1
|
Buzzanca C, Di Stefano V, D'Amico A, Gallina A, Melilli MG. A systematic review on Cynara cardunculus L.: bioactive compounds, nutritional properties and food-industry applications of a sustainable food. Nat Prod Res 2024:1-20. [PMID: 39488850 DOI: 10.1080/14786419.2024.2423046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The cardoon (Cynara cardunculus L.), is a perennial plant belonging to the Asteraceae family, and its cultivated species are widely used in the Mediterranean diet. This review provides an overview of cardoons' chemical composition, bioactive properties and multiple industrial and food applications. Thanks to its nutritional composition, the use of cardoon has increased in food, cosmetic and industrial sectors, such as the energy industry or in the production of paper pulp or bio-packaging. An application in the food industry has involved using of cardoon as a vegetable coagulant for gourmet cheeses-making, as the flowers are rich in aspartic proteases. Cardoon by-products are also rich in bioactive compounds with important health benefits. Most of these nutritional activities are due to the presence of phenolic compounds, minerals, inulin, fibre and sesquiterpene lactones with interesting antioxidant and antimicrobial, anti-inflammatory, anti-tumour, lipid-lowering, cytotoxic and anti-diabetic activities.
Collapse
Affiliation(s)
- Carla Buzzanca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Angela D'Amico
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Alessandro Gallina
- National Council of Research, Institute of Biomolecular Chemistry (CNR-ICB), Catania, Italy
| | - Maria Grazia Melilli
- National Council of Research, Institute of Biomolecular Chemistry (CNR-ICB), Catania, Italy
| |
Collapse
|
2
|
Caldeira V, Fonseca TAH, N'Dembo L, Araújo R, Von Rekowski CP, Sampaio PNS, Calado CRC. A new methodology for a rapid and high-throughput comparison of molecular profiles and biological activity of phytoextracts. Biotechnol Bioeng 2024; 121:3047-3058. [PMID: 38760962 DOI: 10.1002/bit.28739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/24/2023] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
To robustly discover and explore phytocompounds, it is necessary to evaluate the interrelationships between the plant species, plant tissue, and the extraction process on the extract composition and to predict its cytotoxicity. The present work evaluated how Fourier Transform InfraRed spectroscopy can acquire the molecular profile of aqueous and ethanol-based extracts obtained from leaves, seeds, and flowers of Cynara Cardunculus, and ethanol-based extracts from Matricaria chamomilla flowers, as well the impact of these extracts on the viability of mammalian cells. The extract molecular profile enabled to predict the extraction yield, and how the plant species, plant tissue, and extraction process affected the extract's relative composition. The molecular profile obtained from the culture media of cells exposed to extracts enabled to capture its impact on cells metabolism, at a higher sensitivity than the conventional assay used to determine the cell viability. Furthermore, it was possible to detect specific impacts on the cell's metabolism according to plant species, plant tissue, and extraction process. Since spectra were acquired on small volumes of samples (25 µL), after a simple dehydration step, and based on a plate with 96 wells, the method can be applied in a rapid, simple, high-throughput, and economic mode, consequently promoting the discovery of phytocompounds.
Collapse
Affiliation(s)
- Viviana Caldeira
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
| | - Tiago A H Fonseca
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
| | - Luana N'Dembo
- COPELABS-Computação e Cognição Centrada nas Pessoas, Faculty of Engineering, Lusófona University, Lisbon, Portugal
| | - Rúben Araújo
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
| | - Cristiana P Von Rekowski
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
| | - Pedro N S Sampaio
- COPELABS-Computação e Cognição Centrada nas Pessoas, Faculty of Engineering, Lusófona University, Lisbon, Portugal
| | - Cecília R C Calado
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
- i4HB - The Associate Laboratory Institute for Health and Bioeconomy, iBB - Institute for Bioengineering and Biosciences, IST - Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Phenolic compounds in local Italian types of cultivated cardoon (Cynara cardunculus L. var. altilis DC) stalks and artichoke (Cynara cardunculus L. var. scolymus L.) edible sprouts. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
Mandim F, Petropoulos SA, Pinela J, Dias MI, Giannoulis KD, Kostić M, Soković M, Queijo B, Santos-Buelga C, Ferreira ICFR, Barros L. Chemical composition and biological activity of cardoon (Cynara cardunculus L. var. altilis) seeds harvested at different maturity stages. Food Chem 2022; 369:130875. [PMID: 34438342 DOI: 10.1016/j.foodchem.2021.130875] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 11/28/2022]
Abstract
Cardoon seeds collected in Greece at four different maturity stages (samples S1 to S4) were analysed in terms of chemical composition and in vitro bioactivities. The content of phenolic compounds (six compounds in total) increased with increasing maturity, and 3,5-O-dicaffeyolquinic (14.8-33.8 mg/g extract) acid was the compound detected in higher abundance. Mature seeds (sample S4) also revealed the highest content in lipids (23 g/100 g extract) and tocopherols (29.62 mg/100 g dw) and demonstrated the highest cytotoxic (GI50 of 97-216 µg/mL) and anti-inflammatory (IC50 = 148 µg/mL) activities, and capacity to inhibit the formation of thiobarbituric acid reactive substances (TBARS) (IC50 = 5 µg/mL). Cardoon seed hydroethanolic extracts also revealed high antibacterial and antifungal potential, particularly samples S3 and S1, respectively. This study proved the multifaceted potential associated with valorisation of cardoon seeds, while their biological and chemical composition can be influenced by the maturity stage.
