, Peterborough
| | - Tony Bhullar
- Edith Cavell Hospital Peterborough [now Peterborough City Hospital], NW Anglia NHSFT, Peterborough
| | | | - Andrew Shaw
- Royal Alexandra Hospital, Paisley; NHS Greater Glasgow and Clyde, Paisley
| | - Louw van Niekerk
- Friarage Hospital, South Tees; South Tees Hospitals NHSFT, Northallerton
| | - Anthony Hui
- The James Cook University Hospital, Middlesborough; South Tees Hospitals NHSFT, Middlesborough
| | | | | | | | - Mark Bowditch
- Ipswich Hospital, East Suffolk and North Essex NHSFT, Ipswich
| | | | | | - Sanjiv Chugh
- New Cross Hospital, Royal Wolverhampton NHS Trust, Wolverhampton
| | - Neil Hunt
- York Hospital, York and Scarborough Teaching Hospitals NHSFT, York
| | - Salman Ali
- Russels Hall Hospital, The Dudley Group NHSFT, Dudley
| | - Simon Palmer
- Worthing Hospital, University Hospitals Sussex NHSFT, Worthing
| | - Andrew Perry
- Frimley Park Hospital, Frimley Health NHSFT, Frimley Park
| | | | - Peter Hill
- Frimley Park Hospital, Frimley Health NHSFT, Frimley Park
| | - Sunny Deo
- The Great Western Hospitals NHSFT, Swindon
| | | | - Michael Radford
- Weston General Hospital, Weston Area Health NHS Trust, Weston-Super-Mare
| | - Ron Langstaff
- Hillingdon Hospital, The Hillingdon Hospitals NHSFT, Hillingdon
| | | | - Dominic Spicer
- St Mary's Hospital, Imperial College Healthcare NHS Trust, Paddington
| | - Padman Phaltankar
- North Manchester General Hospital, Manchester University NHSFT, Manchester
| | - Ahmed Hegab
- Fairfield General Hospital, Northern Care Alliance NHSFT, Bury
| | - David Marsh
- The Royal National Orthopaedic Hospital Stanmore, Stanmore
| | - Steve Cannon
- The Royal National Orthopaedic Hospital Stanmore, Stanmore
| | - Tim Briggs
- The Royal National Orthopaedic Hospital Stanmore, Stanmore
| | - Rob Pollock
- The Royal National Orthopaedic Hospital Stanmore, Stanmore
| | | | - John Skinner
- The Royal National Orthopaedic Hospital Stanmore, Stanmore
| | - George Bentley
- The Royal National Orthopaedic Hospital Stanmore, Stanmore
| | - Andrew Price
- Nuffield Orthopaedic Centre, Oxford University Hospitals NHSFT, Oxford
| | | | | | - Shaun O'Brien
- Sunderland Royal Hospital, South Tyneside and Sunderland NHSFT, Sunderland.,Investigation performed at the Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK
| |
Collapse
|
20
|
Wodzig M, Peters M, Emanuel K, Van Hugten P, Wijnen W, Jutten L, Boymans T, Loeffen D, Emans P. Minced Autologous Chondral Fragments with Fibrin Glue as a Simple Promising One-Step Cartilage Repair Procedure: A Clinical and MRI Study at 12-Month Follow-Up. Cartilage 2022; 13:19-31. [PMID: 36305343 PMCID: PMC9924984 DOI: 10.1177/19476035221126343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate early radiological and clinical outcome of autologous minced cartilage treatment as a single-step treatment option in patients with a chondral or osteochondral lesion (OCL) in the knee. DESIGN Eighteen patients with an OCL in the knee were included. Cartilage from healthy-appearing loose bodies and/or the periphery of the defect were minced into small chips and sealed in the defect using fibrin glue. Preoperatively, and at 3 (n = 14) and 12 (n = 18) months follow-up, magnetic resonance imaging (MRI) was performed. The Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) 2.0 score was used to assess the cartilage repair tissue on MRI at 12 months. The International Knee Documentation Score, Knee Injury and Osteoarthritis Outcome Score, EuroQoL-5D, and Visual Analogue Scale pain were collected preoperatively and 12 months after surgery. RESULTS Three months postoperative, MRI showed complete defect filling in 11 out of 14 patients. Mean MOCART 2.0 score at 12 months was 65.0 ± 18.9 with higher scores for lateral femoral chondral lesions compared to medial femoral chondral lesions (75.8 ± 14.3, 52.5 ± 15.8 respectively, P = 0.02). Clinical and statistical significant improvements were observed in the patient-reported outcome measures at 12 months postoperatively compared to preoperatively. CONCLUSION Treatment of OCLs using the autologous minced cartilage procedure resulted in good cartilage repair measured by MOCART 2.0. Clinically relevant improvements were observed in the clinical scores. This study suggests autologous minced cartilage as a promising, single-step treatment for OCLs.
Collapse
Affiliation(s)
- M.H.H. Wodzig
- Department of Orthopedic Surgery,
Joint-Preserving Clinic, Maastricht University Medical Center, Maastricht, The
Netherlands,M.H.H. Wodzig, Department of Orthopedic
Surgery, Joint-Preserving Clinic, Maastricht University Medical Center,
Maastricht 6229 HX, The Netherlands.
| | | | - K.S. Emanuel
- Department of Orthopedic Surgery,
Joint-Preserving Clinic, Maastricht University Medical Center, Maastricht, The
Netherlands,Department of Orthopedic Surgery,
Amsterdam UMC, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - P.P.W. Van Hugten
- Department of Orthopedic Surgery,
Joint-Preserving Clinic, Maastricht University Medical Center, Maastricht, The
Netherlands
| | - W. Wijnen
- Department of Orthopedic Surgery,
Joint-Preserving Clinic, Maastricht University Medical Center, Maastricht, The
Netherlands
| | - L.M. Jutten
- Department of Orthopedic Surgery,
Joint-Preserving Clinic, Maastricht University Medical Center, Maastricht, The
Netherlands
| | - T.A. Boymans
- Department of Orthopedic Surgery,
Joint-Preserving Clinic, Maastricht University Medical Center, Maastricht, The
Netherlands
| | - D.V. Loeffen
- Department of Radiology, Maastricht
University Medical Center, Maastricht, The Netherlands
| | - P.J. Emans
- Department of Orthopedic Surgery,
Joint-Preserving Clinic, Maastricht University Medical Center, Maastricht, The
Netherlands
| |
Collapse
|
21
|
Banerjee D, Singh YP, Datta P, Ozbolat V, O'Donnell A, Yeo M, Ozbolat IT. Strategies for 3D bioprinting of spheroids: A comprehensive review. Biomaterials 2022; 291:121881. [DOI: 10.1016/j.biomaterials.2022.121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/04/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022]
|
22
|
Dong B, Liu X, Li J, Wang B, Yin J, Zhang H, Liu W. Berberine encapsulated in exosomes derived from platelet-rich plasma promotes chondrogenic differentiation of the Bone Marrow Mesenchymal Stem Cells via the Wnt/β-catenin pathway. Biol Pharm Bull 2022; 45:1444-1451. [PMID: 35858798 DOI: 10.1248/bpb.b22-00206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cartilage regenerative medicine, wherein the stem cells from adults exert a crucial role, has high potential in the treatment of defective articular cartilage. Recently, Bone marrow mesenchymal stem cells (BMSCs) are being increasingly recognized as an alternative source of adult stem cells, which are capable of differentiating into several cell types (e.g., adipocytes, chondrocytes, and osteoblasts). However, their proliferative properties and tendency to dedifferentiate restrict their use in clinical settings. Recently, a possible bioactive material PRP-exos (exosomes derived from platelet-rich plasma), has emerged, which can effectively facilitate the differentiation and proliferation of cells. Recent studies have reported that berberine (Ber), known to have anti-inflammatory properties, plays a role in osteogenesis. Since biological molecules are used in combinations, we attempted to assess the effect of Exos-Ber (PRP-exos in combination with Ber) on the chondrogenic differentiation of BMSCs in vitro. In this study, Exos-Ber was observed to promote the proliferation of BMSCs and cause their chondrogenic differentiation in vitro. Additionally, Exos-Ber could promote the migration of BMSCs and increase the protein expression of the chondrogenic genes (Collagen II, SOX9, Aggrecan). After treatment with Exos-Ber, significant induction of β-catenin expression was observed, which could be repressed successfully by adding β-catenin inhibitor XAV-939. Interestingly, the repression of the Wnt/β-catenin axis also resulted in reduced gene expression levels of Collagen II, SOX9, and Aggrecan. These observations indicated that Exos-Ber facilitated the differentiation of chondrogenic BMSCs by modulating the Wnt/β-catenin axis, which offers innovative insights into the reconstruction of cartilage.
