1
|
Meng X, Ma L, Li T, Zhu H, Guo K, Liu D, Ran W, Shen Q. The functioning of a novel protein, Swollenin, in promoting the lignocellulose degradation capacity of Trichoderma guizhouense NJAU4742 from a proteomic perspective. BIORESOURCE TECHNOLOGY 2020; 317:123992. [PMID: 32799087 DOI: 10.1016/j.biortech.2020.123992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 05/25/2023]
Abstract
The functioning of a novel auxiliary enzyme, TgSWO from Trichoderma guizhouense NJAU4742, was investigated based on the proteomic analysis of wild-type (WT), knockout (KO) and overexpression (OE) treatments. The results showed that the cellulase and hemicellulase activities of OE and WT were significantly higher than those of KO. Simultaneously, tandem mass tag (TMT) analysis results indicated that cellulases and hemicellulases were significantly upregulated in OE, especially hydrophobin (HFB, A1A105805.1) and endo-β-1,4-glucanases (A1A101831.1), with ratios of 43.73 and 9.88, respectively, compared with WT. The synergistic effect of TgSWO on cellulases increased the reducing sugar content by 1.45 times in KO + TgSWO (1.8 mg) compared with KO, and there was no significant difference between KO + TgSWO (1.2 mg) and WT. This study elucidated the function of TgSWO in promoting the lignocellulose degradation capacity of NAJU4742, which provides new insights into the efficient conversion of lignocellulose.
Collapse
Affiliation(s)
- Xiaohui Meng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Lei Ma
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Tuo Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Han Zhu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Kai Guo
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Province Key Laboratory for Biosensors, Jinan 250014, China
| | - Dongyang Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Wei Ran
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
2
|
Santos CA, Ferreira-Filho JA, O'Donovan A, Gupta VK, Tuohy MG, Souza AP. Production of a recombinant swollenin from Trichoderma harzianum in Escherichia coli and its potential synergistic role in biomass degradation. Microb Cell Fact 2017; 16:83. [PMID: 28511724 PMCID: PMC5432999 DOI: 10.1186/s12934-017-0697-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/05/2017] [Indexed: 01/09/2023] Open
Abstract
Background Fungal swollenins (SWOs) constitute a class of accessory proteins that are homologous to canonical plant expansins. Expansins and expansin-related proteins are well known for acting in the deagglomeration of cellulose structure by loosening macrofibrils. Consequently, SWOs can increase the accessibility and efficiency of the other enzymes involved in the saccharification of cellulosic substrates. Thus, SWOs are promising targets for improving the hydrolysis of plant biomass and for use as an additive to enhance the efficiency of an enzyme cocktail designed for the production of biofuels. Results Here, we report the initial characterization of an SWO from Trichoderma harzianum (ThSwo) that was successfully produced using Escherichia coli as a host. Initially, transcriptome and secretome data were used to compare swo gene expression and the amount of secreted ThSwo. The results from structural modeling and phylogenetic analysis of the ThSwo protein showed that ThSwo does preserve some structural features of the plant expansins and family-45 glycosyl hydrolase enzymes, but it evolutionarily diverges from both of these protein classes. Recombinant ThSwo was purified at a high yield and with high purity and showed secondary folding similar to that of a native fungal SWO. Bioactivity assays revealed that the purified recombinant ThSwo created a rough and amorphous surface on Avicel and displayed a high synergistic effect with a commercial xylanase from T. viride, enhancing its hydrolytic performance up to 147 ± 7%. Conclusions Many aspects of the structure and mechanism of action of fungal SWOs remain unknown. In the present study, we produced a recombinant, active SWO from T. harzianum using a prokaryotic host and confirmed its potential synergistic role in biomass degradation. Our work paves the way for further studies evaluating the structure and function of this protein, especially regarding its use in biotechnology. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0697-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clelton A Santos
- Molecular Glycobiotechnology Group, Department of Biochemistry, National University of Ireland Galway, Galway, Ireland.,Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, SP, Brazil
| | - Jaire A Ferreira-Filho
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anthonia O'Donovan
- Molecular Glycobiotechnology Group, Department of Biochemistry, National University of Ireland Galway, Galway, Ireland.,Technology Centre for Biorefining and Bioenergy, Orbsen Building, National University of Ireland, Galway, Ireland
| | - Vijai K Gupta
- Molecular Glycobiotechnology Group, Department of Biochemistry, National University of Ireland Galway, Galway, Ireland.,Technology Centre for Biorefining and Bioenergy, Orbsen Building, National University of Ireland, Galway, Ireland.,Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Maria G Tuohy
- Molecular Glycobiotechnology Group, Department of Biochemistry, National University of Ireland Galway, Galway, Ireland.,Technology Centre for Biorefining and Bioenergy, Orbsen Building, National University of Ireland, Galway, Ireland
| | - Anete P Souza
