1
|
Butiuk AP, Martos MA, Hours RA. Mycelium-bound chlorogenate hydrolase of Aspergillus niger AKU 3302 as a stable immobilized biocatalyst. J Biosci Bioeng 2023:S1389-1723(23)00140-8. [PMID: 37311683 DOI: 10.1016/j.jbiosc.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 06/15/2023]
Abstract
CHase catalyzes chlorogenic acid (CGA) hydrolysis to yield equimolar quinic (QA) and caffeic (CA) acids, products of high value and keen industrial interest. We proposed the preparation and characterization of the nonviable mycelium of Aspergillus niger AKU 3302 containing a cell-associated CHase (CHase biocatalyst) for application in hydrolyzing the CGA from yerba mate residues to produce QA and CA. When the vegetative mycelium was heated at 55 °C for 30 min, no loss of CHase activity occurred, but vegetative mycelial growth and spore germination ended. The CHase biocatalyst did not limit mass transfer above 100 strokes min-1. The reaction rate increased with catalyst loading and was kinetically controlled. The CHase biocatalyst exhibited suitable biochemical properties (optimum pH 6.5 at 50 °C) and high thermal stability (remaining stable at up to 50 °C for 8 h). The cations in yerba mate extracts did not affect CHase activity. We observed no apparent loss in the activity of the CHase biocatalyst after even 11 batch cycles of continuous use. The biocatalyst retained 85% of its initial activity after 25 days of storage at pH 6.5 and 5 °C. When a yerba mate extract was passed through a glass column packed with the biocatalyst, an effective bioconversion of CGA into CA and QA occurred. CHase activity produced a natural biocatalysis with considerable operational and storage stability; which capability, being a novel biotechnological process, can be used in the bioconversion of CGA from yerba mate residues into CA and QA at a substantially reduced cost.
Collapse
Affiliation(s)
- Ana Paula Butiuk
- School of Exact, Chemical and Life Sciences, Misiones National University, Félix de Azara 1552, N3300LQH Posadas, Misiones, Argentina.
| | - María Alicia Martos
- School of Exact, Chemical and Life Sciences, Misiones National University, Félix de Azara 1552, N3300LQH Posadas, Misiones, Argentina
| | - Roque Alberto Hours
- Research and Development Center for Industrial Fermentation (CINDEFI; UNLP, CONICET La Plata), School of Science, La Plata National University, 47 y 115, B1900ASH La Plata, Argentina; Department of Chemical Engineering, National Technological University-La Plata Regional Faculty (UTN-FRLP), 60 y 124, La Plata, Argentina
| |
Collapse
|
2
|
Qin Y, Qin B, Zhang J, Fu Y, Li Q, Luo F, Luo Y, He H. Purification and enzymatic properties of a new thermostable endoglucanase from Aspergillus oryzae HML366. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2023:10.1007/s10123-023-00322-8. [PMID: 36705789 DOI: 10.1007/s10123-023-00322-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/02/2022] [Accepted: 01/04/2023] [Indexed: 01/28/2023]
Abstract
Aspergillus oryzae HML366 is a newly screened cellulase-producing strain. The endoglucanase HML ED1 from A. oryzae HML366 was quickly purified by a two-step method that combines ammonium sulfate precipitation and strong anion exchange column. SDS-PAGE electrophoresis indicated that the molecular weight of the enzyme was 68 kDa. The optimum temperature of the purified endoglucanase was 60 ℃ and the enzyme activity was stable below 70 ℃. The optimum pH was 6.5, and the enzyme activity was stable at pH between 4.5 and 9.0. The analysis indicated that additional Na+, K+, Ca2+, and Zn2+ reduced the catalytic ability of enzyme to the substrate, but Mn2+ enhanced its catalytic ability to the substrate.The Km and Vmax of the purified endoglucanase were 8.75 mg/mL and 60.24 μmol/min·mg, respectively. In this study, we report for the first time that A. oryzae HML366 can produce a heat-resistant and wide pH tolerant endoglucanase HML ED1, which has potential industrial application value in bioethanol, paper, food, textile, detergent, and pharmaceutical industries.
Collapse
Affiliation(s)
- Yongling Qin
- College of Chemistry and Biological Engineering, Hechi University, Yizhou, 546300, China. .,Guangxi Colleges Universities Key Laboratory of Exploitation and Utilization of Microbial and Botanical Resources, Yizhou, 546300, China. .,Application and Research Center of Agricultural Biotechnology, Hechi University, Yizhou, 546300, China.
| | - Baoshan Qin
- College of Chemistry and Biological Engineering, Hechi University, Yizhou, 546300, China.,Guangxi Colleges Universities Key Laboratory of Exploitation and Utilization of Microbial and Botanical Resources, Yizhou, 546300, China.,Application and Research Center of Agricultural Biotechnology, Hechi University, Yizhou, 546300, China
| | - Jian Zhang
- Guangxi Medical College, Nanning, 530023, China
| | - Yue Fu
- College of Chemistry and Biological Engineering, Hechi University, Yizhou, 546300, China.,Guangxi Colleges Universities Key Laboratory of Exploitation and Utilization of Microbial and Botanical Resources, Yizhou, 546300, China.,Application and Research Center of Agricultural Biotechnology, Hechi University, Yizhou, 546300, China
| | - Qiqian Li
- College of Chemistry and Biological Engineering, Hechi University, Yizhou, 546300, China.,Guangxi Colleges Universities Key Laboratory of Exploitation and Utilization of Microbial and Botanical Resources, Yizhou, 546300, China.,Application and Research Center of Agricultural Biotechnology, Hechi University, Yizhou, 546300, China
| | - Fengfeng Luo
- College of Chemistry and Biological Engineering, Hechi University, Yizhou, 546300, China.,Guangxi Colleges Universities Key Laboratory of Exploitation and Utilization of Microbial and Botanical Resources, Yizhou, 546300, China.,Application and Research Center of Agricultural Biotechnology, Hechi University, Yizhou, 546300, China
| | - Yanmei Luo
- College of Chemistry and Biological Engineering, Hechi University, Yizhou, 546300, China
| | - Haiyan He
- College of Chemistry and Biological Engineering, Hechi University, Yizhou, 546300, China. .,Guangxi Colleges Universities Key Laboratory of Exploitation and Utilization of Microbial and Botanical Resources, Yizhou, 546300, China. .,Application and Research Center of Agricultural Biotechnology, Hechi University, Yizhou, 546300, China.