Collapse
Affiliation(s)
- Bingjiang Dong
- Department of Orthopaedics, The Affiliated Jiangning Hospital with Nanjing Medical University
| | - Xinhui Liu
- Department of Orthopaedics, The Affiliated Jiangning Hospital with Nanjing Medical University
| | - Jiwei Li
- Department of Clinical Laboratory, The Affiliated Jiangning Hospital with Nanjing Medical University
| | - Bin Wang
- Department of Orthopaedics, The Affiliated Jiangning Hospital with Nanjing Medical University
| | - Jian Yin
- Department of Orthopaedics, The Affiliated Jiangning Hospital with Nanjing Medical University
| | - Hailong Zhang
- Department of Orthopaedics, The Affiliated Jiangning Hospital with Nanjing Medical University
| | - Wei Liu
- Department of Orthopaedics, The Affiliated Jiangning Hospital with Nanjing Medical University
| |
Collapse
|
23
|
Xie M, Zhang Y, Xiong Z, Hines S, Shangjiang Y, Clark KL, Tan S, Alexander PG, Lin H. Generation of hyaline-like cartilage tissue from human mesenchymal stromal cells within the self-generated extracellular matrix. Acta Biomater 2022; 149:150-166. [PMID: 35779770 DOI: 10.1016/j.actbio.2022.06.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/20/2022]
Abstract
Chondrocytic hypertrophy, a phenotype not observed in healthy hyaline cartilage, is often concomitant with the chondrogenesis of human mesenchymal stromal cells (hMSCs). This undesired feature represents one of the major obstacles in applying hMSCs for hyaline cartilage repair. Previously, we developed a method to induce hMSC chondrogenesis within self-generated extracellular matrix (mECM), which formed a cartilage tissue with a lower hypertrophy level than conventional hMSC pellets. In this study, we aimed to test the utility of hypoxia and insulin-like growth factor-1 (IGF1) on further reducing hypertrophy. MSC-mECM constructs were first subjected to chondrogenic culture in normoxic or hypoxic (5%) conditions. The results indicated that hMSC-derived cartilage formed in hypoxic culture displayed a significantly reduced hypertrophy level than normoxic culture. However, hMSC chondrogenesis was also suppressed under hypoxic culture, partially due to the reduced activity of the IGF1 pathway. IGF1 was then supplemented in the chondrogenic medium, which promoted remarkable hMSC chondrogenesis under hypoxic culture. Interestingly, the IGF1-enhanced hMSC chondrogenesis, under hypoxic culture, was not at the expense of promoting significantly increased hypertrophy. Lastly, the cartilage tissues created by hMSCs with different conditions were implanted into osteochondral defect in rats. The results indicated that the tissue formed under hypoxic condition and induced with IGF1-supplemented chondrogenic medium displayed the best reparative results with minimal hypertrophy level. Our results demonstrate a new method to generate hyaline cartilage-like tissue from hMSCs without using exogenous scaffolds, which further pave the road for the clinical application of hMSC-based cartilage tissue engineering. STATEMENT OF SIGNIFICANCE: In this study, hyaline cartilage-like tissues were generated from human mesenchymal stromal cells (hMSCs), which displayed robust capacity in repairing the osteochondral defect in rats. In particular, the extracellular matrix created by hMSCs was used, so no exogenous scaffold was needed. Through a series of optimization, we defined that hypoxic culture and supplementation of insulin-like growth factor-1 (IGF-1) in chondrogenic medium resulted in robust cartilage formation with minimal hypertrophy. We also demonstrated that hypoxic culture suppressed chondrogenesis and hypertrophy through modulating the Wnt/β-catenin and IGF1 pathways, respectively. Our results demonstrate a new method to generate hyaline cartilage-like tissue from hMSCs without using exogenous scaffolds, which will further pave the road for the clinical application of hMSCs-based cartilage tissue engineering.
Collapse
Affiliation(s)
- Mingsheng Xie
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 217, Pittsburgh, PA 15217, USA; Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yiqian Zhang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 217, Pittsburgh, PA 15217, USA; Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zixuan Xiong
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, China
| | - Sophie Hines
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 217, Pittsburgh, PA 15217, USA
| | - Yingzi Shangjiang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 217, Pittsburgh, PA 15217, USA
| | - Karen L Clark
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 217, Pittsburgh, PA 15217, USA
| | - Susheng Tan
- Department of Electrical and Computer Engineering, Swanson School of Engineering, and Petersen Institute of NanoScience and Engineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Peter G Alexander
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 217, Pittsburgh, PA 15217, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 217, Pittsburgh, PA 15217, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15219, USA.
| |
Collapse
|
24
|
Heiss DMR, Guermazi A, Janka PDMR, Uder PDMM, Li X, Hayashi D, Roemer FW. Update: Posttreatment Imaging of the Knee after Cartilage Repair. Semin Musculoskelet Radiol 2022; 26:216-229. [PMID: 35654091 DOI: 10.1055/s-0042-1743405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Focal cartilage lesions are common pathologies at the knee joint that are considered important risk factors for the premature development of osteoarthritis. A wide range of surgical options, including but not limited to marrow stimulation, osteochondral auto- and allografting, and autologous chondrocyte implantation, allows for targeted treatment of focal cartilage defects. Arthroscopy is the standard of reference for the assessment of cartilage integrity and quality before and after repair. However, deep cartilage layers, intrachondral composition, and the subchondral bone are only partially or not at all visualized with arthroscopy. In contrast, magnetic resonance imaging offers noninvasive evaluation of the cartilage repair site, the subchondral bone, and the soft tissues of the joint pre- and postsurgery. Radiologists need to be familiar with the different surgical procedures available and their characteristic postsurgical imaging appearances to assess treatment success and possible complications adequately. We provide an overview of the most commonly performed surgical procedures for cartilage repair at the knee and typical postsurgical imaging characteristics.
Collapse
Affiliation(s)
- Dr Med Rafael Heiss
- Department of Radiology, Universityhospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ali Guermazi
- Department of Radiology, VA Healthcare System, West Roxbury, Massachusetts.,Department of Radiology, Boston University School of Medicine, Boston, Massachusetts
| | - Prof Dr Med Rolf Janka
- Department of Radiology, Universityhospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Prof Dr Med Michael Uder
- Department of Radiology, Universityhospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Xinning Li
- Department of Orthopedic Surgery, Boston University School of Medicine, Boston, Massachusetts
| | - Daichi Hayashi
- Department of Radiology, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Frank W Roemer
- Department of Radiology, Universityhospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Radiology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
25
|
Merkely G, Chisari E, Lola Rosso C, Lattermann C. Do Nonsteroidal Anti-Inflammatory Drugs Have a Deleterious Effect on Cartilage Repair? A Systematic Review. Cartilage 2021; 13:326S-341S. [PMID: 31216865 PMCID: PMC8808836 DOI: 10.1177/1947603519855770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES The purpose of this study was to systematically review the available evidence regarding any plausible deleterious effects of nonsteroidal anti-inflammatory drugs (NSAIDs) on chondrocytes, chondrocyte differentiation, and allograft or autograft incorporation after cartilage repair procedures. DESIGN Three databases (PubMed, Science Direct, and Cochrane Library) were screened for eligible studies: investigating the effects of NSAIDs on chondrocytes, chondrogenic differentiation, or allograft/autograft incorporation. This evaluation included studies of any level of evidence, written in English, reporting clinical or preclinical results, published in peer review journals and dealing with our topic. All articles evaluating the effects of NSAIDs on either osteoarthritic (OA) chondrocyte samples or OA chondrocyte models were excluded. Moreover, articles about bone healing in which allograft or autograft incorporation was not investigated were also excluded. Methodologic quality assessment was performed for in vivo animal studies according to ARRIVE guidelines, and risk of bias of each included study was identified using the ROBINS-I tool. RESULTS Eighteen studies were included in the review: 4 in vitro studies, 13 animal studies, and 1 human study. According to these studies NSAIDs have no detrimental effect on healthy mature chondrocytes; however, these drugs influence chondrocyte differentiation and graft incorporation and therefore may interfere with chondrogenesis and incorporation after transplantation of chondrocytes or osteochondral grafts. CONCLUSION The use of NSAIDs, systemic or local, after cartilage repair procedures should be avoided unless a substantial clinical benefit would otherwise be withheld from the patient. More human studies are needed to analyze the effect of NSAIDs on cartilage repair.
Collapse
Affiliation(s)
- Gergo Merkely
- Department of Orthopaedic Surgery,
Division of Sports Medicine, Center for Cartilage Repair, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, USA
- Department of Traumatology, Semmelweis
University, Budapest, Hungary
| | - Emanuele Chisari
- Department of General Surgery and
Medical Surgical Specialties, Section of Orthopaedics and Traumatology, University
Hospital Policlinico-Vittorio Emanuele, University of Catania, Catania, Italy
| | | | - Christian Lattermann
- Department of Orthopaedic Surgery,
Division of Sports Medicine, Center for Cartilage Repair, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Satin AM, Norelli JB, Sgaglione NA, Grande DA. Effect of Combined Leukocyte-Poor Platelet-Rich Plasma and Hyaluronic Acid on Bone Marrow-Derived Mesenchymal Stem Cell and Chondrocyte Metabolism. Cartilage 2021; 13:267S-276S. [PMID: 31282189 PMCID: PMC8804819 DOI: 10.1177/1947603519858739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Given the potential applications of combined biologics, the authors sought to evaluate the in vitro effect of combined platelet-rich plasma (PRP) and hyaluronic acid (HA) on cellular metabolism. DESIGN Bone marrow-derived mesenchymal stem cells (BMSCs) and chondrocytes were obtained from the femurs of Sprague-Dawley rats. An inflammatory model was created by adding 10 ng/mL interleukin-1-beta to culture media. Non-crosslinked high-molecular-weight HA, activated-PRP (aPRP), and unactivated-PRP (uPRP) were tested. Cellular proliferation and gene expression were measured at 1 week. Genes of interest included aggrecan, matrix metalloproteinase (MMP)-9, and MMP-13. RESULTS Combined uPRP-HA was associated with a significant increase in chondrocyte and BMSC proliferation at numerous preparations. There was a trend of increased chondrocyte aggrecan expression with combined PRP-HA. The greatest and only significant decrease in BMSC MMP-9 expression was observed with combined PRP-HA. While a significant reduction of BMSC MMP-13 expression was seen with PRP and HA-alone, a greater reduction was observed with PRP-HA. MMP-9 chondrocyte expression was significantly reduced in cells treated with PRP-HA. PRP-alone and HA-alone at identical concentrations did not result in a significant reduction. The greatest reduction of MMP-13 chondrocyte expression was observed in chondrocytes plus combined PRP-HA. CONCLUSIONS We demonstrated a statistically significant increase in BMSC and chondrocyte proliferation and decreased expression of catabolic enzymes with combined PRP-HA. These results demonstrate the additive in vitro effect of combined PRP-HA to stimulate cellular growth, restore components of the articular extracellular matrix, and reduce inflammation.