Collapse
Affiliation(s)
- Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Spyridon A Petropoulos
- University of Thessaly, Department of Agriculture, Crop Production and Rural Environment, 38446 N. Ionia, Volos, Greece.
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Kyriakos D Giannoulis
- University of Thessaly, Department of Agriculture, Crop Production and Rural Environment, 38446 N. Ionia, Volos, Greece
| | - Marina Kostić
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Marina Soković
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Beatriz Queijo
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
5
|
Bioactive Compounds from Cardoon as Health Promoters in Metabolic Disorders. Foods 2022; 11:foods11030336. [PMID: 35159487 PMCID: PMC8915173 DOI: 10.3390/foods11030336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
Cardoon (Cynara cardunculus L.) is a Mediterranean plant and member of the Asteraceae family that includes three botanical taxa, the wild perennial cardoon (C. cardunculus L. var. sylvestris (Lamk) Fiori), globe artichoke (C. cardunculus L. var. scolymus L. Fiori), and domesticated cardoon (C. cardunculus L. var. altilis DC.). Cardoon has been widely used in the Mediterranean diet and folk medicine since ancient times. Today, cardoon is recognized as a plant with great industrial potential and is considered as a functional food, with important nutritional value, being an interesting source of bioactive compounds, such as phenolics, minerals, inulin, fiber, and sesquiterpene lactones. These bioactive compounds have been vastly described in the literature, exhibiting a wide range of beneficial effects, such as antimicrobial, anti-inflammatory, anticancer, antioxidant, lipid-lowering, cytotoxic, antidiabetic, antihemorrhoidal, cardiotonic, and choleretic activity. In this review, an overview of the cardoon nutritional and phytochemical composition, as well as its biological potential, is provided, highlighting the main therapeutic effects of the different parts of the cardoon plant on metabolic disorders, specifically associated with hepatoprotective, hypolipidemic, and antidiabetic activity.
Collapse
|
6
|
Mandim F, Petropoulos SA, Dias MI, Pinela J, Kostic M, Soković M, Santos-Buelga C, Ferreira ICFR, Barros L. Seasonal variation in bioactive properties and phenolic composition of cardoon (Cynara cardunculus var. altilis) bracts. Food Chem 2020; 336:127744. [PMID: 32781352 DOI: 10.1016/j.foodchem.2020.127744] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Cardoon (Cynara cardunculus L.) bracts were collected at different maturation stages to investigate seasonal changes in the phenolic compounds profile and in vitro bioactivities. Among the 12 phenolic compounds tentatively identified, 3,5-O-dicaffeoylquinic acid (21.83 mg/g extract) and apigenin-7-O-glucuronide (10.6 mg/g extract) were the most abundant. Immature bracts (C1: principal growth stage (PGS) 5) had the highest phenolic compounds content, and anti-inflammatory (IC50 = 72 µg/mL) and cytotoxic (GI50 of 30-79 µg/mL) activities. Moreover, extract C1 inhibited efficiently the formation of thiobarbituric acid reactive substances (TBARS; IC50 = 26.8 µg/mL), while extract C8 (PGS 8/9) was more effective against oxidative haemolysis (IC50 38 and 75 µg/mL). The highest antibacterial and antifungal activities were attributed to samples C1 and C6 (PGS 7/8) and samples C2 (PGS 5/6) and C4 (PGS 6/7), respectively. Overall, the obtained results suggest the seasonal changes of polyphenolic composition and bioactivity of cardoon bracts of variable maturity.