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, SP, Brazil. .,Department of Plant Biology, Biology Institute, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
3
|
Eibinger M, Sigl K, Sattelkow J, Ganner T, Ramoni J, Seiboth B, Plank H, Nidetzky B. Functional characterization of the native swollenin from Trichoderma reesei: study of its possible role as C1 factor of enzymatic lignocellulose conversion. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:178. [PMID: 27570542 PMCID: PMC5000517 DOI: 10.1186/s13068-016-0590-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/15/2016] [Indexed: 05/28/2023]
Abstract
BACKGROUND Through binding to cellulose, expansin-like proteins are thought to loosen the structural order of crystalline surface material, thus making it more accessible for degradation by hydrolytic enzymes. Swollenin SWO1 is the major expansin-like protein from the fungus Trichoderma reesei. Here, we have performed a detailed characterization of a recombinant native form of SWO1 with respect to its possible auxiliary role in the enzymatic saccharification of lignocellulosic substrates. RESULTS The swo1 gene was overexpressed in T. reesei QM9414 Δxyr1 mutant, featuring downregulated cellulase production, and the protein was purified from culture supernatant. SWO1 was N-glycosylated and its circular dichroism spectrum suggested a folded protein. Adsorption isotherms (25 °C, pH 5.0, 1.0 mg substrate/mL) revealed SWO1 to be 120- and 20-fold more specific for binding to birchwood xylan and kraft lignin, respectively, than for binding to Avicel PH-101. The SWO1 binding capacity on lignin (25 µmol/g) exceeded 12-fold that on Avicel PH-101 (2.1 µmol/g). On xylan, not only the binding capacity (22 µmol/g) but also the affinity of SWO1 (K d = 0.08 µM) was enhanced compared to Avicel PH-101 (K d = 0.89 µM). SWO1 caused rapid release of a tiny amount of reducing sugars (<1 % of total) from different substrates (Avicel PH-101, nanocrystalline cellulose, steam-pretreated wheat straw, barley β-glucan, cellotetraose) but did not promote continued saccharification. Atomic force microscopy revealed that amorphous cellulose films were not affected by SWO1. Also with AFM, binding of SWO1 to cellulose nanocrystallites was demonstrated at the single-molecule level, but adsorption did not affect this cellulose. SWO1 exhibited no synergy with T. reesei cellulases in the hydrolysis of the different celluloses. However, SWO1 boosted slightly (1.5-fold) the reducing sugar release from a native grass substrate. CONCLUSIONS SWO1 is a strongly glycosylated protein, which has implications for producing it in heterologous hosts. Although SWO1 binds to crystalline cellulose, its adsorption to xylan is much stronger. SWO1 is not an auxiliary factor of the enzymatic degradation of a variety of cellulosic substrates. Effect of SWO1 on sugar release from intact plant cell walls might be exploitable with certain (e.g., mildly pretreated) lignocellulosic feedstocks.
Collapse
Affiliation(s)
- Manuel Eibinger
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, 8010 Graz, Austria
| | - Karin Sigl
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, 8010 Graz, Austria
| | - Jürgen Sattelkow
- Institute for Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
| | - Thomas Ganner
- Institute for Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
| | - Jonas Ramoni
- Research Division Biochemical Technology, Institute of Chemical Engineering, TU Wien, Gumpendorferstrasse 1A/166, 1060 Vienna, Austria
| | - Bernhard Seiboth
- Research Division Biochemical Technology, Institute of Chemical Engineering, TU Wien, Gumpendorferstrasse 1A/166, 1060 Vienna, Austria
| | - Harald Plank
- Institute for Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
- Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, 8010 Graz, Austria
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
4
|
Research advances in expansins and expansion-like proteins involved in lignocellulose degradation. Biotechnol Lett 2015; 37:1541-51. [DOI: 10.1007/s10529-015-1842-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/29/2015] [Indexed: 12/12/2022]
|
5
|
Tovar-Herrera OE, Batista-García RA, Sánchez-Carbente MDR, Iracheta-Cárdenas MM, Arévalo-Niño K, Folch-Mallol JL. A novel expansin protein from the white-rot fungus Schizophyllum commune. PLoS One 2015; 10:e0122296. [PMID: 25803865 PMCID: PMC4372547 DOI: 10.1371/journal.pone.0122296] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/17/2015] [Indexed: 11/18/2022] Open
Abstract
A novel expansin protein (ScExlx1) was found, cloned and expressed from the Basidiomycete fungus Schizophylum commune. This protein showed the canonical features of plant expansins. ScExlx1 showed the ability to form “bubbles” in cotton fibers, reduce the size of avicel particles and enhance reducing sugar liberation from cotton fibers pretreated with the protein and then treated with cellulases. ScExlx1 was able to bind cellulose, birchwood xylan and chitin and this property was not affected by different sodium chloride concentrations. A novel property of ScExlx1 is its capacity to enhance reducing sugars (N-acetyl glucosamine) liberation from pretreated chitin and further added with chitinase, which has not been reported for any expansin or expansin-like protein. To the best of our knowledge, this is the first report of a bona fide fungal expansin found in a basidiomycete and we could express the bioactive protein in Pichia pastoris.