| |
Collapse
|
3
|
Farag AM, El-Naggar MY, Ghanem KM. 2,4-Dichlorophenol biotransformation using immobilized marine halophilic Bacillus subtilis culture and laccase enzyme: application in wastewater treatment. J Genet Eng Biotechnol 2022; 20:134. [PMID: 36112327 PMCID: PMC9481827 DOI: 10.1186/s43141-022-00417-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/10/2022] [Indexed: 11/30/2022]
Abstract
Background 2,4-Dichlorophenol (2,4-DCP) is a very toxic aromatic compound for humans and the environment and is highly resistant to degradation. Therefore, it is necessary to develop efficient remediation and cost-effective approaches to this pollutant. Microbial enzymes such as laccases can degrade phenols, but limited information is known about immobilized bacterial laccase and their reuse. Methods Immobilization of marine halophilic Bacillus subtilis AAK cultures via entrapment and adsorption techniques and degradation of different phenolic compounds by immobilized cells were estimated. Partial purification and immobilization of laccase enzymes were carried out. In addition, the biodegradation of 2,4-DCP and others contaminated by wastewater was investigated. Results Immobilization of cells and partially purified laccase enzymes by adsorption into 3% alginate increased 2,4-DCP biotransformation compared with free cells and free enzymes. In addition, the reuse of both the immobilized culture and laccase enzymes was evaluated. The highest removal of 2,4-DCP from pulp and paper wastewater samples inoculated by immobilized cells and the immobilized enzyme was 90% and 95%, respectively, at 50 h and 52 h of incubation, compared to free cells and free enzyme. Conclusion The results of this study have revealed the immobilization of a biocatalyst and its laccase enzyme as a promising technique for enhancing the degradation of 2,4-DCP and other toxic phenolic and aromatic compounds. The reuse of the biocatalyst and its laccase enzyme enabled the application of this cost-effective bioremediation strategy. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00417-1.
Collapse
|
4
|
Mohammadi S, Tarrahimofrad H, Arjmand S, Zamani J, Haghbeen K, Aminzadeh S. Expression, characterization, and activity optimization of a novel cellulase from the thermophilic bacteria Cohnella sp. A01. Sci Rep 2022; 12:10301. [PMID: 35717508 PMCID: PMC9206686 DOI: 10.1038/s41598-022-14651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
Cellulases are hydrolytic enzymes with wide scientific and industrial applications. We described a novel cellulase, CelC307, from the thermophilic indigenous Cohnella sp. A01. The 3-D structure of the CelC307 was predicted by comparative modeling. Docking of CelC307 with specific inhibitors and molecular dynamic (MD) simulation revealed that these ligands bound in a non-competitive manner. The CelC307 protein was purified and characterized after recombinant expression in Escherichia coli (E. coli) BL21. Using CMC 1% as the substrate, the thermodynamic values were determined as Km 0.46 mM, kcat 104.30 × 10-3 (S-1), and kcat/Km 226.73 (M-1 S-1). The CelC307 was optimally active at 40 °C and pH 7.0. The culture condition was optimized for improved CelC307 expression using Plackett-Burman and Box-Behnken design as follows: temperature 20 °C, pH 7.5, and inoculation concentration with an OD600 = 1. The endoglucanase activity was positively modulated in the presence of Na+, Li+, Ca2+, 2-mercaptoethanol (2-ME), and glycerol. The thermodynamic parameters calculated for CelC307 confirmed its inherent thermostability. The characterized CelC307 may be a suitable candidate for various biotechnological applications.
Collapse
Affiliation(s)
- Shima Mohammadi
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Tarrahimofrad
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Javad Zamani
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Kamahldin Haghbeen
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
5
|
Immobilization of Urease onto Nanochitosan Enhanced the Enzyme Efficiency: Biophysical Studies and in Vitro Clinical Application on Nephropathy Diabetic Iraqi Patients. JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/8288585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Immobilization of enzymes is an effective method for improving the properties and applications of modern enzymes. There are several supports for enzyme immobilization. Because of its unique features, such as inertness and high surface area, chitosan was widely used to immobilize enzymes. Immobilization of urease onto chitosan is a promising approach to treating high urea levels in the blood, however, the immobilization conditions for the best kinetics and enzyme efficiency are still challenging. Herein, we tried to immobilize urease onto nanochitosan (chitosan NPs) through a cross-linker and study the kinetics (km and
values) and thermodynamics (Ea, ∆H, ∆S, and ∆G) parameters of the enzyme reaction before and after immobilization at different substrate concentration (50, 100, 150, 200, and 250 mg/dl) and incubation temperature (15, 20, 25, 30, 35, and 40°C) under selected optimum conditions. The immobilized urease chitosan NPs was characterized in our previous work using Fourier transform infrared
(FTIR), Atomic force
microscopy (AFM), and
imaged here by scanning electron microscopy
(SEM). Results revealed that the highest efficiency % of immobilization (70.38%) was observed at 750 mg/ml chitosan NPs and phosphate buffer pH 7 at 40°C. With an increase of Km value for the immobilized enzyme, however, the efficiency of the enzyme was significantly higher than the free enzyme,
. In addition, the activation energy of the reaction catalyzed by the immobilized enzyme was lower than that of the free enzyme, which suggests that the active site geometry of the immobilized enzyme was more favorable to accommodate the substrate and thus required less energy than that of the free enzyme. The reaction was endothermic by means of positive ∆H. The immobilized urease enzyme was in vitro applied to blood samples of Iraq nephropathy diabetic patients (n = 35) to investigate the effect on serum urease activity and urea level compared to healthy volunteers. Interestingly, the activity of serum urease significantly increased after adding the immobilized enzyme and the level of urea significantly decreased (
) by ∼1.5 folds. Thus, applying an immobilized urease
to remove urea from blood could be effective in the blood detoxification or dialysis regeneration system of artificial kidney machines.