Collapse
Affiliation(s)
- Alexander M. Satin
- Department of Orthopaedic Surgery,
Long Island Jewish Medical Center, Northwell Health, New Hyde Park, NY,
USA
| | - Jolanta B. Norelli
- Donald and Barbara Zucker School
of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Orthopaedic Research Laboratory,
Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Nicholas A. Sgaglione
- Department of Orthopaedic Surgery,
Long Island Jewish Medical Center, Northwell Health, New Hyde Park, NY,
USA
- Donald and Barbara Zucker School
of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Daniel A. Grande
- Department of Orthopaedic Surgery,
Long Island Jewish Medical Center, Northwell Health, New Hyde Park, NY,
USA
- Donald and Barbara Zucker School
of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Orthopaedic Research Laboratory,
Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
27
|
Philippe V, Laurent A, Abdel-Sayed P, Hirt-Burri N, Ann Applegate L, Martin R. Human Platelet Lysate as an Alternative to Autologous Serum for Human Chondrocyte Clinical Use. Cartilage 2021; 13:509S-518S. [PMID: 34330164 PMCID: PMC8808884 DOI: 10.1177/19476035211035433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE A pivotal aspect of cartilage tissue engineering resides in cell culture medium supplementation, in view of maximizing in vitro cell proliferation and preserving cellular functionality. Autologous human serum (aHS) is commonly used as an inducive supplement for safe human articular chondrocyte (HAC) proliferation prior to clinical implantation. However, practical clinical use of aHS is hindered by constraining manufacturing requirements and quality assurance-driven downstream processing. The present study investigated potential alternative use of commercial human platelet lysate (hPL) supplements in HAC manufacturing workflows related to clinical therapeutic pathways. DESIGN Differential effects of hPL, aHS, and fetal bovine serum were assessed on primary cultured HAC parameters (viability, proliferative rates, and morphology) in 2-dimensional in vitro systems. A 3-dimensional HAC pellet model served for postexpansion assessment of cellular functionality, by visualizing proteoglycan production (Alcian blue staining), and by using qRT-PCR relative quantification of chondrogenic marker (SOX9, COL2-A1, and ACAN) genetic expression. RESULTS We found that monolayer HAC culture with hPL or aHS supplements presented similar characteristics (elongated cell morphology and nearly identical growth kinetics). Chondrogenic activity appeared as conserved in HACs expanded with human or bovine supplements, wherein histologic analysis indicated a progressive sGAG accumulation and SOX9, COL2-A1, ACAN gene expression was upregulated in 3-dimensional HAC pellet models. CONCLUSION This study therefore supports the use of hPL as a functional equivalent and alternative to aHS for cultured HAC batch preparation, with the potential to effectively alleviate pressure on clinical and manufacturing bottlenecks in cell therapy approaches for cartilage regeneration.
Collapse
Affiliation(s)
- Virginie Philippe
- Service of Orthopaedic Surgery and
Traumatology, Lausanne University Hospital, University of Lausanne,
Switzerland,Regenerative Therapy Unit, Lausanne
University Hospital, University of Lausanne, Switzerland,Virginie Philippe, Service of Orthopaedic
Surgery and Traumatology, Lausanne University Hospital, Pierre-Decker 4,
Lausanne, CH-1011, Switzerland. Email
| | - Alexis Laurent
- Regenerative Therapy Unit, Lausanne
University Hospital, University of Lausanne, Switzerland
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne
University Hospital, University of Lausanne, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne
University Hospital, University of Lausanne, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne
University Hospital, University of Lausanne, Switzerland
| | - Robin Martin
- Service of Orthopaedic Surgery and
Traumatology, Lausanne University Hospital, University of Lausanne,
Switzerland
| |
Collapse
|
28
|
Crowley SG, Swindell HW, Saltzman BM, Ahmad CS, Popkin CA, Trofa DP. Rehabilitation Variability Following Femoral Condyle and Patellofemoral Microfracture Surgery of the Knee. Cartilage 2021; 13:1801S-1813S. [PMID: 34151611 PMCID: PMC8808894 DOI: 10.1177/19476035211025818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To assess the variability of postoperative rehabilitation protocols used by orthopedic surgery residency programs for microfracture of femoral condyle and patellofemoral lesions of the knee. DESIGN Online postoperative microfracture rehabilitation protocols from US orthopedic programs and the scientific literature were reviewed. A custom scoring rubric was developed to analyze each protocol for the presence of discrete rehabilitation modalities and the timing of each intervention. RESULTS A total of 18 programs (11.6%) from 155 US academic orthopedic programs' published online protocols and a total of 44 protocols were analyzed. Seventeen protocols (56.7%) recommended immediate postoperative bracing for femoral condyle lesions and 17 (89.5%) recommended immediate postoperative bracing for patellofemoral lesions. The average time to permitting weight-bearing as tolerated (WBAT) was 6.1 weeks (range, 0-8) for femoral condyle lesions and 3.7 weeks (range, 0-8 weeks) for patellofemoral lesions. There was considerable variation in the inclusion and timing of strength, proprioception, agility, and pivoting exercises. For femoral condyle lesions, 10 protocols (33.3%) recommended functional testing prior to return to sport at an average of 23.3 weeks postoperatively (range, 12-32 weeks). For patellofemoral lesions, 4 protocols (20.0%) recommended functional testing for return to sport at an average of 21.0 weeks postoperatively (range, 12-32 weeks). CONCLUSION A minority of US academic orthopedic programs publish microfracture rehabilitation protocols online. Among the protocols currently available, there is significant variability in the inclusion of specific rehabilitation components and timing of many modalities. Evidence-based standardization of elements of postoperative rehabilitation may help improve patient care and subsequent outcomes.
Collapse
Affiliation(s)
| | - Hasani W. Swindell
- Center for Shoulder, Elbow and Sports
Medicine, Columbia University, New York, NY, USA
| | | | - Christopher S. Ahmad
- Center for Shoulder, Elbow and Sports
Medicine, Columbia University, New York, NY, USA
| | - Charles A. Popkin
- Center for Shoulder, Elbow and Sports
Medicine, Columbia University, New York, NY, USA
| | - David P. Trofa
- Center for Shoulder, Elbow and Sports
Medicine, Columbia University, New York, NY, USA,David P. Trofa, Department of Orthopedic
Surgery, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
29
|
Merkely G, Ackermann J, Gomoll AH. The Role of Hypertension in Cartilage Restoration: Increased Failure Rate After Autologous Chondrocyte Implantation but Not After Osteochondral Allograft Transplantation. Cartilage 2021; 13:1306S-1314S. [PMID: 31965812 PMCID: PMC8808780 DOI: 10.1177/1947603519900792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives. The purpose of this study was to examine whether patients with diagnosed hypertension have an increased risk of graft failure following cartilage repair with either autologous chondrocyte implantation (ACI) or osteochondral allograft transplantation (OCA). We hypothesized that hypertension is related to higher ACI and OCA graft failure. Design. Patients who underwent ACI or OCA transplantation between February 2009 and December 2016 were included in this study. Inclusion criteria were (1) at least 2 years' follow-up, (2) available information related to the living habits (smoking and medication status), and (3) available information related to the presence of hypertension, diabetes mellitus, or hyperlipidemia. To identify potential independent risk factors of graft failure, univariate screening was performed and factors with significance at a level of P < 0.1 were entered in multivariate logistic regression models. Results. A total of 368 patients (209 ACI and 159 OCA) were included into our study. In the ACI group, 61 patients' (29.1%) graft failed. Univariate screening identified older age, female gender, defect size, higher prevalence of hypertension, and smoking as a predictor of graft failure. Following, multivariate logistic regression revealed female gender (odds ratio [OR] 1.02, P = 0.048), defect size (OR 1.07, P = 0.035), and hypertension (OR 3.73, P = 0.023) as significant independent risk factors predicting graft failure after ACI. In the OCA group, 29 patients' (18.2%) graft failed and none of the included factors demonstrated to be a potential risk factor for graft failure. Conclusion. Hypertension, defect size, and female gender seem to predict ACI graft failure but not OCA failure.