Collapse
Affiliation(s)
- Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Spyridon A Petropoulos
- University of Thessaly, Department of Agriculture, Crop Production and Rural Environment, 38446, N. Ionia, Volos, Greece.
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Marina Kostic
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Soković
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
7
|
Mandim F, Dias MI, Pinela J, Barracosa P, Ivanov M, Stojković D, Soković M, Santos-Buelga C, Barros L, Ferreira ICFR. Chemical composition and in vitro biological activities of cardoon (Cynara cardunculus L. var. altilis DC.) seeds as influenced by viability. Food Chem 2020; 323:126838. [PMID: 32334313 DOI: 10.1016/j.foodchem.2020.126838] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/22/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Cardoon is a multi-purpose crop for several industries. In this study, cardoon seeds were separated according to the viability and characterized for their chemical composition and bioactivities. Viable seeds contained higher levels of α-tocopherol (6.7 mg/100 g), lipids (23.11 g/100 g, manly oleic and linoleic acids), and free sugars (5.4 g/100 g) than the unviable ones. The hydroethanolic extract of viable seeds presented a higher concentration of phenolic compounds, namely 5-O-caffeoylquinic (8.0 mg/g) and 3,5-O-dicaffeoylquinic (43.9 mg/g) acids, and greater in vitro antioxidant activity. Both extracts showed antibacterial properties, but the best results were achieved with unviable seeds. The extracts had similar antifungal activity but did not reveal anti-inflammatory capacity or cytotoxicity to the tested cell lines. Therefore, while viable seeds contained antioxidant phytochemicals and an energy and carbon source for germination, unavailable seeds stood out for their potential to be used in the development of bio-based antibacterial ingredients.
Collapse
Affiliation(s)
- Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Paulo Barracosa
- Escola Superior Agrária de Viseu, Instituto Politécnico de Viseu, Quinta da Alagoa, 3500-606 Viseu, Portugal
| | - Marija Ivanov
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Dejan Stojković
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Marina Soković
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
8
|
Anti-inflammatory activity of dimethyl octenol and oleanene tetrol isolated from Trianthema decandra L. Mol Biol Rep 2018; 45:547-561. [PMID: 29797173 DOI: 10.1007/s11033-018-4193-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
Abstract
Dimethyl octenol from chloroform extract and oleanene tetrol from water extract of Trianthema decandra (TD) were isolated and characterized by using HPLC, UV, FT-IR, NMR, LC-MS and CHNS, their structure were elucidated from their respective spectral data. The anti-inflammatory activity of chloroform extract, water extract, dimethyl octenol and oleanene tetrol of T. decandra were studied and underlying cellular and molecular mechanisms of action were investigated in vitro and in vivo using macrophage-like cell line (RAW264.7 cells) and type II collagen induced arthritis mice models. Nitric oxide production was inhibited and TNF-α secretion was supressed in stimulated RAW cells treated with the chloroform extract and dimethyl octenol of T. decandra. Further, the chloroform and water extract, dimethyl octenol and oleanene tetrol inhibited protein denaturation and stabilized HRBC membranes in vitro. Reduction in inflammation as a measure of paw diameter was recorded in all the treated animals when compared to control animals. Catalase, peroxidase and glutathione peroxidase levels significantly increased in the joint tissue of treated groups. The possible mechanism of action of these compounds was studied using in silico molecular docking methods with phospholipase A2 (PLA2), cycloxygenase-1 (COX-1) and cycloxygenase-2 (COX-2) as targets. Among the three target proteins, the inhibition of the inflammatory protein PLA2 and COX-2 towards dimethyl octenol and oleanene tetrol respectively. Our results contribute towards confirmation of the traditional use of TD and its compounds for the therapy of rheumatoid arthritis and other inflammatory joint disorders.