Collapse
|
6
|
Wan Y, Fan H, Gao L, Li R, Xie M, Wu C, Chen L, Fu G. The Change Mechanism of Structural Characterization and Thermodynamic Properties of Tannase from Aspergillus niger NL112 Under High Temperature. Appl Biochem Biotechnol 2021; 193:2225-2244. [PMID: 33686629 DOI: 10.1007/s12010-021-03488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
Tannase from Aspergillus niger NL112 was purified 5.1-fold with a yield of 50.44% via ultrafiltration, DEAE-Sepharose Fast Flow column chromatography, and Sephadex G-100 column chromatography. The molecular weight of the purified tannase was estimated as 45 kDa. The optimum temperature and pH for its activity were 45 °C and 5.0, respectively. The results of circular dichroism, FT-IR (Fourier transform infrared) spectroscopy, and fluorescence spectra indicated that high temperature could lead to the change of tannase secondary and tertiary structures. Tannase had a greater affinity for tannic acid at 40 °C with a Km value of 2.12 mM and the greatest efficiency hydrolysis (Kcat/Km) at 45 °C. The rate of inactivation (k) increased with the increase of temperature and the half-life (t1/2) gradually decreased. It was found to be 1.0 of the temperature quotient (Q10) value for tannic acid hydrolysis by tannase. The thermodynamic parameters of the interaction system were calculated at various temperatures. The positive enthalpy (ΔH) values and decreasing ΔH values with the increase of temperature indicated that the hydrolysis of tannase was an endothermic process. Our results indicated that elevated temperature could change the tertiary structure of tannase and reduce its thermostability, which caused a gradual decrease of tannase activity with an increase in temperature.
Collapse
Affiliation(s)
- Yin Wan
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Haowei Fan
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Lin Gao
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Ruyi Li
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - ChouFei Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Longyan Chen
- Alentic Microscience Inc., 1344 Summer St, Halifax, NS, B3H 0A8, Canada
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China.
| |
Collapse
|
7
|
Ibrahim E, Mahmoud A, Jones KD, Taylor KE, Hosseney EN, Mills PL, Escudero JM. Kinetics and thermodynamics of thermal inactivation for recombinant Escherichia coli cellulases, cel12B, cel8C, and polygalacturonase, peh28; biocatalysts for biofuel precursor production. J Biochem 2021; 169:109-117. [PMID: 32810224 DOI: 10.1093/jb/mvaa097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/11/2020] [Indexed: 11/13/2022] Open
Abstract
Lignocellulosic biomass conversion using cellulases/polygalacturonases is a process that can be progressively influenced by several determinants involved in cellulose microfibril degradation. This article focuses on the kinetics and thermodynamics of thermal inactivation of recombinant Escherichia coli cellulases, cel12B, cel8C and a polygalacturonase, peh 28, derived from Pectobacterium carotovorum sub sp. carotovorum. Several consensus motifs conferring the enzymes' thermal stability in both cel12B and peh28 model structures have been detailed earlier, which were confirmed for the three enzymes through the current study of their thermal inactivation profiles over the 20-80°C range using the respective activities on carboxymethylcellulose and polygalacturonic acid. Kinetic constants and half-lives of thermal inactivation, inactivation energy, plus inactivation entropies, enthalpies and Gibbs free energies, revealed high stability, less conformational change and protein unfolding for cel12B and peh28 due to thermal denaturation compared to cel8C. The apparent thermal stability of peh28 and cel12B, along with their hydrolytic efficiency on a lignocellulosic biomass conversion as reported previously, makes these enzymes candidates for various industrial applications. Analysis of the Gibbs free energy values suggests that the thermal stabilities of cel12B and peh28 are entropy-controlled over the tested temperature range.
Collapse
Affiliation(s)
- Eman Ibrahim
- Department of Environmental Engineering, Texas A&M University-Kingsville, Kingsville, TX 78363, USA.,Department of Botany and Microbiology, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ahmed Mahmoud
- Department of Environmental Engineering, Texas A&M University-Kingsville, Kingsville, TX 78363, USA
| | - Kim D Jones
- Department of Environmental Engineering, Texas A&M University-Kingsville, Kingsville, TX 78363, USA
| | - Keith E Taylor
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Ebtesam N Hosseney
- Department of Botany and Microbiology, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Patrick L Mills
- Department of Chemical Engineering, Texas A&M University-Kingsville, Kingsville, TX 78363, USA
| | - Jean M Escudero
- Department of Basic Sciences, St. Louis College of Pharmacy, St. Louis, MO 63110-1088, USA
| |
Collapse
|
8
|
Single step immobilization of CMCase within agarose gel matrix: Kinetics and thermodynamic studies. Colloids Surf B Biointerfaces 2021; 200:111583. [PMID: 33548892 DOI: 10.1016/j.colsurfb.2021.111583] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/01/2021] [Accepted: 01/12/2021] [Indexed: 01/01/2023]
Abstract
In the current study, CMCase from Bacillus licheniformis KIBGE-IB2 was immobilized within the matrix of agarose gel through entrapment technique. Maximum immobilization yield (%) of the enzyme was obtained when 2.0 % agarose was used. The activation energy (Ea) of the enzyme increased from 16.38 to 44.08 kJ mol-1 after immobilization. Thermodynamic parameters such as activation energy of deactivation (ΔGd), enthalpy (ΔHd) and entropy (ΔSd) of deactivation, deactivation rate constant (Kd), half-life (t1/2), D-value and z-value were calculated for native/free and immobilized CMCase. The maximum reaction rate (Vmax) of the native enzyme was found to be 8319.47 U ml-1 min-1, which reduced to 7218.1 U ml-1 min-1after immobilization process. However, the Michaelis-Menten constant (Km) value of the enzyme increased from 1.236 to 2.769 mg ml-1 min-1 after immobilization. Immobilized enzyme within agarose gel matrix support can be reuse up to eight reaction cycles. Broad stability profile and improved catalytic properties of the immobilized CMCase indicated that this enzyme can be a plausible candidate to be used in various industrial processes.