Collapse
Affiliation(s)
- Gergo Merkely
- Cartilage Repair Center, Brigham and
Women’s Hospital, Harvard Medical School, Boston, MA, USA,Department of Traumatology, Semmelweis
University, Budapest, Hungary,Gergo Merkely, Cartilage Repair Center,
Brigham and Women’s Hospital, Harvard Medical School, 850 Boylston Steet # 112,
Chestnut Hill, Boston, MA 02467, USA.
| | - Jakob Ackermann
- Sports Medicine Center, Department of
Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA,Balgrist University Hospital, Zurich,
Switzerland
| | | |
Collapse
|
30
|
Jaibaji M, Jaibaji R, Volpin A. Mesenchymal Stem Cells in the Treatment of Cartilage Defects of the Knee: A Systematic Review of the Clinical Outcomes. Am J Sports Med 2021; 49:3716-3727. [PMID: 33555942 DOI: 10.1177/0363546520986812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteochondral lesions are a common clinical problem and their management has been historically challenging. Mesenchymal stem cells have the potential to differentiate into chondrocytes and thus restore hyaline cartilage to the defect, theoretically improving clincal outcomes in these patients. They can also be harvested with minimal donor site morbidity. PURPOSE To assess the clinical and functional outcomes of mesenchymal stem cell implantation to treat isolated osteochondral defects of the knee. A secondary purpose is to assess the quality of the current available evidence as well as the radiological and histological outcomes. We also reviewed the cellular preparation and operative techniques for implantation. STUDY DESIGN Systematic review. METHODS A comprehensive literature search of 4 databases was carried out: CINAHL, Embase, MEDLINE, and PubMed. We searched for clinical studies reporting the outcomes on a minimum of 5 patients with at least 12 months of follow-up. Clinical, radiological, and histological outcomes were recorded. We also recorded demographics, stem cell source, culture technique, and operative technique. Methodological quality of each study was assessed using the modified Coleman methodology score, and risk of bias for the randomized controlled studies was assessed using the Cochrane Collaboration tool. RESULTS Seventeen studies were found, encompassing 367 patients. The mean patient age was 35.1 years. Bone marrow was the most common source of stem cells utilized. Mesenchymal stem cell therapy consistently demonstrated good short- to medium-term outcomes in the studies reviewed with no serious adverse events being recorded. There was significant heterogeneity in cell harvesting and preparation as well as in the reporting of outcomes. CONCLUSION Mesenchymal stem cells demonstrated a clinically relevant improvement in outcomes in patients with osteochondral defects of the knee. More research is needed to establish an optimal treatment protocol, long-term outcomes, and superiority over other therapies. REGISTRATION CRD42020179391 (PROSPERO).
Collapse
Affiliation(s)
- Monketh Jaibaji
- Division of Interventional Sciences, University College London, London, UK
| | - Rawan Jaibaji
- Division of Interventional Sciences, University College London, London, UK
| | | |
Collapse
|
31
|
Gilat R, Haunschild ED, Huddleston H, Parvaresh KC, Chahla J, Yanke AB, Cole BJ. Osteochondral Allograft Transplantation of the Knee in Adolescent Patients and the Effect of Physeal Closure. Arthroscopy 2021; 37:1588-1596. [PMID: 33359816 DOI: 10.1016/j.arthro.2020.12.204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/22/2020] [Accepted: 12/16/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE The primary aim was to compare osteochondral allograft (OCA) transplantation outcomes between adolescent patients aged 16 years or younger and those older than 16 years. A secondary aim was to analyze the association between physeal closure status and outcomes. METHODS Consecutive patients aged 18 years or younger who underwent OCA transplantation with a minimum 2-year follow-up were identified from a prospectively collected database. Patients were divided into 2 groups: those aged 16 years or younger (group 1) and those aged 17 to 18 years (group 2). Outcomes included patient-reported outcomes (PROs), complications, reoperations, and cartilage revision surgery. Outcomes were compared between groups, and physeal status was analyzed as a prognostic indicator. RESULTS A total of 36 patients met the inclusion criteria: 18 in group 1 and 18 in group 2. There were no significant differences between the groups in terms of demographic characteristics, prior surgical procedures, and surgical details, including concomitant procedures. The mean overall follow-up period was 4.6 ± 2.5 years (range, 2-10.3 years), with no significant difference between the groups (P = .21). There were 10 reoperations (28.8%), 4 in group 1 and 6 in group 2 (P = .47). The overall time to reoperation was 2.8 years and did not significantly differ between groups (P = .75). The failure rate was 5.6%, with 1 patient in each group undergoing either graft debridement or revision OCA transplantation. All PROs were significantly improved postoperatively (P < .05), except for the Western Ontario and McMaster Universities Arthritis Index stiffness score (P = .28) and the Short Form 12 mental score (P = .19). There were no significant between-group differences in terms of PROs. Patients with closed physes had a significantly greater increase in most PROs compared with patients with open physes (P < .05). CONCLUSIONS OCA transplantation in adolescents results in significant PRO score improvement and a low failure rate, albeit reoperations are not uncommon. Patients with closed physes show greater PRO score improvement than those with open physes. LEVEL OF EVIDENCE Level III, retrospective comparative study.
Collapse
Affiliation(s)
- Ron Gilat
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, U.S.A.; Department of Orthopaedic Surgery, Shamir Medical Center and Tel Aviv University, Tel Aviv, Israel
| | - Eric D Haunschild
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, U.S.A
| | - Hailey Huddleston
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, U.S.A
| | - Kevin C Parvaresh
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, U.S.A
| | - Jorge Chahla
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, U.S.A
| | - Adam B Yanke
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, U.S.A
| | - Brian J Cole
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, U.S.A..
| |
Collapse
|
32
|
Ghanbari M, Salavati-Niasari M, Mohandes F, Dolatyar B, Zeynali B. In vitro study of alginate-gelatin scaffolds incorporated with silica NPs as injectable, biodegradable hydrogels. RSC Adv 2021; 11:16688-16697. [PMID: 35479165 PMCID: PMC9032273 DOI: 10.1039/d1ra02744a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Porous substrates composed of biodegradable polymers and nanoparticles have found extensive use as three-dimensional (3D) scaffolds to regenerate damaged tissues through the incorporation of cells or growth factors. Here, injectable thermally responsive hydrogels based on SiO2 nanoparticles (NPs), alginate, and gelatin biopolymers, with possible utilization for cartilage tissue engineering, are introduced. The nanocomposites contain different amounts of SiO2 NPs for reinforcement and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)/N-hydroxysuccinimide (NHS) for chemical crosslinking of polymer chains in the 3D hydrogel network. The cross-sectional structure of the hydrogels containing 0.25, 1.5, and 3.0% SiO2 NPs was observed by FE-SEM, confirming porous morphology with interconnected pores. Based on the rheometer analyses, by increasing the amount of SiO2 NPs, the mechanical strength of the gels can be found. In addition, in vitro biodegradation studies show that the hydrogels without SiO2 are more unstable than the hydrogels containing SiO2 NPs. In vitro biocompatibility of the products tested by MTT assay indicates that cell viability and attachment depend on the presence of SiO2 NPs.
Collapse
Affiliation(s)
- Mojgan Ghanbari
- Institute of Nano Science and Nano Technology, University of Kashan P. O. Box. 87317-51167 Kashan I. R. Iran +98 31 55913201 +98 31 5591 2383
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan P. O. Box. 87317-51167 Kashan I. R. Iran +98 31 55913201 +98 31 5591 2383
| | - Fatemeh Mohandes
- Institute of Nano Science and Nano Technology, University of Kashan P. O. Box. 87317-51167 Kashan I. R. Iran +98 31 55913201 +98 31 5591 2383
| | - Banafsheh Dolatyar
- Department of Cell and Developmental Biology, School of Biological Sciences, College of Science, University of Tehran Tehran Iran
| | - Bahman Zeynali
- Department of Cell and Developmental Biology, School of Biological Sciences, College of Science, University of Tehran Tehran Iran
| |
Collapse
|
33
|
Beletsky A, Naveen NB, Tauro T, Southworth TM, Chahla J, Verma NN, Yanke AB, Cole BJ. Microdrilling Demonstrates Superior Patient-Reported Outcomes and Lower Revision Rates Than Traditional Microfracture: A Matched Cohort Analysis. Arthrosc Sports Med Rehabil 2021; 3:e629-e638. [PMID: 34195625 PMCID: PMC8220563 DOI: 10.1016/j.asmr.2020.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/21/2020] [Indexed: 11/29/2022] Open
Abstract
Purpose The purpose of this study was to compare patient-reported outcomes and revision rates between the standard microfracture awl versus the microdrilling technique. Methods Microfracture patients were queried from a single-institution database between 2001 and 2016. Patient-reported outcome measure data were collected at preoperative and 6- and 12-month time points, inclusive of the International Knee Documentation Committee (IKDC) score, Short Form 12 (SF12) Physical Component Score (PCS) and Mental Component Score, and all Knee Injury and Osteoarthritis Outcome Score (KOOS) subscales. A matching algorithm based on previous procedures, lesion size, and demographic factors created 2 technique-based cohorts. Outcomes including revision rates and both statistically and clinically significant differences (i.e., the minimally clinically important difference [MCID]) between awl and microdrill cohorts were compared using univariate statistics. Results A total of 68 patients (aged 32.0 ± 13.1 years, 48.5% female, body mass index 26.7 ± 5.3 kg/m2), with 34 patients in each group, were included after the match. At 6 months, the microdrilling group demonstrated significantly greater levels of improvement than the awl group on the IKDC, SF12 PCS, and KOOS Pain, Symptom, Sport, and Quality of Life (P < .04), although differences at 1 year were only maintained on the SF12 PCS instrument (P < .001). With respect to MCID achievement, the microdrilling group demonstrated greater achievement rates at 6 months on the IKDC, KOOS Pain, and KOOS Sport (P < .04). The awl group demonstrated a higher rate of revision surgery (P = .02) within 3 years of follow-up and a greater likelihood to require multiple subsequent procedures (41.1% vs 17.6%, P = .03). Conclusions Microdrilling demonstrated superior outcomes relative to traditional microfracture awl techniques with respect to patient-reported outcomes at 6 months and revision rates within 3 years of follow-up. In addition, clinically meaningful differences were evident at 6 months in the microdrilling group. Level of Evidence Level III, retrospective comparative study.
