1
|
Scapin G, Cagdas E, Grav LM, Lewis NE, Goletz S, Hafkenscheid L. Implications of glycosylation for the development of selected cytokines and their derivatives for medical use. Biotechnol Adv 2024; 77:108467. [PMID: 39447666 DOI: 10.1016/j.biotechadv.2024.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Cytokines are important regulators of immune responses, making them attractive targets for autoimmune diseases and cancer therapeutics. Yet, the significance of cytokine glycosylation remains underestimated. Many cytokines carry N- and O-glycans and some even undergo C-mannosylation. Recombinant cytokines produced in heterologous host cells may lack glycans or exhibit a different glycosylation pattern such as varying levels of galactosylation, sialylation, fucosylation or xylose addition compared to their human counterparts, potentially impacting critical immune interactions. We focused on cytokines that are currently utilized or designed in advanced therapeutic formats, including immunocytokines, fusokines, engager cytokines, and genetically engineered 'supercytokines.' Despite the innovative designs of these cytokine derivatives, their glycosylation patterns have not been extensively studied. By examining the glycosylation of the human native cytokines, G-CSF and GM-CSF, interferons β and γ, TNF-α and interleukins-2, -3 -4, -6, -7, -9, -12, -13, -15, -17A, -21, and - 22, we aim to assess its potential impact on their therapeutic derivatives. Understanding the glycosylation of the native cytokines could provide critical insights into the safety, efficacy, and functionality of these next-generation cytokine therapies, affecting factors such as stability, bioactivity, antigenicity, and half-life. This knowledge can guide the choice of optimal expression hosts for production and advance the development of effective cytokine-based therapeutics and synthetic immunology drugs.
Collapse
Affiliation(s)
- Giulia Scapin
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Ece Cagdas
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Lise Marie Grav
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| | - Lise Hafkenscheid
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
2
|
Das PK, Sahoo A, Dasu VV. Current status, and the developments of hosts and expression systems for the production of recombinant human cytokines. Biotechnol Adv 2022; 59:107969. [PMID: 35525478 DOI: 10.1016/j.biotechadv.2022.107969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023]
Abstract
Cytokines consist of peptides, proteins and glycoproteins, which are biological signaling molecules, and boost cell-cell communication in immune reactions to stimulate cellular movements in the place of trauma, inflammation and infection. Recombinant cytokines are designed in such a way that they have generalized immunostimulation action or stimulate specific immune cells when the body encounters immunosuppressive signals from exogenous pathogens or other tumor microenvironments. Recombinant cytokines have improved the treatment processes for numerous diseases. They are also beneficial against novel toxicities that arise due to pharmacologic immunostimulators that lead to an imbalance in the regulation of cytokine. So, the production and use of recombinant human cytokines as therapeutic proteins are significant for medical treatment purposes. For the improved production of recombinant human cytokines, the development of host cells such as bacteria, yeast, fungi, insect, mammal and transgenic plants, and the specific expression systems for individual hosts is necessary. The recent advancements in the field of genetic engineering are beneficial for easy and efficient genetic manipulations for hosts as well as expression cassettes. The use of metabolic engineering and systems biology approaches have tremendous applications in recombinant protein production by generating mathematical models, and analyzing complex biological networks and metabolic pathways via simulations to understand the interconnections between metabolites and genetic behaviors. Further, the bioprocess developments and the optimization of cell culture conditions would enhance recombinant cytokines productivity on large scales.
Collapse
Affiliation(s)
- Prabir Kumar Das
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Veeranki Venkata Dasu
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
3
|
Zhou L, Li Y, Wang H, Zhou Y, Zhu Z. Establishment and characterization of a new embryonic cell line from Helicoverpa armigera (Hübner). In Vitro Cell Dev Biol Anim 2020; 56:559-566. [PMID: 32827128 DOI: 10.1007/s11626-020-00473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/02/2020] [Indexed: 11/28/2022]
Abstract
Here, a new cell line, Ha168, was established from Helicoverpa armigera eggs and has been stably subcultured for over 30 passages in TNM-FH medium supplemented with 10% fetal bovine serum. The cell line consists of round and spindle-shaped cells and several giant cells. The round cells, with a cell diameter of 14.30 ± 2.804 μm, account for 77% of the cells. DNA amplification fingerprinting, random amplified polymorphic DNA analysis, and analysis of the mitochondrial cytochrome c oxidase subunit I gene confirmed that the Ha168 cells were derived from H. armigera. Karyotype analysis revealed the average chromosome number of Ha168 cells to be 71. Growth curves at passage 25 were determined and demonstrated that the cell population doubling time is 56.8 h. No mycoplasma contamination was detected in the cell line. Ha168 cells can be infected by recombinant baculovirus AcMNPV-EGFP, and exogenous protein expression level in this cell line is 70% of that in the Sf9 cell line.