Collapse
|
9
|
de Oliveira RL, Dos Santos VLV, da Silva MF, Porto TS. Kinetic/thermodynamic study of immobilized β-fructofuranosidase from Aspergillus tamarii URM4634 in chitosan beads and application on invert sugar production in packed bed reactor. Food Res Int 2020; 137:109730. [PMID: 33233298 DOI: 10.1016/j.foodres.2020.109730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/13/2020] [Accepted: 09/13/2020] [Indexed: 01/14/2023]
Abstract
β-fructofuranosidase (FFase) from Aspergillus tamarii URM4634 was immobilized covalently in chitosan beads. It was characterized biochemically, studied in terms of kinetic and thermodynamic parameters, and applied on conversion of sucrose for invert sugar production in a packed bed reactor (PBR). The optimum reactional conditions were determined and obtained at pH 5.0 and 60 °C. FFase was thermostable at 50-55°C. At 50°C, the enzyme shows longer half-life (t1/2) (594.13 min) and a higher D-value (1,973.64 min). This indicates that immobilized FFase was stable at temperature commonly used in invert sugar production. The following thermodynamic parameters were obtained: activation energy (E*d = 301.57 kJ mol-1), enthalpy (298.76 ≤ ΔH*d ≤ 298.89 kJ mol-1), entropy (579.88 ≤ ΔS*d ≤ 589.27 J K-1 mol-1) and Gibbs free energy (100.29 ≤ ΔG*d ≤ 108.47 kJ mol-1). The high E*d, ΔH*d and ΔG*d values confirmed FFase thermostability. The high and positive values for ΔS*d indicate an increase in disorder due opening of the enzyme structure. The sucrose hydrolysis in PBR showed a maximum invert sugar yield (96.0%) at 15 min of operation. The hydrolysis process remained efficient up to 100 min (70.22%). The results obtained in the present study provide a good indication that immobilized FFase on chitosan beads in PBR is efficient to invert sugar production for food industry.
Collapse
Affiliation(s)
- Rodrigo Lira de Oliveira
- Northeast Biotechnology Network/RENORBIO, Federal Rural University of Pernambuco (UFRPE), Dom Manoel de Medeiros, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Vinícius Luís Vilela Dos Santos
- Academic Unit of Garanhuns/UAG, Federal Rural University of Pernambuco (UFRPE), Av. Bom Pastor, Boa Vista, 55296-901 Garanhuns, PE, Brazil
| | - Marcos Fellipe da Silva
- Academic Unit of Garanhuns/UAG, Federal Rural University of Pernambuco (UFRPE), Av. Bom Pastor, Boa Vista, 55296-901 Garanhuns, PE, Brazil; Bioprocess and Metabolic Engineering Laboratory, Department Food Engineering, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, 80th Monteiro Lobato, 13.083-862, Campinas, São Paulo, Brazil
| | - Tatiana Souza Porto
- Northeast Biotechnology Network/RENORBIO, Federal Rural University of Pernambuco (UFRPE), Dom Manoel de Medeiros, Dois Irmãos, 52171-900 Recife, PE, Brazil; Academic Unit of Garanhuns/UAG, Federal Rural University of Pernambuco (UFRPE), Av. Bom Pastor, Boa Vista, 55296-901 Garanhuns, PE, Brazil.
| |
Collapse
|
10
|
Sharma AK, Kikani BA, Singh SP. Biochemical, thermodynamic and structural characteristics of a biotechnologically compatible alkaline protease from a haloalkaliphilic, Nocardiopsis dassonvillei OK-18. Int J Biol Macromol 2020; 153:680-696. [PMID: 32145232 DOI: 10.1016/j.ijbiomac.2020.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 01/02/2023]
Abstract
This report describes purification strategies, biochemical properties and thermodynamic analysis of an alkaline serine protease from a marine actinomycete, Nocardiopsis dassonvillei strain OK-18. The solvent tolerance, broad thermal-pH stability, favourable kinetics and thermodynamics suggest stability of the enzymatic reaction. The enzyme was active in the range of pH 7-12 and 37-90 °C, optimally at pH 9 and 70 °C. The deactivation rate constant (Kd), half-life (t½), enthalpy (ΔH*), entropy (ΔS*), activation energy (E) and change in free energy (ΔG*) suggested stability and spontaneity of the reaction. β-Sheets as revealed by the Circular dichroism (CD) spectroscopy, were the major elements in the secondary structure of the enzyme, while Fourier-transform infrared spectroscopy (FTIR) indicated the presence of amide I and amide II. Based on the liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) analysis, the amino acid sequence had only 38% similarity with other proteases of Nocardiopsis strains, suggesting its novelty. The Ramachandran Plot revealed the location of the amino acid residues in the most favored region. The blood de-staining, gelatin hydrolysis, silver recovery and deproteinization of crab shells established the biotechnological potential of the enzyme.
Collapse
Affiliation(s)
- Amit K Sharma
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India
| | - Bhavtosh A Kikani
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India.
| |
Collapse
|
11
|
Efficient enzymatic saccharification of macroalgal biomass using a specific thermostable GH 12 endoglucanase from Aspergillus terreus JL1. World J Microbiol Biotechnol 2019; 36:5. [DOI: 10.1007/s11274-019-2779-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 11/29/2019] [Indexed: 11/26/2022]
|
12
|
Mostafa FA, Abdel Wahab WA, Salah HA, Nawwar GA, Esawy MA. Kinetic and thermodynamic characteristic of Aspergillus awamori EM66 levansucrase. Int J Biol Macromol 2018; 119:232-239. [DOI: 10.1016/j.ijbiomac.2018.07.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 11/24/2022]
|
13
|
Conjugation of Agrobacterium radiobacter epoxide hydrolase with ficoll: Catalytic, kinetic and thermodynamic analysis. Int J Biol Macromol 2018; 119:1098-1105. [DOI: 10.1016/j.ijbiomac.2018.08.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 01/11/2023]
|
14
|
Thermodynamics of a Ca2+ dependent, highly thermostable and detergent compatible purified alkaline serine protease from Nocardiopsis xinjiangensis strain OM-6. Int J Biol Macromol 2018; 113:565-574. [DOI: 10.1016/j.ijbiomac.2018.02.157] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 11/18/2022]
|
15
|
Improvement of catalytic, thermodynamics and antifungal activity of constitutive Trichoderma longibrachiatum KT693225 exochitinase by covalent coupling to oxidized polysaccharides. Int J Biol Macromol 2018; 112:179-187. [DOI: 10.1016/j.ijbiomac.2018.01.156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/20/2018] [Accepted: 01/23/2018] [Indexed: 11/19/2022]
|
16
|
Wehaidy HR, Abdel-Naby MA, Shousha WG, Elmallah MIY, Shawky MM. Improving the catalytic, kinetic and thermodynamic properties of Bacillus subtilis KU710517 milk clotting enzyme via conjugation with polyethylene glycol. Int J Biol Macromol 2018; 111:296-301. [PMID: 29309864 DOI: 10.1016/j.ijbiomac.2017.12.125] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/06/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022]
Abstract
Milk clotting enzyme (MCE) produced by Bacillus subtilis KU710517 was conjugated to several activated polysaccharides. Among all the conjugates, the enzyme conjugated with polyethylene glycol (PEG) exhibited the highest retained activity (551U/mg protein) with a recovered activity of 95.3%. The activation energy of PEG-conjugated enzyme was calculated as 24.56kJ·mol-1which was lower than that of the native one (29.27kJ·mol-1) however, the temperature quotient (Q10) was about 1.08 for the two forms of the enzyme. The calculated half-life times of PEG-conjugated enzyme at 55 and 60°C were 317.78 and 128.6min respectively, whereas at the same temperatures the native enzyme had lower half-life times (53 and 19.6min respectively). The data of thermodynamic analysis for substrate catalysis including the specificity constant (Vmax/Km), turnover number (kcat), catalytic efficiency (kcat/Km), enthalpy of activation (ΔH*), free energy of activation (ΔG*), free energy for transition state formation ΔG*E-T and free energy of substrate binding ΔG*E-S were determined for both native and PEG-conjugated enzyme. In addition, the thermodynamic parameters for irreversible inactivation (ΔH, ΔG, ΔS) were evaluated. The calculated results indicated that the catalytic properties after the PEG-conjugation were significantly improved.