Collapse
|
9
|
Haplotype analysis of the germacrene A synthase gene and association with cynaropicrin content and biological activities in Cynara cardunculus. Mol Genet Genomics 2017; 293:417-433. [PMID: 29143866 DOI: 10.1007/s00438-017-1388-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
Abstract
Cynara cardunculus: L. represents a natural source of terpenic compounds, with the predominant molecule being cynaropicrin. Cynaropicrin is gaining interest since it has been correlated to anti-hyperlipidaemia, antispasmodic and cytotoxicity activity against leukocyte cancer cells. The objective of this work was to screen a collection of C. cardunculus, from different origins, for new allelic variants in germacrene A synthase (GAS) gene involved in the cynaropicrin biosynthesis and correlate them with improved cynaropicrin content and biological activities. Using high-resolution melting, nine haplotypes were identified. The putative impact of the identified allelic variants in GAS protein was evaluated by bioinformatic tools and polymorphisms that putatively lead to protein conformational changes were described. Additionally, cynaropicrin and main pentacyclic triterpenes contents, and antithrombin, antimicrobial and antiproliferative activities were also determined in C. cardunculus leaf lipophilic-derived extracts. In this work we identified allelic variants with putative impact on GAS protein, which are significantly associated with cynaropicrin content and antiproliferative activity. The results obtained suggest that the identified polymorphisms should be explored as putative genetic markers correlated with biological properties in Cynara cardunculus.
Collapse
|
10
|
Miláčková I, Kapustová K, Mučaji P, Hošek J. Artichoke Leaf Extract Inhibits AKR1B1 and Reduces NF-κB Activity in Human Leukemic Cells. Phytother Res 2017; 31:488-496. [DOI: 10.1002/ptr.5774] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/15/2016] [Accepted: 01/03/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Ivana Miláčková
- Department of Pharmacognosy and Botany, Faculty of Pharmacy; Comenius University in Bratislava; Odbojárov 10 SR-83232 Bratislava Slovakia
| | - Kristína Kapustová
- Department of Pharmacognosy and Botany, Faculty of Pharmacy; Comenius University in Bratislava; Odbojárov 10 SR-83232 Bratislava Slovakia
| | - Pavel Mučaji
- Department of Pharmacognosy and Botany, Faculty of Pharmacy; Comenius University in Bratislava; Odbojárov 10 SR-83232 Bratislava Slovakia
| | - Jan Hošek
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy; University of Veterinary and Pharmaceutical Sciences Brno; Palackého tř. 1946/1 CZ-61242 Brno Czech Republic
| |
Collapse
|
11
|
Borgognone D, Rouphael Y, Cardarelli M, Lucini L, Colla G. Changes in Biomass, Mineral Composition, and Quality of Cardoon in Response to [Formula: see text]:Cl(-) Ratio and Nitrate Deprivation from the Nutrient Solution. FRONTIERS IN PLANT SCIENCE 2016; 7:978. [PMID: 27446196 PMCID: PMC4928370 DOI: 10.3389/fpls.2016.00978] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/21/2016] [Indexed: 05/18/2023]
Abstract
Leaf extracts of cultivated cardoon (Cynara cardunculus L. var. altilis DC) are an important source of phenols. Soilless culture represents an important and alternative tool to traditional agriculture, since it allows a precise control of plant nutrition and the maximization of yield and quality of the product. Reducing N supply, while keeping quantity as high as possible is desirable for environmental and health-related reasons, especially that N deficiency can lead to improved concentrations of secondary plant metabolites. Two greenhouse experiments were carried out in order to determine the effect of a decreasing [Formula: see text]:Cl(-) ratio (80:20, 60:40, 40:60, or 20:80) and nitrate deprivation (0, 5, 10, or 15 days before harvest) on biomass production, leaf chlorophyll content and fluorescence, mineral composition, and phytochemicals in leaves of cardoon 'Bianco Avorio' grown in a floating system. Total phenols, flavonoids and antioxidant capacity increased linearly with Cl(-) availability, especially when nitrate was replaced by 80% of chloride (20:80 [Formula: see text]:Cl(-) ratio), without having a detrimental effect on yield. Total nitrogen and nitrate concentration in leaves decreased linearly with increasing Cl(-) in the nutrient solution. Total phenols and antioxidant capacity recorded after 15 days of nitrate deprivation were higher by 43.1, 42.8, and 44.3% and by 70.5, 40.9, and 62.2%, at 59, 97 and 124 days after sowing, respectively compared to the control treatment. The decrease in leaf nitrate content recorded under N-deprivation occurred more rapidly than the reduction in total nitrogen. Thus, up to 15 days of nitrate withdrawal can lower nitrates without sharply reduce total nitrogen or affecting growth and biomass of cultivated cardoon. The use of N-free nutrient solution prior to harvest or the replacement of nitrates with chlorides could be adopted among growers to improve the quality of the product and enhance sustainability of crop production system.