Collapse
Affiliation(s)
- Lin Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yunfei Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Heyuan Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yicheng Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhihui Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
4
|
Devi N, Adivitiya, Khasa YP. A combinatorial approach of N-terminus blocking and codon optimization strategies to enhance the soluble expression of recombinant hIL-7 in E. coli fed-batch culture. Appl Microbiol Biotechnol 2016; 100:9979-9994. [PMID: 27342246 DOI: 10.1007/s00253-016-7683-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/17/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022]
Abstract
Human interleukin-7 (hIL-7) is a therapeutically important cytokine involved in lymphocyte development and survival. In previous reports, a uniformly poor expression of hIL-7 has been shown in Escherichia coli host with the problem of inclusion body formation. In this study, the role of codon optimization and N-terminus blocking using various solubility enhancer fusion tags was explored to improve its soluble expression. The use of codon optimization strategy improved its expression to 80 ± 5 mg/L at shake flask level. The utilization of pelB leader sequence resulted in an unprocessed protein in the form of cytoplasmic inclusion bodies with lower expression yields. The N-terminus fusion of small ubiquitin-like modifier (SUMO), thioredoxin (Trx), and NusA tags increased the expression in the range of 90-140 mg/L, where >90 % of the fusion protein was obtained in soluble form. The fed-batch fermentation of SUMO-tagged hIL-7 protein was optimized at bioreactor level, where a high volumetric product concentration of 2.65 g/L was achieved by controlling the plasmid segregation instability using high antibiotic concentration. The specific product yield (YP/X) and volumetric product concentration were 1.38 and 2.55-fold higher compared to batch results, respectively. A preparative scale affinity chromatography resulted in a high recovery yield of 50.6 mg/L with ∼90 % purity. The conformational property of purified recombinant hIL-7 from CD spectroscopy showed a typical helical structure with 31.5 % α-helix and 26.43 % β-sheet. The biological activity of purified protein was tested using IL-7-dependent murine immature B lymphocyte (2E8) cell line by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide salt (MTT) assay, where it showed a similar biological activity as standard control.
Collapse
Affiliation(s)
- Nirmala Devi
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Adivitiya
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Yogender Pal Khasa
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
5
|
Bleckmann M, Schmelz S, Schinkowski C, Scrima A, van den Heuvel J. Fast plasmid based protein expression analysis in insect cells using an automated SplitGFP screen. Biotechnol Bioeng 2016; 113:1975-83. [PMID: 26913471 PMCID: PMC5069567 DOI: 10.1002/bit.25956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/19/2016] [Accepted: 02/17/2016] [Indexed: 12/29/2022]
Abstract
Recombinant protein expression often presents a bottleneck for the production of proteins for use in many areas of animal‐cell biotechnology. Difficult‐to‐express proteins require the generation of numerous expression constructs, where popular prokaryotic screening systems often fail to identify expression of multi domain or full‐length protein constructs. Post‐translational modified mammalian proteins require an alternative host system such as insect cells using the Baculovirus Expression Vector System (BEVS). Unfortunately this is time‐, labor‐, and cost‐intensive. It is clearly desirable to find an automated and miniaturized fast multi‐sample screening method for protein expression in such systems. With this in mind, in this paper a high‐throughput initial expression screening method is described using an automated Microcultivation system in conjunction with fast plasmid based transient transfection in insect cells for the efficient generation of protein constructs. The applicability of the system is demonstrated for the difficult to express Nucleotide‐binding Oligomerization Domain‐containing protein 2 (NOD2). To enable detection of proper protein expression the rather weak plasmid based expression has been improved by a sensitive inline detection system. Here we present the functionality and application of the sensitive SplitGFP (split green fluorescent protein) detection system in insect cells. The successful expression of constructs is monitored by direct measurement of the fluorescence in the BioLector Microcultivation system. Additionally, we show that the results obtained with our plasmid‐based SplitGFP protein expression screen correlate directly to the level of soluble protein produced in BEVS. In conclusion our automated SplitGFP screen outlines a sensitive, fast and reliable method reducing the time and costs required for identifying the optimal expression construct prior to large scale protein production in baculovirus infected insect cells. Biotechnol. Bioeng. 2016;113: 1975–1983. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maren Bleckmann
- Recombinant Protein Expression, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Stefan Schmelz
- Structural Biology of Autophagy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christian Schinkowski
- Recombinant Protein Expression, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Andrea Scrima
- Structural Biology of Autophagy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Joop van den Heuvel
- Recombinant Protein Expression, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| |
Collapse
|
6
|
Attempts to express the A1-GMCSF immunotoxin in the baculovirus expression vector system. Biosci Biotechnol Biochem 2012; 76:749-54. [PMID: 22484943 DOI: 10.1271/bbb.110862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Immunotoxins are fusion proteins consisting of two elements, a targeting and a toxin moiety, and are designed for specific elimination of tumor cells. Previously we expressed a recombinant fusion protein consisting of the toxic fragment of Shiga toxin (A1) and GMCSF (A1-GMCSF) in Escherichia coli, and evaluated its cytotoxic properties in acute myeloid leukemia and colon carcinoma cell lines. In view of the specific cytotoxic effects of this immunotoxin, further detailed in-vitro and preclinical studies were undertaken. Large amounts of the recombinant protein of high purity and free of unwanted side products, such as lipopolysaccharides (LPS), were required. Since GMCSF is of mammalian origin and it requires proper disulfide bond formation, we intended to use the baculovirus expression vector system (BEVS) for the expression of the recombinant fusion protein. However, despite previous reports on the expression of several other immunotoxins by this system, the A1 derived fusion proteins revealed an inhibitory effect on baculoviral particle formation and even caused cell death in insect cells. This observation was further pursued and confirmed by the use of other baculoviral specific promoters. The salient features of this finding are described below.