Collapse
Affiliation(s)
- Hala Refaat Wehaidy
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza, Egypt.
| | - Mohamed Ahmed Abdel-Naby
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza, Egypt
| | | | | | | |
Collapse
|
17
|
Xu X, Lin M, Zang Q, Shi S. Solid state bioconversion of lignocellulosic residues by Inonotus obliquus for production of cellulolytic enzymes and saccharification. BIORESOURCE TECHNOLOGY 2018; 247:88-95. [PMID: 28946099 DOI: 10.1016/j.biortech.2017.08.192] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/26/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
White rot fungi have been usually considered for lignin degradation and ligninolytic enzyme production. To understand whether the white rot fungus Inonotus obliquus was able to produce highly efficient cellulase system, the production of cellulolytic enzyme cocktails was optimized under solid state fermentation. The activities of CMCase, FPase, and β-glucosidase reached their maximum of 27.15IU/g, 3.16IU/g and 2.53IU/g using wheat bran at 40% (v/w) inoculum level, initial pH of 6.0 and substrate-moisture ratio of 1:2.5, respectively. The enzyme cocktail exhibited promising properties in terms of high catalytic activity at 40-60°C and at pH 3.0-4.5, indicating that the cellulolytic enzymes represent thermophilic and acidophilic characteristics. Saccharification of raw wheat straw and rice straw by the cellulolytic enzyme cocktail sampled on Day 12 resulted in the release of reducing sugar of 130.24mg/g and 125.36mg/g of substrate after 48h of hydrolysis, respectively.
Collapse
Affiliation(s)
- Xiangqun Xu
- College of Life Sciences, Zhejiang Sci-Tech University, China.
| | - Mengmeng Lin
- College of Life Sciences, Zhejiang Sci-Tech University, China
| | - Qiang Zang
- College of Life Sciences, Zhejiang Sci-Tech University, China
| | - Song Shi
- College of Life Sciences, Zhejiang Sci-Tech University, China
| |
Collapse
|
18
|
Liang L, Xue D. Kinetics of cellulose hydrolysis by halostable cellulase from a marine Aspergillus niger at different salinities. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Recombinant thermo-alkali-stable endoglucanase of Myceliopthora thermophila BJA (rMt-egl): Biochemical characteristics and applicability in enzymatic saccharification of agro-residues. Int J Biol Macromol 2017; 104:107-116. [DOI: 10.1016/j.ijbiomac.2017.05.167] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/13/2017] [Accepted: 05/30/2017] [Indexed: 11/17/2022]
|
20
|
de Brito AR, Santos Reis ND, Silva TP, Ferreira Bonomo RC, Trovatti Uetanabaro AP, de Assis SA, da Silva EGP, Aguiar-Oliveira E, Oliveira JR, Franco M. Comparison between the univariate and multivariate analysis on the partial characterization of the endoglucanase produced in the solid state fermentation by Aspergillus oryzae ATCC 10124. Prep Biochem Biotechnol 2017; 47:977-985. [DOI: 10.1080/10826068.2017.1365247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Aila Riany de Brito
- Pos-Graduation Program in Food Engineering, Department of Basic and Instrumental Studies, State University of Southwest Bahia, Ilhéus, Bahia, Brazil
| | - Nadabe dos Santos Reis
- Pos-Graduation Program in Food Engineering, Department of Basic and Instrumental Studies, State University of Southwest Bahia, Ilhéus, Bahia, Brazil
| | - Tatielle Pereira Silva
- Pos-Graduation Program in Chemistry, Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | | | | | | | | | - Elizama Aguiar-Oliveira
- Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Julieta Rangel Oliveira
- Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Marcelo Franco
- Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| |
Collapse
|
21
|
Mohapatra BR. Kinetic and thermodynamic properties of alginate lyase and cellulase co-produced by Exiguobacterium species Alg-S5. Int J Biol Macromol 2017; 98:103-110. [PMID: 28122206 DOI: 10.1016/j.ijbiomac.2017.01.091] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 11/30/2022]
Abstract
In an effort to screen out the alginolytic and cellulolytic bacteria from the putrefying invasive seaweed Sargassum species accumulated off Barbados' coast, a potent bacterial strain was isolated. This bacterium, which simultaneously produced alginate lyase and cellulase, was identified as Exiguobacterium sp. Alg-S5 via the phylogenetic approach targeting the 16S rRNA gene. The co-produced alginate lyase and cellulase exhibited maximal enzymatic activity at pH 7.5 and at 40°C and 45°C, respectively. The Km and Vmax values recorded as 0.91mg/mL and 21.8U/mg-protein, respectively, for alginate lyase, and 10.9mg/mL and 74.6U/mg-protein, respectively, for cellulase. First order kinetic analysis of the thermal denaturation of the co-produced alginate lyase and cellulase in the temperature range from 40°C to 55°C revealed that both the enzymes were thermodynamically efficient by displaying higher activation energy and enthalpy of denaturation. These enzymatic properties indicate the potential industrial importance of this bacterium in algal biomass conversion. This appears to be the first report on assessing the efficacy of a bacterium for the co-production of alginate lyase and cellulase.