Collapse
Affiliation(s)
- Daniela Borgognone
- Department of Agricultural and Forestry Sciences, Tuscia University, ViterboItaly
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, PorticiItaly
| | - Mariateresa Cardarelli
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca per lo Studio delle Relazioni tra Pianta e Suolo, RomaItaly
| | - Luigi Lucini
- Institute of Environmental and Agricultural Chemistry, Università Cattolica del Sacro Cuore, PiacenzaItaly
| | - Giuseppe Colla
- Department of Agricultural and Forestry Sciences, Tuscia University, ViterboItaly
| |
Collapse
|
12
|
Lucini L, Borgognone D, Rouphael Y, Cardarelli M, Bernardi J, Colla G. Mild Potassium Chloride Stress Alters the Mineral Composition, Hormone Network, and Phenolic Profile in Artichoke Leaves. FRONTIERS IN PLANT SCIENCE 2016; 7:948. [PMID: 27446175 PMCID: PMC4923119 DOI: 10.3389/fpls.2016.00948] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/14/2016] [Indexed: 05/18/2023]
Abstract
There is a growing interest among consumers and researchers in the globe artichoke [Cynara cardunculus L. subsp. scolymus (L.) Hegi] leaf extract due to its nutraceutical and therapeutic properties. The application of an abiotic stress such as salinity can activate the stress-signaling pathways, thus enhancing the content of valuable phytochemicals. The aim of this study was to assess the metabolic changes in artichokes by probing the leaf metabolome of artichoke plants grown in a floating system and exposed to a relatively mild (30 mM) potassium chloride (KCl) salt stress. Potassium chloride treatment decreased the leaf dry biomass of artichoke, macro- and microelements in leaves (e.g., Ca, Mg, Mn, Zn, and B) but increased the concentrations of K and Cl. Metabolomics highlighted that the hormonal network of artichokes was strongly imbalanced by KCl. The indole-3-acetic acid conjugates, the brassinosteroids hormone 6-deoxocastasterone, and even more the cytokinin precursor N(6)-(Delta-2-isopentenyl)-adenosine-5'-triphosphate, strongly increased in leaves of KCl-treated plants. Moreover, KCl saline treatment induced accumulation of GA4, a bioactive form additional to the already known GA3. Another specific response to salinity was changes in the phenolic compounds profile, with flavones and isoflavones being decreased by KCl treatment, whereas flavonoid glycosides increased. The osmotic/oxidative stress that salinity generates also induced some expected changes at the biochemical level (e.g., ascorbate degradation, membrane lipid peroxidation, and accumulation of mannitol phosphate). These latter results help explain the molecular/physiological mechanisms that the plant uses to cope with potassium chloride stress exposure.
Collapse
Affiliation(s)
- Luigi Lucini
- Institute of Environmental and Agricultural Chemistry, Università Cattolica del Sacro Cuore, PiacenzaItaly
| | - Daniela Borgognone
- Department of Agricultural and Forestry Sciences, University of Tuscia, ViterboItaly
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, NaplesItaly
| | - Mariateresa Cardarelli
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca per lo Studio delle Relazioni tra Pianta e Suolo, RomaItaly
| | - Jamila Bernardi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, PiacenzaItaly
| | - Giuseppe Colla
- Department of Agricultural and Forestry Sciences, University of Tuscia, ViterboItaly
- *Correspondence: Giuseppe Colla,
| |
Collapse
|
13
|
Cucurbitacins from the Leaves of Citrullus colocynthis (L.) Schrad. Molecules 2015; 20:18001-15. [PMID: 26437392 PMCID: PMC6332406 DOI: 10.3390/molecules201018001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/14/2015] [Accepted: 09/23/2015] [Indexed: 02/04/2023] Open
Abstract
Two new tetracyclic cucurbitane-type triterpene glycosides were isolated from an ethyl acetate extract of Citrullus colocynthis leaves together with four known cucurbitacins. Their structures were established on the basis of their spectroscopic data (mainly NMR and mass spectrometry). Evaluation of the in vitro cytotoxic activity of the isolated compounds against two human colon cancer cell lines (HT29 and Caco-2) and one normal rat intestine epithelial cell line (IEC6), revealed that one of the isolated compounds presented interesting specific cytotoxic activity towards colorectal cell lines.