Collapse
Affiliation(s)
- Alexander Beletsky
- Division of Sports Medicine, Midwest Orthopaedics at Rush, Rush University Medical Center, Chicago, Illinois, U.S.A
| | - Neal B Naveen
- Division of Sports Medicine, Midwest Orthopaedics at Rush, Rush University Medical Center, Chicago, Illinois, U.S.A
| | - Tracy Tauro
- Division of Sports Medicine, Midwest Orthopaedics at Rush, Rush University Medical Center, Chicago, Illinois, U.S.A
| | - Taylor M Southworth
- Division of Sports Medicine, Midwest Orthopaedics at Rush, Rush University Medical Center, Chicago, Illinois, U.S.A
| | - Jorge Chahla
- Division of Sports Medicine, Midwest Orthopaedics at Rush, Rush University Medical Center, Chicago, Illinois, U.S.A
| | - Nikhil N Verma
- Division of Sports Medicine, Midwest Orthopaedics at Rush, Rush University Medical Center, Chicago, Illinois, U.S.A
| | - Adam B Yanke
- Division of Sports Medicine, Midwest Orthopaedics at Rush, Rush University Medical Center, Chicago, Illinois, U.S.A
| | - Brian J Cole
- Division of Sports Medicine, Midwest Orthopaedics at Rush, Rush University Medical Center, Chicago, Illinois, U.S.A
| |
Collapse
|
34
|
Merkely G, Ogura T, Ackermann J, Barbieri Mestriner A, Gomoll AH. Clinical Outcomes after Revision of Autologous Chondrocyte Implantation to Osteochondral Allograft Transplantation for Large Chondral Defects: A Comparative Matched-Group Analysis. Cartilage 2021; 12:155-161. [PMID: 30897940 PMCID: PMC7970380 DOI: 10.1177/1947603519833136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Osteochondral allograft transplantation (OCA) is a well-established procedure for patients with symptomatic cartilage defects in the knee. Revision to OCA after prior failed cartilage repair has shown similar clinical outcomes as primary OCA; however, most of the failed procedures were arthroscopic procedures for smaller defects. There is no literature investigating the clinical outcomes after OCA for prior failed autologous chondrocyte implantation (ACI) for the treatment of large chondral defects of the knee. The purpose of this study was therefore to determine clinical outcomes of patients undergoing revision to OCA after prior failed ACI as compared with a matched cohort of patients undergoing OCA as a primary cartilage repair procedure (primary OCA). DESIGN In this review of prospectively collected data, we analyzed data from 26 patients with at least 2 years follow-up. Thirteen patients who underwent revision to OCA after prior failed ACI by a single surgeon were compared with a matched group of patients who underwent primary OCA. The patients were matched per age, gender, body mass index, and defect size. Patient-reported outcomes, reoperations, and survival rates were compared between groups. RESULTS There were no significant differences in patient-reported clinical outcome scores between the groups at final follow-up. Moreover, there was no significant difference in reoperation rates and survival rates between the groups. CONCLUSION The present study demonstrates that revision to OCA is a viable treatment option with favorable functional outcomes and similar reoperation and survival rate as primary OCA even for revision of large chondral defects previously treated with ACI.
Collapse
Affiliation(s)
- Gergo Merkely
- Cartilage Repair Center, Brigham and
Women’s Hospital, Harvard Medical School, Boston, MA, USA,Department of Traumatology, Semmelweis
University, Budapest, Hungary,Gergo Merkely, Cartilage Repair Center,
Brigham and Women’s Hospital, Harvard Medical Center, 850 Boylston St # 112,
Chestnut Hill, MA 02467, USA.
| | - Takahiro Ogura
- Cartilage Repair Center, Brigham and
Women’s Hospital, Harvard Medical School, Boston, MA, USA,Sports Medicine Center, Funabashi
Orthopaedic Hospital, Funabashi, Chiba, Japan
| | - Jakob Ackermann
- Cartilage Repair Center, Brigham and
Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandre Barbieri Mestriner
- Cartilage Repair Center, Brigham and
Women’s Hospital, Harvard Medical School, Boston, MA, USA,Universidade Federal de São Paulo, São
Paulo, Brazil
| | - Andreas H. Gomoll
- Cartilage Repair Center, Brigham and
Women’s Hospital, Harvard Medical School, Boston, MA, USA,Hospital for Special Surgery, New York,
New York, USA
| |
Collapse
|
35
|
Dwivedi G, Chevrier A, Alameh MG, Hoemann CD, Buschmann MD. Quality of Cartilage Repair from Marrow Stimulation Correlates with Cell Number, Clonogenic, Chondrogenic, and Matrix Production Potential of Underlying Bone Marrow Stromal Cells in a Rabbit Model. Cartilage 2021; 12:237-250. [PMID: 30569762 PMCID: PMC7970370 DOI: 10.1177/1947603518812555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Previous studies have shown that intrinsic behavior of subchondral bone marrow stem cells (BMSCs) is influenced by donors and locations. To understand the variability in cartilage repair outcomes following bone marrow stimulation, we tested the hypothesis that in vivo cartilage repair correlates with in vitro biological properties of BMSCs using a rabbit model. METHODS Full-thickness cartilage defects were created in the trochlea and condyle in one knee of skeletally mature New Zealand White rabbits (n = 8) followed by microdrilling. Three-week repair tissues were analyzed by macroscopic International Cartilage Repair Society (ICRS) scores, O'Driscoll histological scores, and Safranin-O (Saf-O) and type-II collagen (Coll-II) % stain. BMSCs isolated from contralateral knees were assessed for cell yield, surface marker expression, CFU-f, %Saf-O, and %Coll-II in pellet culture followed by correlation analyses with the above cartilage repair responses. RESULTS In vivo cartilage repair scores showed strong, positive correlation with cell number, clonogenic, chondrogenic, and matrix production (Coll-II, GAG) potential of in vitro TGF-βIII stimulated BMSC cultures. Trochlear repair showed clear evidence of donor dependency and strong correlation was observed for interdonor variation in repair and the above in vitro properties of trochlear BMSCs. Correlation analyses indicated that donor- and location-dependent variability observed in cartilage repair can be attributed to variation in the properties of BMSCs in underlying subchondral bone. CONCLUSION Variation in cell number, clonogenic, chondrogenic, and matrix production potential of BMSCs correlated with repair response observed in vivo and appear to be responsible for interanimal variability as well as location-dependent repair.
Collapse
Affiliation(s)
- Garima Dwivedi
- Chemical Engineering Department,
Polytechnique Montreal, Montreal, Quebec, Canada
| | - Anik Chevrier
- Chemical Engineering Department,
Polytechnique Montreal, Montreal, Quebec, Canada
| | | | - Caroline D. Hoemann
- Chemical Engineering Department,
Polytechnique Montreal, Montreal, Quebec, Canada,Biomedical Engineering Institute,
Polytechnique Montreal, Montreal, Quebec, Canada
| | - Michael D. Buschmann
- Chemical Engineering Department,
Polytechnique Montreal, Montreal, Quebec, Canada,Biomedical Engineering Institute,
Polytechnique Montreal, Montreal, Quebec, Canada,Michael D. Buschmann, Department of
Bioengineering, Volgenau School of Engineering, George Mason University, 4400
University Drive, MS 1J7, Fairfax, VA 22030, USA.
| |
Collapse
|
36
|
Gilat R, Haunschild ED, Huddleston HP, Tauro TM, Patel S, Wolfson TS, Parvaresh KC, Yanke AB, Cole BJ. Osteochondral Allograft Transplant for Focal Cartilage Defects of the Femoral Condyles: Clinically Significant Outcomes, Failures, and Survival at a Minimum 5-Year Follow-up. Am J Sports Med 2021; 49:467-475. [PMID: 33428427 DOI: 10.1177/0363546520980087] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteochondral allograft (OCA) transplant for symptomatic focal cartilage defects in the knee has demonstrated favorable short- to midterm outcomes. However, the reoperation rate is high, and literature on mid- to long-term outcomes is limited. PURPOSE To analyze clinically significant outcomes (CSOs), failures, and graft survival rates after OCA transplant of the femoral condyles at a minimum 5-year follow-up. STUDY DESIGN Case series; Level of evidence, 4. METHODS Review of a prospectively maintained database of 205 consecutive patients who had primary OCA transplant was performed to identify patients with a minimum of 5 years of follow-up. Outcomes including patient-reported outcomes (PROs), CSOs, complications, reoperation rate, and failures were evaluated. Failure was defined as revision cartilage procedure, conversion to knee arthroplasty, or macroscopic graft failure confirmed using second-look arthroscopy. Patient preoperative and surgical factors were assessed for their association with outcomes. RESULTS A total of 160 patients (78.0% follow-up) underwent OCA transplant with a mean follow-up of 7.7 ± 2.7 years (range, 5.0-16.3 years). Mean age at the time of surgery was 31.9 ± 10.7 years, with a mean symptom duration of 5.8 ± 6.3 years. All mean PRO scores significantly improved, with 75.0% of patients achieving minimal clinically important difference (MCID), and 58.9% of patients achieving significant clinical benefit for the International Knee Documentation Committee score at final follow-up. The reoperation rate was 39.4% and was associated with a lower probability of achieving MCID. However, most patients undergoing reoperation did not proceed to failure at final follow-up (63.4% of total reoperations). A total of 34 (21.3%) patients had failures overall, and the 5- and 10-year survival rates were 86.2% and 81.8%, respectively. Failure was independently associated with greater body mass index, longer symptom duration, number of previous procedures, and previous failed cartilage debridement. Athletes were protected against failure. Survival rates over time were not affected by OCA site (P = .154), previous cartilage or meniscal procedure (P = .287 and P = .284, respectively), or concomitant procedures at the time of OCA transplant (P = .140). CONCLUSION OCA transplant was associated with significant clinical improvement and durability at mid- to long-term follow-up, with 5- and 10-year survival rates of 86.2% and 81.8%, respectively. Maintenance of CSOs can be expected in the majority of patients at a mean of 7.7 years after OCA transplant. Although the reoperation rate was high (39.4%) and could have adversely affected chances of maintaining MCID, most patients did not have failure at long-term follow-up.