Collapse
Affiliation(s)
- Bidyut R Mohapatra
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, BB11000, Barbados.
| |
Collapse
|
22
|
A novel alkaline surfactant-stable keratinase with superior feather-degrading potential based on library screening strategy. Int J Biol Macromol 2017; 95:404-411. [DOI: 10.1016/j.ijbiomac.2016.11.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 11/22/2022]
|
23
|
Biochemical Characterization, Thermal Stability, and Partial Sequence of a Novel Exo-Polygalacturonase from the Thermophilic Fungus Rhizomucor pusillus A13.36 Obtained by Submerged Cultivation. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8653583. [PMID: 28025649 PMCID: PMC5153499 DOI: 10.1155/2016/8653583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/26/2016] [Accepted: 11/07/2016] [Indexed: 11/17/2022]
Abstract
This work reports the production of an exo-polygalacturonase (exo-PG) by Rhizomucor pusillus A13.36 in submerged cultivation (SmC) in a shaker at 45°C for 96 h. A single pectinase was found and purified in order to analyze its thermal stability, by salt precipitation and hydrophobic interaction chromatography. The pectinase has an estimated Mw of approximately 43.5–47 kDa and optimum pH of 4.0 but is stable in pH ranging from 3.5 to 9.5 and has an optimum temperature of 61°C. It presents thermal stability between 30 and 60°C, has 70% activation in the presence of Ca2+, and was tested using citrus pectin with a degree of methyl esterification (DE) of 26%. Ea(d) for irreversible denaturation was 125.5 kJ/mol with positive variations of entropy and enthalpy for that and ΔG(d) values were around 50 kJ/mol. The hydrolysis of polygalacturonate was analyzed by capillary electrophoresis which displayed a pattern of sequential hydrolysis (exo). The partial identification of the primary sequence was done by MS MALDI-TOF and a comparison with data banks showed the highest identity of the sequenced fragments of exo-PG from R. pusillus with an exo-pectinase from Aspergillus fumigatus. Pectin hydrolysis showed a sigmoidal curve for the Michaelis-Menten plot.
Collapse
|
24
|
Catalytic, kinetic and thermodynamic properties of stabilized Bacillus stearothermophilus alkaline protease. Int J Biol Macromol 2016; 96:265-271. [PMID: 27899299 DOI: 10.1016/j.ijbiomac.2016.11.094] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/04/2016] [Accepted: 11/22/2016] [Indexed: 11/23/2022]
Abstract
Bacillus stearothermophilus alkaline protease was conjugated to several oxidized polysaccharides of different chemical structure. The conjugates were evaluated for the kinetic and thermodynamic stability. The conjugated enzyme with oxidized pectin had the highest retained activity (79.5%) and the highest half-life (T1/2) at 50°C and pH 9.0. Compared to the native protease, the conjugated preparation exhibited lower activation energy (Ea), lower deactivation constant rate (kd), higher T1/2, and higher D values (decimal reduction time) within the temperature range of 50-60°C. The thermodynamic parameters for irreversible inactivation of native and conjugated protease indicated that conjugation significantly decreased entropy (ΔS*) and enthalpy (ΔH*) of deactivation. The calculated value of activation energy for thermal denaturation (Ead) for the conjugated enzyme was 20.4KJmole-1 higher over the native one. The results of thermodynamic analysis for substrate hydrolysis indicated that the enthalpy of activation (ΔH*) and free energy of activation (free energy of substrate binding) ΔG*E-S and (ΔG*), (free energy of transition state) ΔG*E-T values were lower for the modified protease. Similarly, there was significant improvement of kcat, kcat/Km values. The enzyme proved to be metalloprotease and significantly stimulated by Ca2+ and Mg2+ whereas Hg2+, Fe3+ Cu2+ and Zn2+ inhibited the enzyme activity. There was no pronounced effect on substrate specificity after conjugation.
Collapse
|
25
|
Dong M, Yang Y, Tang X, Shen J, Xu B, Li J, Wu Q, Zhou J, Ding J, Han N, Mu Y, Huang Z. NaCl-, protease-tolerant and cold-active endoglucanase from Paenibacillus sp. YD236 isolated from the feces of Bos frontalis. SPRINGERPLUS 2016; 5:746. [PMID: 27376014 PMCID: PMC4909688 DOI: 10.1186/s40064-016-2360-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/17/2016] [Indexed: 12/20/2022]
Abstract
Bos frontalis, which consumes
bamboo and weeds, may have evolved unique gastrointestinal microorganisms that digest cellulase. A Paenibacillus sp. YD236 strain was isolated from B. frontalis feces, from which a GH8 endoglucanase gene, pglue8 (1107 bp, 54.5 % GC content), encoding a 368-residue polypeptide (PgluE8, 40.4 kDa) was cloned. PgluE8 efficiently hydrolyzed barley-β-d-glucan followed by CMC-Na, soluble starch, laminarin, and glucan from black yeast optimally at pH 5.5 and 50 °C, and retained 78.6, 41.6, and 34.5 % maximum activity when assayed at 20, 10, and 0 °C, respectively. Enzyme activity remained above 176.6 % after treatment with 10.0 mM β-mercaptoethanol, and was 83.0, 78, and 56 % after pre-incubation in 30 % (w/v) NaCl, 16.67 mg/mL trypsin, and 160.0 mg/mL protease K, respectively. Cys23 and Cys364 residues were critical for PgluE8 activity. pglue8, identified from B. frontalis feces for the first time in this study, is a potential alternative for applications including food processing, washing, and animal feed preparation.