Collapse
|
14
|
Ramos PAB, Guerra ÂR, Guerreiro O, Freire CSR, Silva AMS, Duarte MF, Silvestre AJD. Lipophilic extracts of Cynara cardunculus L. var. altilis (DC): a source of valuable bioactive terpenic compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8420-8429. [PMID: 23915287 DOI: 10.1021/jf402253a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Lipophilic extracts of Cynara cardunculus L. var. altilis (DC) from the south of Portugal (Baixo Alentejo) were studied by gas chromatography-mass spectrometry. One sesquiterpene lactone, four pentacyclic triterpenes, and four sterols were reported for the first time as cultivated cardoon components, namely, deacylcynaropicrin, β- and α-amyrin, lupenyl and ψ-taraxasteryl acetates, stigmasterol, 24-methylenecholesterol, campesterol, and Δ(5)-avenasterol. In addition, other new compounds were identified: ten fatty acids, eight long-chain aliphatic alcohols, and six aromatic compounds. Four triterpenyl fatty acid esters were also detected. Sesquiterpene lactones and pentacyclic triterpenes were the major lipophilic families, representing respectively 2-46% and 10-89% of the detected compounds. Cynaropicrin was the most abundant sesquiterpene lactone, while taraxasteryl acetate was the main pentacyclic triterpene. Fatty acids and sterols, mainly hexadecanoic acid and β-sitosterol, were present at lower amounts (1-20% and 1-11% of the detected compounds). Long-chain aliphatic alcohols and aromatic compounds were detected at reduced abundances (1-6% of the detected compounds).
Collapse
Affiliation(s)
- Patrícia A B Ramos
- CICECO, ‡QOPNA, and §Department of Chemistry, University of Aveiro , 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | |
Collapse
|
15
|
Fragopoulou E, Detopoulou P, Nomikos T, Pliakis E, Panagiotakos DB, Antonopoulou S. Mediterranean wild plants reduce postprandial platelet aggregation in patients with metabolic syndrome. Metabolism 2012; 61:325-34. [PMID: 21944262 DOI: 10.1016/j.metabol.2011.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 07/07/2011] [Accepted: 07/13/2011] [Indexed: 12/19/2022]
Abstract
Postprandial platelet hyperactivity and aggregation play a crucial role in the pathogenesis of metabolic syndrome. The purpose of the present study was to evaluate the effect of boiled wild plants consumption on the postprandial platelet aggregation in metabolic syndrome patients. Patients consumed 5 meals in a random order (ie, 4 wild plant meals, namely, Reichardia picroides [RP], Cynara cardunculus, Urospermum picroides [UP], and Chrysanthemum coronarium, and a control meal, which contained no wild plants). Several biochemical indices as well as platelet activating factor (PAF)- and adenosine diphosphate-induced ex vivo platelet aggregation were measured postprandially. Moreover, the ability of plants extract to inhibit rabbit platelet aggregation was tested in vitro. The consumption of RP and UP meals significantly reduced ex vivo adenosine diphosphate-induced postprandial platelet aggregation compared with the control meal. The consumption of UP meals significantly reduced the ex vivo PAF-induced platelet aggregation postprandially. Both UP and RP extracts significantly inhibited PAF-induced rabbit platelet aggregation in vitro. Wild plants consumption reduced postprandial platelet hyperaggregability of metabolic syndrome patients, which may account for their healthy effects.
Collapse
|
16
|
Recent progress on phospholipases: different sources, assay methods, industrial potential and pathogenicity. Appl Biochem Biotechnol 2011; 164:991-1022. [PMID: 21302142 DOI: 10.1007/s12010-011-9190-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 01/25/2011] [Indexed: 10/18/2022]
Abstract
Significant studies on phospholipases optimization, characterization, physiological role and industrial potential have been conducted worldwide. Some of them have been directed for biotechnological advances such as gene discovery and functional enhancement by protein engineering. Others reported phospholipases as virulence factor and major cause of pathophysiological effects. A general overview on phospholipase is needed for the identification of new reliable and efficient phospholipase, which would be potentially used in number of industrial and medical applications. Phospholipases catalyse the hydrolysis of one or more ester and phosphodiester bonds of glycerophospholipids. They vary in site of action on phospholipid which can be used industrially for modification/production of new phospholipids. Catalytically active phospholipase mainly use phosphatidylcholine as major substrate, but they can also show specificity with other phospholipids. Several accurate phospholipase assay methods are known, but a rapid and reliable method for high-throughput screening is still a challenge for efficient supply of superior phospholipases and their practical applications. Major application of phospholipase is in industries like oil refinery, health food manufacturing, dairy, cosmetics etc. All types of phospholipases can be involved as virulence factor. They can also be used as diagnostic markers for microbial infection. The importance of phospholipase in virulence is proven and inhibitors of the enzyme can be used as candidate for preventing the associated disease.
Collapse
|