Collapse
Affiliation(s)
- Ron Gilat
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, USA.,Department of Orthopaedic Surgery, Shamir Medical Center and Tel Aviv University, Tel Aviv, Israel
| | - Eric D Haunschild
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, USA
| | - Hailey P Huddleston
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, USA
| | - Tracy M Tauro
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, USA
| | - Sumit Patel
- Chicago Medical School at Rosalind Franklin University, Chicago, Illinois, USA
| | - Theodore S Wolfson
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, USA
| | - Kevin C Parvaresh
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, USA
| | - Adam B Yanke
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, USA
| | - Brian J Cole
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
37
|
Banerjee S, Sahanand KS. Managing Chondral Lesions: A Literature Review and Evidence-Based Clinical Guidelines. Indian J Orthop 2021; 55:252-262. [PMID: 33927804 PMCID: PMC8046678 DOI: 10.1007/s43465-021-00355-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/05/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Articular cartilage lesions are becoming increasingly common. Optimum diagnosis and management of chondral defects cause a lot of dilemma. A number of surgical methods have been reported in the literature for treating focal cartilage defects. There is a lack of consensus on the most effective management strategy, with newer surgical and cell-based treatments being advocated regularly. STUDY DESIGN AND METHODS A clinical review is constructed by appraising the published literature about clinical evaluation and diagnostic modalities for articular cartilage defects and subsequent surgical procedures, management strategies employed for such lesions. Prominent available databases (PUBMED, EMBASE, Cochrane) were also searched for trials comparing functional outcomes following cartilage procedures. Synthesis of a practical management guideline is then attempted based on the evidence assessed. RESULTS Systematic examination and optimal use of diagnostic imaging are an important facet of cartilage defect management. Patient and lesion factors greatly influence the outcome of cartilage procedures and must be considered while planning management. Smaller lesions < 2 cm2 respond well to all treatment modalities. Autologous osteochondral transplants (OATs) are effective in high activity individuals with intermediate lesions. For larger lesions > 4 cm2, newer generation autologous chondrocyte implantation (ACI) has shown promising and durable results. Stem cells with scaffolds may provide an alternate option. Orthobiologics are a useful adjunct to the surgical procedures, but need further evaluation. CONCLUSIONS Most treatment modalities have their role in appropriate cases and management needs to be individualized for patients. The search for the perfect cartilage restoration procedure continues.
Collapse
Affiliation(s)
- Sumit Banerjee
- Department of Orthopedics, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342001 India
| | | |
Collapse
|
38
|
[Reconstruction of large osteochondral defects of the distal femur and proximal tibia : Adaptation of fresh frozen allografts using 3D-printed models]. Unfallchirurg 2021; 124:74-79. [PMID: 32776223 PMCID: PMC7810632 DOI: 10.1007/s00113-020-00846-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Die Rekonstruktion großer osteochondraler Defekte stellt nach wie vor eine Herausforderung in der muskuloskeletalen Chirurgie dar. Frisch gefrorene Allografts sind eine häufig genutzte Ressource für die Behandlung solcher Gewebedefekte. Darüber hinaus ermöglichen 3D-gedruckte Kunststoffmodelle vielfältige Optionen in der präoperativen Planung und bei der intraoperativen Anpassung der Transplantate, sodass sie optimal einheilen und das bestmögliche funktionelle Ergebnis für den Patienten erreicht wird.
Collapse
|
39
|
Cinats D, Miller S, Abusara Z, Heard SM, Hutchison C, Schachar N, Timmermann S. Evolution of a Novel Tissue Preservation Protocol to Optimize Osteochondral Transplantation Outcomes. Cartilage 2021; 12:31-41. [PMID: 30463421 PMCID: PMC7755968 DOI: 10.1177/1947603518812557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE Osteochondral allograft transplantation is a procedure to treat focal osteochondral lesions (OCLs), but is limited by tissue availability, the quality of transplanted tissue, and inconsistent storage protocols. The objective of this study was to assess the clinical outcomes of a novel tissue procurement, storage, and quality control protocol in treating OCLs. DESIGN Prospective case series. Donor cadaveric tissue was processed, stored, and the tissue quality analyzed using the unique tissue preservation protocol developed at our institution. Advanced cross-sectional imaging was used to size match donor tissue with recipient patients. Osteochondral allografts were transplanted using the Arthrex Allograft OATS. Patients were evaluated with the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Knee injury and Osteoarthritis Outcome Score (KOOS), visual analog scale (VAS), and 36-Item Short Form Survey (SF-36) preoperatively and at 1 year and 2 years postoperatively. RESULTS Twenty patients (17 knees, 3 shoulders) were included in the study. There was a significant improvement in the following scores: overall WOMAC score, WOMAC function and pain subcategories; KOOS pain, knee-related symptoms, activities of daily living, sports and recreation, and quality of life; SF-36 physical functioning, physical role, pain, and social functioning subcategories; and VAS at all time points postoperatively. There was a significant improvement in WOMAC stiffness at 2 years postoperatively. There were 2 failures, defined by graft subsidence and persistent pain requiring reoperation. CONCLUSION The protocol developed at our institution for OAT resulted in significant clinical improvement in patients with OCLs and is an improvement on existing tissue storage techniques.
Collapse
Affiliation(s)
- David Cinats
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada,David Cinats, Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| | - Sue Miller
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ziad Abusara
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - S. Mark Heard
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada,Banff Sport Medicine, Banff, Alberta, Canada
| | - Carol Hutchison
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Norman Schachar
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Scott Timmermann
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
40
|
Luk J, Stoker AM, Teixeiro E, Kuroki K, Schreiner AJ, Stannard JP, Wissman R, Cook JL. Systematic Review of Osteochondral Allograft Transplant Immunology: How We Can Further Optimize Outcomes. J Knee Surg 2021; 34:30-38. [PMID: 33389738 DOI: 10.1055/s-0040-1721670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the growing success for osteochondral allograft (OCA) transplantation in treating large articular cartilage lesions in multiple joints, associated revision and failure rates are still higher than desired. While immunorejection responses have not been documented, the effects of the host's immune responses on OCA transplantation failures have not been thoroughly characterized. The objective of this study was to systematically review clinically relevant peer-reviewed evidence pertaining to the immunology of OCAs to elucidate theragnostic strategies for improving functional graft survival and outcomes for patients undergoing OCA transplantation. This systematic review of Cochrane Central Register of Controlled Trials, the Cochrane Database of Systematic Reviews, MEDLINE, PubMed, and EMBASE suggests that host immune responses play key roles in incorporation and functional survival of OCA transplants. OCA rejection has not been reported; however, graft integration through creeping substitution is reliant on host immune responses. Prolonged inflammation, diminished osteogenic potential for healing and incorporation, and relative bioburden are mechanisms that may be influenced by the immune system and contribute to undesirable outcomes after OCA transplantation. Based on the safety and efficacy of OCA transplantation and its associated benefits to a large and growing patient population, basic, preclinical, and clinical osteoimmunological studies on OCA transplantation that comprehensively assess and correlate cellular, molecular, histologic, biomechanical, biomarkers, diagnostic imaging, arthroscopic, functional, and patient-reported outcome measures are of high interest and importance.