Collapse
Affiliation(s)
- Mingjie Dong
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Yunjuan Yang
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Xianghua Tang
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Jidong Shen
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Bo Xu
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Junjun Li
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Qian Wu
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Junpei Zhou
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Junmei Ding
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Nanyu Han
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Yuelin Mu
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Zunxi Huang
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| |
Collapse
|
26
|
Abdel-Naby MA, El-Tanash AB, Sherief ADA. Structural characterization, catalytic, kinetic and thermodynamic properties of Aspergillus oryzae tannase. Int J Biol Macromol 2016; 92:803-811. [PMID: 27373426 DOI: 10.1016/j.ijbiomac.2016.06.098] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/23/2016] [Accepted: 06/30/2016] [Indexed: 11/19/2022]
Abstract
Tannase (EC.3.1.1.20) from Aspergillus oryzae was purified using ammonium sulphate precipitation (75%), gel filtration chromatography through Sephadex G-100, and G-200. The purified enzyme was monomeric protein with a molecular mass of 106kDa. The activation energy for tannic acid hydrolysis was 32.6kJmol-1 and its temperature quotient (Q10) was 1.0. The pKa1 and pKa2 values of acidic and basic limbs of the active site residues were 4.6 and 6.4. The calculated values of thermodynamic parameters for tannic acid hydrolysis, were as follows: ΔH*=30.02kJmol-1, ΔG*=59.75kJmol-1 ΔS*=-95.90Jmol-1K-1, (ΔG*E-S)=3.66kJmol-1 and ΔG*E-T -12.61kJmol-1. The pure enzyme exhibited Km, Vmax and kcat of 4.13mM, 3507Umgprotein-1 and 551.4s-1. The calculated half-life time at 40, 45, 50, 55, 60, and 70°C was 955.15, 142.0, 30.28, 17.88, 8.23 and 2.95min, respectively. The thermodynamic parameters for irreversible thermal inactivation at different temperatures (40-70°C) were determined. The enzyme was activated by Ca2+, and Mg2+ while Hg2+, Fe2+, and Cu2+ strongly inhibited it. Hydrolysis of tannic acid by the pure enzyme indicated that gallic acid was the end-product.
Collapse
Affiliation(s)
- Mohamed A Abdel-Naby
- Department of chemistry of natural and microbial products, National Research Center, Cairo, Egypt.
| | | | | |
Collapse
|
27
|
Abdel-Naby MA, A. Ibrahim M, El-Refai H. Catalytic, kinetic and thermodynamic properties of Bacillus pumilus FH9 keratinase conjugated with activated pectin. Int J Biol Macromol 2016; 85:238-45. [DOI: 10.1016/j.ijbiomac.2015.12.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/08/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
|
28
|
Abdel–Naby MA, Fouad AA, El-Refai H. Catalytic and thermodynamic properties of glycosylated Bacillus cereus cyclodextrin glycosyltransferase. Int J Biol Macromol 2015; 76:132-7. [DOI: 10.1016/j.ijbiomac.2015.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 10/24/2022]
|
29
|
Raol GG, Raol B, Prajapati VS, Patel KC. Kinetic and thermodynamic characterization of a halotolerant β-galactosidase produced by halotolerant Aspergillus tubingensis GR1. J Basic Microbiol 2015; 55:879-89. [DOI: 10.1002/jobm.201400747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/08/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Gopalkumar G. Raol
- Department of Microbiology; Shri A.N. Patel P.G. Institute; Sardar Patel University; Anand Gujarat India
| | - B.V. Raol
- Department of Microbiology; Shri P. H. G. Muni. Arts and Science College; Gujarat University; Kalol Gujarat India
| | - Vimal S. Prajapati
- B.R.D. School of Biosciences; Sardar Patel University; Vallabh Vidyangar Gujarat India
| | - Kamlesh C. Patel
- B.R.D. School of Biosciences; Sardar Patel University; Vallabh Vidyangar Gujarat India
| |
Collapse
|
30
|
Gohel S, Singh S. Thermodynamics of a Ca2+-dependent highly thermostable alkaline protease from a haloalkliphilic actinomycete. Int J Biol Macromol 2015; 72:421-9. [DOI: 10.1016/j.ijbiomac.2014.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/09/2014] [Accepted: 08/11/2014] [Indexed: 11/28/2022]
|
31
|
Xiang L, Li A, Tian C, Zhou Y, Zhang G, Ma Y. Identification and characterization of a new acid-stable endoglucanase from a metagenomic library. Protein Expr Purif 2014; 102:20-6. [DOI: 10.1016/j.pep.2014.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/27/2014] [Accepted: 07/28/2014] [Indexed: 11/28/2022]
|
32
|
Oberoi HS, Rawat R, Chadha BS. Response surface optimization for enhanced production of cellulases with improved functional characteristics by newly isolated Aspergillus niger HN-2. Antonie Van Leeuwenhoek 2013; 105:119-34. [DOI: 10.1007/s10482-013-0060-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 10/17/2013] [Indexed: 11/29/2022]
|
33
|
Kupski L, Pagnussatt FA, Buffon JG, Furlong EB. Endoglucanase and Total Cellulase from Newly Isolated Rhizopus oryzae and Trichoderma reesei: Production, Characterization, and Thermal Stability. Appl Biochem Biotechnol 2013; 172:458-68. [DOI: 10.1007/s12010-013-0518-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/15/2013] [Indexed: 11/28/2022]
|
34
|
Bansal N, Janveja C, Tewari R, Soni R, Soni SK. Highly Thermostable and pH-Stable Cellulases from Aspergillus niger NS-2: Properties and Application for Cellulose Hydrolysis. Appl Biochem Biotechnol 2013; 172:141-56. [DOI: 10.1007/s12010-013-0511-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/05/2013] [Indexed: 01/23/2023]
|
35
|
Das A, Jana A, Paul T, Halder SK, Ghosh K, Maity C, Mohapatra PKD, Pati BR, Mondal KC. Thermodynamics and kinetic properties of halostable endoglucanase from Aspergillus fumigatus ABK9. J Basic Microbiol 2013; 54 Suppl 1:S142-51. [PMID: 23832828 DOI: 10.1002/jobm.201300350] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/07/2013] [Indexed: 11/09/2022]
Abstract
An endoglucanase from Aspergillus fumigatus ABK9 was purified from the culture extract of solid-state fermentation and its some characteristics were evaluated. The molecular weight of the purified enzyme (56.3 kDa) was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, zymogram analysis and confirmed by MALDI-TOF mass spectrometry. The enzyme was active optimally at 50 °C, pH 5.0 and stable over a broad range of pH (4.0-7.0) and NaCl concentration of 0-3.0 M. The pKa1 and pKa2 of the ionizable groups of the active sites were 2.94 and 6.53, respectively. The apparent Km , Vmax , and Kcat values for carboxymethyl cellulose were 6.7 mg ml(-1), 775.4 µmol min(-1) , and 42.84 × 10(4) s(-1), respectively. Thermostability of the enzyme was evidenced by the high activation energy (91.45 kJ mol(-1)), large enthalpy for activation of denaturation (88.77 kJ mol(-1)), longer half-life (T1/2) (433 min at 50 °C), higher melting temperature (Tm ) (73.5 °C), and Q10 (1.3) values. All the characteristics favors its suitability as halotolerant and thermostable enzyme during bioprocessing of lignocellulosic materials.