Collapse
|
7
|
BacMam virus transduced cardiomyoblasts can be used for myocardial transplantation using AP-PEG-A microcapsules: molecular cloning, preparation, and in vitro analysis. J Biomed Biotechnol 2011; 2010:858094. [PMID: 21331169 PMCID: PMC3034997 DOI: 10.1155/2010/858094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 09/14/2010] [Accepted: 11/10/2010] [Indexed: 02/01/2023] Open
Abstract
The potential of genetically modified cardiomyoblasts in treating damaged myocardium is well known. However, efficient delivery of these cells is of major concern during treatment. The limiting factors are the massive cell death that occurs soon after their intramyocardial transplantation into the beating heart. To address these problems, we generated recombinant baculoviruses (BacMam viruses) which efficiently transduced cardiomyoblast cells under optimized conditions. These genetically modified cells were then protected in a new polymeric microcapsule using poly-ethylene-glycol (PEG), alginate, and poly-L-lysine (PLL) polymers for efficient delivery. Results showed that microcapsules maintain cell viability and support cell proliferation for at least 30 days. The capsules exhibit strong immunoprotective potential and have high mechanical and osmotic stability with more than 70% intact capsules. The encased transduced cells showed a rapid transgene expression inside the capsule for at least 15 days. However, preclinical studies are needed to further explore its long-term functional benefits.
Collapse
|
8
|
Alahmad Y, Thuy Tran N, Duboeuf J, Grégoire A, Rancé I, Taverna M. CZE for glycoform profiling and quality assessment of recombinant human interleukin-7. Electrophoresis 2009; 30:2347-54. [DOI: 10.1002/elps.200800789] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
He F, Madhan S, Kwang J. Baculovirus vector as a delivery vehicle for influenza vaccines. Expert Rev Vaccines 2009; 8:455-67. [PMID: 19348561 DOI: 10.1586/erv.09.2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The baculovirus vector has emerged as an efficient delivery vehicle for influenza vaccines. In addition to the ease and safety in expeditious production, recent improvements in baculovirus engineering to display foreign proteins on the surface and to express transgenes with suitable promoters in various cell lines have become milestones in the development of the baculovirus expression system. Surface-displayed and shuttle promoter-mediated baculovirus vaccines for influenza present advantages in immunogenicity and safety, as studied in several animal models. A variety of strategies, including the modification of envelope proteins for surface display, the selection of novel promoters for in vivo transductions and advancements in downstream processing, aid the improvement of baculovirus-based influenza vaccines and represent progress toward next-generation vaccines for influenza.
Collapse
Affiliation(s)
- Fang He
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, 117604 Singapore.
| | | | | |
Collapse
|
10
|
Nonviral production of human interleukin-7 in spodoptera frugiperda insect cells as a soluble recombinant protein. J Biomed Biotechnol 2008; 2009:637942. [PMID: 18949045 PMCID: PMC2568039 DOI: 10.1155/2009/637942] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 05/14/2008] [Accepted: 08/07/2008] [Indexed: 12/03/2022] Open
Abstract
Human interleukin-7 (hIL-7) is a cytokine secreted by the stromal cells of the red marrow. It is important for proliferation during certain stages of B-cell maturation and for T and NK cell survival, development, and homeostasis. It is a critical growth factor for enhancement and recovery of the immune T-cell. Because of its strong immunomodulatory effects, hIL-7 may become a valuable supplementary agent for immunotherapeutical treatments in patients with HIV infection or immunodeficiency. Human IL-7 has previously been produced in various protein expression systems. In this paper, we present an alternative expression system, in Spodoptera frugiperda cells, for the production of hIL-7 using nonlytic vector systems. This system allows generation of correctly translated and accurately processed heterologous proteins as soluble recombinant proteins. Here we report plasmid construction, transfection, and consequent expression of hIL-7 using this nonlytic insect cell expression system. The levels of secreted hIL-7 in a small scale experiment reached a level of 1.7 μg·1−1 under serum-free cell culture conditions.
Collapse
|