Collapse
Affiliation(s)
- Josephine Luk
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Aaron M Stoker
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri
| | - Keiichi Kuroki
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
| | - Anna J Schreiner
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,BG Center for Trauma and Reconstructive Surgery, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - James P Stannard
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Robert Wissman
- Department of Radiology, University of Missouri, Columbia, Missouri
| | - James L Cook
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| |
Collapse
|
41
|
Zhou L, Gjvm VO, Malda J, Stoddart MJ, Lai Y, Richards RG, Ki-Wai Ho K, Qin L. Innovative Tissue-Engineered Strategies for Osteochondral Defect Repair and Regeneration: Current Progress and Challenges. Adv Healthc Mater 2020; 9:e2001008. [PMID: 33103381 DOI: 10.1002/adhm.202001008] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/19/2020] [Indexed: 12/20/2022]
Abstract
Clinical treatments for the repair of osteochondral defects (OCD) are merely palliative, not completely curative, and thus enormously unfulfilled challenges. With the in-depth studies of biology, medicine, materials, and engineering technology, the conception of OCD repair and regeneration should be renewed. During the past decades, many innovative tissue-engineered approaches for repairing and regenerating damaged osteochondral units have been widely explored. Various scaffold-free and scaffold-based strategies, such as monophasic, biphasic, and currently fabricated multiphasic and gradient architectures have been proposed and evaluated. Meanwhile, progenitor cells and tissue-specific cells have also been intensively investigated in vivo as well as ex vivo. Concerning bioactive factors and drugs, they have been combined with scaffolds and/or living cells, and even released in a spatiotemporally controlled manner. Although tremendous progress has been achieved, further research and development (R&D) is needed to convert preclinical outcomes into clinical applications. Here, the osteochondral unit structure, its defect classifications, and diagnosis are summarized. Commonly used clinical reparative techniques, tissue-engineered strategies, emerging 3D-bioprinting technologies, and the status of their clinical applications are discussed. Existing challenges to translation are also discussed and potential solutions for future R&D directions are proposed.
Collapse
Affiliation(s)
- Liangbin Zhou
- Musculoskeletal Research Laboratory of Department of Orthopedics & Traumatology, and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Van Osch Gjvm
- Department of Orthopedics and Department of Otorhinolaryngology, Erasmus MC, University Medical Center, Rotterdam, 3000 CA, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Delft, 2600 AA, The Netherlands
| | - Jos Malda
- Department of Orthopaedics of University Medical Center Utrecht, and Department of Clinical Sciences of Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CS, The Netherlands
| | - Martin J Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, Davos, CH 7270, Switzerland
| | - Yuxiao Lai
- Centre for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518000, China
| | - R Geoff Richards
- AO Research Institute Davos, Clavadelerstrasse 8, Davos, CH 7270, Switzerland
| | - Kevin Ki-Wai Ho
- Musculoskeletal Research Laboratory of Department of Orthopedics & Traumatology, and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopedics & Traumatology, and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
- Centre for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518000, China
| |
Collapse
|
42
|
Everhart JS, Harris KM, Schiele SE, Abouljoud M, Eikenberry A, Emery CF, Flanigan DC. Individual Coping Strategies Are Associated with Patient-Reported Satisfaction upon Completion of Rehabilitation following Sports-Related Knee Surgery. J Knee Surg 2020; 33:1225-1231. [PMID: 31284319 DOI: 10.1055/s-0039-1693416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We sought to determine whether individual coping strategies and optimism are associated with satisfaction after sports-related knee surgery at the time of rehabilitation completion and whether the association between coping strategies/optimism and satisfaction varies by surgical procedure or length of rehabilitation. A total of 104 recreational and competitive athletes who underwent knee surgery completed preoperative assessments for intrinsic optimism using the revised Life Orientation Test and coping strategies using the brief Coping Orientations to the Problem Experience inventory. Postoperative assessments at completion of rehabilitation (mean: 5.5-month follow-up.; maximum: 15 months) included satisfaction with surgery, return to prior level of sport, and International Knee Documentation Committee (IKDC-S) symptom scores. Eighty-one percent were satisfied after completion of rehabilitation with a 68% return to prior level of sport. Irrespective of surgical procedure or length of rehabilitation (p > 0.25, all comparisons), greater reliance on others for emotional support as a coping mechanism increased risk of dissatisfaction after surgery (per point: odds ratio [OR]: 1.75; confidence interval [CI]: 1.13-2.92; p = 0.01), whereas greater use of positive reframing as a coping mechanism was protective (per point: OR: 0.43; CI: 0.21-0.82; p = 0.009). Intrinsic optimism was not predictive of postoperative satisfaction (p = 0.71). Satisfied patients had mean 13.5 points higher IKDC-S scores at follow-up than unsatisfied patients (p = 0.001). Patients who returned to prior level of sport had significantly higher satisfaction scores than patients who had not. Irrespective of surgical procedure or length of rehabilitation, use of positive reframing and reliance on others for emotional support are positive and negative predictors, respectively, of satisfaction after sports-related knee surgery. Preoperative optimism is not predictive of postoperative satisfaction.
Collapse
Affiliation(s)
- Joshua S Everhart
- Sports Medicine, Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Kristie M Harris
- Department of Psychology, the Ohio State University, Columbus, Ohio
| | - Steven E Schiele
- Department of Psychology, the Ohio State University, Columbus, Ohio
| | - Moneer Abouljoud
- Sports Medicine, Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Alexander Eikenberry
- Sports Medicine, Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Charles F Emery
- Department of Psychology, the Ohio State University, Columbus, Ohio
| | - David C Flanigan
- Sports Medicine, Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
43
|
Schreiner AJ, Stannard JP, Cook CR, Oladeji LO, Smith PA, Rucinski K, Cook JL. Initial clinical outcomes comparing frozen versus fresh meniscus allograft transplants. Knee 2020; 27:1811-1820. [PMID: 33197821 DOI: 10.1016/j.knee.2020.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/18/2020] [Accepted: 09/20/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND To evaluate initial clinical outcomes using fresh meniscal allografts with high cell viability at transplantation time and meniscotibial ligament (MTL) reconstruction (Fresh) in comparison to standard fresh-frozen (Frozen) meniscus allograft transplantation (MAT). METHODS Patients treated for medial and/or lateral meniscal deficiency using either Fresh or Frozen MAT with minimum of 1-year follow-up were identified from a prospective registry. Patient demographics, prior surgeries, MAT surgery data, complications, revisions, and failures were documented. Functional outcome scores were collected preoperatively, and 6 months and yearly after surgery and radiographic joint space measurements were performed. Treatment cohorts were compared for statistically significant (P < 0.005) differences using t-Tests and Fisher's exact tests. RESULTS Twenty-seven patients (14 Fresh, 13 Frozen) met inclusion criteria and showed comparable characteristics. For Fresh MAT + MTL, 10 medial, two lateral, and two medial + lateral MAT were performed. For Frozen MAT, nine medial, and four lateral MAT were performed. There was significantly more improvement in the Fresh cohort compared to the Frozen cohort for VAS pain (P = 0.014), PROMIS Physical Function (P = 0.036) and Single Assessment Numeric Evaluation (P = 0.033) from preoperatively to 2 years postoperatively. Tegner Activity Scale and PROMIS Mobility score showed no significant differences. The International Knee Documentation Committee score revealed a clinically meaningful change for the Fresh group. Radiographic measurements showed no significant differences between groups. There were two Fresh MAT + MTL revisions and one conversion to TKA in each cohort. CONCLUSIONS Fresh MAT + MTL is safe and associated with potential advantages with respect to initial pain relief and function compared to standard frozen MAT.
Collapse
Affiliation(s)
- Anna J Schreiner
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA; BG Center for Trauma and Reconstructive Surgery, Eberhard Karls University of Tübingen, Tübingen, Germany; Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Department of Orthopaedic Surgery, Columbia, MO, USA
| | - James P Stannard
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA; Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Department of Orthopaedic Surgery, Columbia, MO, USA; Mizzou BioJoint Center, University of Missouri Department of Orthopaedic Surgery, Columbia, MO, USA
| | - Cristi R Cook
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA; Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Department of Orthopaedic Surgery, Columbia, MO, USA
| | - Lasun O Oladeji
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA; Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Department of Orthopaedic Surgery, Columbia, MO, USA
| | - Patrick A Smith
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA; Columbia Orthopaedic Group, Columbia, MO, USA
| | - Kylee Rucinski
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA; Mizzou BioJoint Center, University of Missouri Department of Orthopaedic Surgery, Columbia, MO, USA
| | - James L Cook
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA; Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Department of Orthopaedic Surgery, Columbia, MO, USA; Mizzou BioJoint Center, University of Missouri Department of Orthopaedic Surgery, Columbia, MO, USA.
| |
Collapse
|
44
|
Schreiner AJ, Stoker AM, Bozynski CC, Kuroki K, Stannard JP, Cook JL. Clinical Application of the Basic Science of Articular Cartilage Pathology and Treatment. J Knee Surg 2020; 33:1056-1068. [PMID: 32583400 DOI: 10.1055/s-0040-1712944] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The joint is an organ with each tissue playing critical roles in health and disease. Intact articular cartilage is an exquisite tissue that withstands incredible biologic and biomechanical demands in allowing movement and function, which is why hyaline cartilage must be maintained within a very narrow range of biochemical composition and morphologic architecture to meet demands while maintaining health and integrity. Unfortunately, insult, injury, and/or aging can initiate a cascade of events that result in erosion, degradation, and loss of articular cartilage such that joint pain and dysfunction ensue. Importantly, articular cartilage pathology affects the health of the entire joint and therefore should not be considered or addressed in isolation. Treating articular cartilage lesions is challenging because left alone, the tissue is incapable of regeneration or highly functional and durable repair. Nonoperative treatments can alleviate symptoms associated with cartilage pathology but are not curative or lasting. Current surgical treatments range from stimulation of intrinsic repair to whole-surface and whole-joint restoration. Unfortunately, there is a relative paucity of prospective, randomized controlled, or well-designed cohort-based clinical trials with respect to cartilage repair and restoration surgeries, such that there is a gap in knowledge that must be addressed to determine optimal treatment strategies for this ubiquitous problem in orthopedic health care. This review article discusses the basic science rationale and principles that influence pathology, symptoms, treatment algorithms, and outcomes associated with articular cartilage defects in the knee.