Collapse
Affiliation(s)
- Arpan Das
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal, India
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gohel S, Singh S. Characteristics and thermodynamics of a thermostable protease from a salt-tolerant alkaliphilic actinomycete. Int J Biol Macromol 2013; 56:20-7. [DOI: 10.1016/j.ijbiomac.2013.01.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 11/29/2022]
|
37
|
Saqib AAN, Farooq A, Iqbal M, Hassan JU, Hayat U, Baig S. A Thermostable Crude Endoglucanase Produced by Aspergillus fumigatus in a Novel Solid State Fermentation Process Using Isolated Free Water. Enzyme Res 2012; 2012:196853. [PMID: 22919467 PMCID: PMC3399398 DOI: 10.1155/2012/196853] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/12/2012] [Accepted: 05/17/2012] [Indexed: 11/17/2022] Open
Abstract
Aspergillus fumigatus was grown on chopped wheat straw in a solid state fermentation (SSF) process carried out in constant presence of isolated free water inside the fermentation chamber. The system allowed maintaining a constant vapor pressure inside the fermentor throughout the fermentation process. Crude endoglucanase produced by A. fumigatus under such conditions was more thermostable than previously reported enzymes of the same fungal strain which were produced under different conditions and was also more thermostable than a number of other previously reported endoglucanases as well. Various thermostability parameters were calculated for the crude endoglucanase. Half lives (T(1/2)) of the enzyme were 6930, 866, and 36 min at 60°C, 70°C, and 80°C, respectively. Enthalpies of activation of denaturation (ΔH(D)*) were 254.04, 253.96, and 253.88 K J mole(-1), at 60°C, 70°C and 80°C, respectively, whereas entropies of activation of denaturation (ΔS(D)*) and free energy changes of activation of denaturation (ΔG(D)*) were 406.45, 401.01, and 406.07 J mole(-1) K(-1) and 118.69, 116.41, and 110.53 K J mole(-1) at 60°C, 70°C and 80°C, respectively.
Collapse
Affiliation(s)
- Abdul A. N. Saqib
- Food and Biotechnology Research Centre, PCSIR Labs Complex, Ferozepur Road, Lahore 54600, Pakistan
| | - Ansa Farooq
- Food and Biotechnology Research Centre, PCSIR Labs Complex, Ferozepur Road, Lahore 54600, Pakistan
| | - Maryam Iqbal
- Food and Biotechnology Research Centre, PCSIR Labs Complex, Ferozepur Road, Lahore 54600, Pakistan
| | - Jalees Ul Hassan
- Food and Biotechnology Research Centre, PCSIR Labs Complex, Ferozepur Road, Lahore 54600, Pakistan
| | - Umar Hayat
- Food and Biotechnology Research Centre, PCSIR Labs Complex, Ferozepur Road, Lahore 54600, Pakistan
| | - Shahjahan Baig
- Food and Biotechnology Research Centre, PCSIR Labs Complex, Ferozepur Road, Lahore 54600, Pakistan
| |
Collapse
|
38
|
Purification strategies, characteristics and thermodynamic analysis of a highly thermostable alkaline protease from a salt-tolerant alkaliphilic actinomycete, Nocardiopsis alba OK-5. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 889-890:61-8. [DOI: 10.1016/j.jchromb.2012.01.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 12/08/2011] [Accepted: 01/26/2012] [Indexed: 11/21/2022]
|
39
|
Singh AK, Chhatpar HS. Purification, characterization and thermodynamics of antifungal protease from Streptomyces sp. A6. J Basic Microbiol 2011; 51:424-32. [DOI: 10.1002/jobm.201000310] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 12/11/2010] [Indexed: 11/05/2022]
|
40
|
Farinas CS, Loyo MM, Baraldo A, Tardioli PW, Neto VB, Couri S. Finding stable cellulase and xylanase: evaluation of the synergistic effect of pH and temperature. N Biotechnol 2010; 27:810-5. [DOI: 10.1016/j.nbt.2010.10.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 10/03/2010] [Accepted: 10/04/2010] [Indexed: 11/15/2022]
|
41
|
Facchini FDA, Vici AC, Reis VRA, Jorge JA, Terenzi HF, Reis RA, Polizeli MDLTDM. Production of fibrolytic enzymes by Aspergillus japonicus C03 using agro-industrial residues with potential application as additives in animal feed. Bioprocess Biosyst Eng 2010; 34:347-55. [PMID: 21046416 DOI: 10.1007/s00449-010-0477-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 10/15/2010] [Indexed: 11/26/2022]
Abstract
Solid-state fermentation obtained from different and low-cost carbon sources was evaluated to endocellulases and endoxylanases production by Aspergillus japonicus C03. Regarding the enzymatic production the highest levels were observed at 30 °C, using soy bran added to crushed corncob or wheat bran added to sugarcane bagasse, humidified with salt solutions, and incubated for 3 days (xylanase) or 6 days (cellulase) with 70% relative humidity. Peptone improved the xylanase and cellulase activities in 12 and 29%, respectively. The optimum temperature corresponded to 60 °C and 50-55 °C for xylanase and cellulase, respectively, both having 4.0 as optimum pH. Xylanase was fully stable up to 40 °C, which is close to the rumen temperature. The enzymes were stable in pH 4.0-7.0. Cu++ and Mn++ increased xylanase and cellulase activities by 10 and 64%, respectively. A. japonicus C03 xylanase was greatly stable in goat rumen fluid for 4 h during in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Fernanda Dell Antonio Facchini
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | | | |
Collapse
|
42
|
Akolkar AV, Desai AJ. Catalytic and thermodynamic characterization of protease from Halobacterium sp. SP1(1). Res Microbiol 2010; 161:355-62. [DOI: 10.1016/j.resmic.2010.04.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 04/17/2010] [Accepted: 04/19/2010] [Indexed: 11/26/2022]
|
43
|
Saqib AA, Hassan M, Khan NF, Baig S. Thermostability of crude endoglucanase from Aspergillus fumigatus grown under solid state fermentation (SSF) and submerged fermentation (SmF). Process Biochem 2010. [DOI: 10.1016/j.procbio.2009.12.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|