Collapse
Affiliation(s)
- Anna J Schreiner
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri.,BG Center for Trauma and Reconstructive Surgery, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Aaron M Stoker
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Chantelle C Bozynski
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Keiichi Kuroki
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
| | - James P Stannard
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - James L Cook
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| |
Collapse
|
45
|
Wu Y, Ayan B, Moncal KK, Kang Y, Dhawan A, Koduru SV, Ravnic DJ, Kamal F, Ozbolat IT. Hybrid Bioprinting of Zonally Stratified Human Articular Cartilage Using Scaffold-Free Tissue Strands as Building Blocks. Adv Healthc Mater 2020; 9:e2001657. [PMID: 33073548 PMCID: PMC7677219 DOI: 10.1002/adhm.202001657] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Indexed: 01/24/2023]
Abstract
The heterogeneous and anisotropic articular cartilage is generally studied as a layered structure of "zones" with unique composition and architecture, which is difficult to recapitulate using current approaches. A novel hybrid bioprinting strategy is presented here to generate zonally stratified cartilage. Scaffold-free tissue strands (TSs) are made of human adipose-derived stem cells (ADSCs) or predifferentiated ADSCs. Cartilage TSs with predifferentiated ADSCs exhibit improved mechanical properties and upregulated expression of cartilage-specific markers at both transcription and protein levels as compared to TSs with ADSCs being differentiated in the form of strands and TSs of nontransfected ADSCs. Using the novel hybrid approach integrating new aspiration-assisted and extrusion-based bioprinting techniques, the bioprinting of zonally stratified cartilage with vertically aligned TSs at the bottom zone and horizontally aligned TSs at the superficial zone is demonstrated, in which collagen fibers are aligned with designated orientation in each zone imitating the anatomical regions and matrix orientation of native articular cartilage. In addition, mechanical testing study reveals a compression modulus of ≈1.1 MPa, which is similar to that of human articular cartilage. The prominent findings highlight the potential of this novel bioprinting approach for building biologically, mechanically, and histologically relevant cartilage for tissue engineering purposes.
Collapse
Affiliation(s)
- Yang Wu
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Bugra Ayan
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Kazim K Moncal
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Youngnam Kang
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Aman Dhawan
- Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Srinivas V Koduru
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Dino J Ravnic
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Fadia Kamal
- Center for Orthopedic Research and Translational Science, Department of Orthopedics and Rehabilitation, Penn State University, College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
- Department of Pharmacology, Penn State University, College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Biomedical Engineering Department, Penn State University, University Park, PA, 16802, USA
- Materials Research Institute, Penn State University, University Park, PA, 16802, USA
| |
Collapse
|
46
|
Chien A, Weaver JS, Kinne E, Omar I. Magnetic resonance imaging of the knee. Pol J Radiol 2020; 85:e509-e531. [PMID: 33101555 PMCID: PMC7571514 DOI: 10.5114/pjr.2020.99415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/23/2020] [Indexed: 01/11/2023] Open
Abstract
Knee pain is frequently seen in patients of all ages, with a wide range of possible aetiologies. Magnetic resonance imaging (MRI) of the knee is a common diagnostic examination performed for detecting and characterising acute and chronic internal derangement injuries of the knee and helps guide patient management. This article reviews the current clinical practice of MRI evaluation and interpretation of meniscal, ligamentous, cartilaginous, and synovial disorders within the knee that are commonly encountered.
Collapse
Affiliation(s)
| | | | | | - Imran Omar
- Northwestern University Feinberg School of Medicine, USA
| |
Collapse
|
47
|
Franz A, Bittersohl B, Beitzel K. Biologische Knorpelersatztherapieverfahren an der Schulter. ARTHROSKOPIE 2020. [DOI: 10.1007/s00142-020-00387-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Degenerative osteoarthritis a reversible chronic disease. Regen Ther 2020; 15:149-160. [PMID: 33426213 PMCID: PMC7770340 DOI: 10.1016/j.reth.2020.07.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is the most common chronic musculoskeletal disorder. It can affect any joint and is the most frequent single cause of disability in older adults. OA is a progressive degenerative disease involving the entire joint structure in a vicious circle that includes the capsule-bursa tissue inflammation, synovial fluid modifications, cartilage breakdown and erosions, osteochondral inflammatory damage leading to bone erosion and distortion. Research has identified the initial inflammatory-immunologic process that starts this vicious cycle leading to so-called early OA. Research has also identified the role played in the disease advancement by synoviocytes type A and B, chondrocytes, extracellular matrix, local immune-inflammatory mediators and proteases. This article investigates the joint-resident MSCs that play an essential local homeostatic role and regulate cell turn over and tissue repair. Resident MSCs establish and maintain a local regenerative microenvironment. The understanding of OA physiopathology clarifies the core mechanisms by which minimally invasive interventions might be able to halt and reverse the course of early stage OA. Interventions employing PRP, MSCs and exosomes are considered in this article.
Collapse
|
49
|
Campos Y, Almirall A, Fuentes G, Bloem HL, Kaijzel EL, Cruz LJ. Tissue Engineering: An Alternative to Repair Cartilage. TISSUE ENGINEERING PART B-REVIEWS 2020; 25:357-373. [PMID: 30913997 DOI: 10.1089/ten.teb.2018.0330] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herein we review the state-of-the-art in tissue engineering for repair of articular cartilage. First, we describe the molecular, cellular, and histologic structure and function of endogenous cartilage, focusing on chondrocytes, collagens, extracellular matrix, and proteoglycans. We then explore in vitro cell culture on scaffolds, discussing the difficulties involved in maintaining or obtaining a chondrocytic phenotype. Next, we discuss the diverse compounds and designs used for these scaffolds, including natural and synthetic biomaterials and porous, fibrous, and multilayer architectures. We then report on the mechanical properties of different cell-loaded scaffolds, and the success of these scaffolds following in vivo implantation in small animals, in terms of generating tissue that structurally and functionally resembles native tissue. Last, we highlight future trends in this field. We conclude that despite major technical advances made over the past 15 years, and continually improving results in cartilage repair experiments in animals, the development of clinically useful implants for regeneration of articular cartilage remains a challenge
Collapse
Affiliation(s)
- Yaima Campos
- 1Biomaterials Center, Havana University, LA Habana, Cuba.,2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Gastón Fuentes
- 1Biomaterials Center, Havana University, LA Habana, Cuba.,2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans L Bloem
- 2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric L Kaijzel
- 2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Luis J Cruz
- 2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
50
|
Aae TF, Lian ØB, Årøen A, Engebretsen L, Randsborg PH. Compensation claims after knee cartilage surgery is rare. A registry-based study from Scandinavia from 2010 to 2015. BMC Musculoskelet Disord 2020; 21:287. [PMID: 32384890 PMCID: PMC7206764 DOI: 10.1186/s12891-020-03311-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/23/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Focal cartilage defects (FCDs) in the knee joint has a high prevalence. A broad range of treatment options exists for symptomatic patients. Knowledge of patient compensation claims following surgical treatment of FCDs is missing. The purpose of this study is to evaluate compensation claims filed to the Scandinavian registries for patient compensation following treatment of FCDs in the knee joint from 2010 to 2015 and identify possible areas of improvement. METHODS A cross-sectional study design was used to obtain all complaints following surgical treatment of FCDs from the Scandinavian registries from 2010 to 2015. Data such as age, gender, type of treatment, type of complaint, reason of verdict and amount of compensation were collected and systematically analyzed. RESULTS 103 patients filed a compensation claim. 43 had received debridement (41.7%), 54 microfracture (MF) (52.4%), 3 mosaicplasty (2.9%) and 3 autologous chondrocyte implantation (ACI) (2.9%). Of the 103 claims, 36 were granted (35%). 21 following debridement (58.3%), 13 after MF (36.1%), 1 following mosaicplasty (2.8%) and 1 after ACI (2.8%). The most common reason for complaint was infection (22.1%), of which 89% were granted. The average compensation was €24.457 (range €209 - €458.943). CONCLUSION Compensation claims following surgical treatment of knee cartilage injuries in Scandinavia are rare. Establishing nationwide cartilage registries can add further knowledge on this troublesome disease.
Collapse
Affiliation(s)
- Tommy Frøseth Aae
- Department of Orthopedic Surgery, Kristiansund Hospital, 6518 Kristiansund, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øystein Bjerkestrand Lian
- Department of Orthopedic Surgery, Kristiansund Hospital, 6518 Kristiansund, Norway
- Institute of Neuromedicine, Faculty of Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Asbjørn Årøen
- Department of Orthopedic Surgery, Akershus University Hospital, 1478 Lørenskog, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, 1478 Lørenskog, Norway
- Oslo Sports Trauma Research Center (OSTRC), Norwegian School of Sports Sciences, postbox 4014 Ullevål Stadion, 0806 Oslo, Norway
| | - Lars Engebretsen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Oslo Sports Trauma Research Center (OSTRC), Norwegian School of Sports Sciences, postbox 4014 Ullevål Stadion, 0806 Oslo, Norway
- Department of Orthopedic Surgery, Oslo University Hospital, 0450 Oslo, Norway
| | - Per-Henrik Randsborg
- Department of Orthopedic Surgery, Akershus University Hospital, 1478 Lørenskog, Norway
| |
Collapse
|