Collapse
Affiliation(s)
- Omar Eduardo Tovar-Herrera
- Instituto de Biotecnología. Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Ramón Alberto Batista-García
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
- Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | | - María Magdalena Iracheta-Cárdenas
- Instituto de Biotecnología. Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Katiushka Arévalo-Niño
- Instituto de Biotecnología. Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
- * E-mail: (JLFM); (KAN)
| | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
- * E-mail: (JLFM); (KAN)
| |
Collapse
|
6
|
Seki Y, Kikuchi Y, Yoshimoto R, Aburai K, Kanai Y, Ruike T, Iwabata K, Goitsuka R, Sugawara F, Abe M, Sakaguchi K. Promotion of crystalline cellulose degradation by expansins from Oryza sativa. PLANTA 2015; 241:83-93. [PMID: 25218793 DOI: 10.1007/s00425-014-2163-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/22/2014] [Indexed: 06/03/2023]
Abstract
Enzymatic activities of Oryza sativa expansins, which were heterologously overexpressed in Escherichia coli , were analyzed. Results suggested that expansins promote degradation of cellulose by cellulase in a synergistic manner. Sustainable production of future biofuels is dependent on efficient saccharification of lignocelluloses. Expansins have received a lot of attention as proteins promoting biological degradation of cellulose using cellulase. The expansins are a class of plant cell wall proteins that induce cell wall loosening without hydrolysis. In this study, the expansins from Oryza sativa were classified using phylogenetic analysis and five proteins were selected for functional evaluation. At low cellulose loading, the cellulase in expansin mixtures was up to 2.4 times more active than in mixtures containing only cellulase, but at high cellulose loading the activity of cellulase in expansin mixtures and cellulase only mixtures did not differ. Furthermore, expansin activity was greater in cellulase mixtures compared with cellulase-deficient mixtures. Therefore, the expansins showed significant synergistic activity with cellulase. Expansin may play an important role in efficient saccharification of cellulose.
Collapse
Affiliation(s)
- Yasutaka Seki
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba-Ken, 278-8510, Japan,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kim IJ, Lee HJ, Choi IG, Kim KH. Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase. Appl Microbiol Biotechnol 2014; 98:8469-80. [PMID: 25129610 DOI: 10.1007/s00253-014-6001-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 01/09/2023]
Abstract
Reducing the enzyme loadings for enzymatic saccharification of lignocellulose is required for economically feasible production of biofuels and biochemicals. One strategy is addition of small amounts of synergistic proteins to cellulase mixtures. Synergistic proteins increase the activity of cellulase without causing significant hydrolysis of cellulose. Synergistic proteins exert their activity by inducing structural modifications in cellulose. Recently, synergistic proteins from various biological sources, including bacteria, fungi, and plants, were identified based on genomic data, and their synergistic activities were investigated. Currently, an up-to-date overview of several aspects of synergistic proteins, such as their functions, action mechanisms and synergistic activity, are important for future industrial application. In this review, we summarize the current state of research on four synergistic proteins: carbohydrate-binding modules, plant expansins, expansin-like proteins, and Auxiliary Activity family 9 (formerly GH61) proteins. This review provides critical information to aid in promoting research on the development of efficient and industrially feasible synergistic proteins.
Collapse
Affiliation(s)
- In Jung Kim
- Department of Biotechnology, Korea University Graduate School, Seoul, 136-713, Republic of Korea
| | | | | | | |
Collapse
|
8
|
Wang W, Liu C, Ma Y, Liu X, Zhang K, Zhang M. Improved production of two expansin-like proteins in Pichia pastoris and investigation of their functional properties. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2013.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Ekwe E, Morgenstern I, Tsang A, Storms R, Powlowski J. Non-Hydrolytic Cellulose Active Proteins: Research Progress and Potential Application in Biorefineries. Ind Biotechnol (New Rochelle N Y) 2013. [DOI: 10.1089/ind.2013.0010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Enongene Ekwe
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada
| | - Ingo Morgenstern
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Reginald Storms
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Justin Powlowski
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Kang K, Wang S, Lai G, Liu G, Xing M. Characterization of a novel swollenin from Penicillium oxalicum in facilitating enzymatic saccharification of cellulose. BMC Biotechnol 2013; 13:42. [PMID: 23688024 PMCID: PMC3681723 DOI: 10.1186/1472-6750-13-42] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/16/2013] [Indexed: 12/03/2022] Open
Abstract
Background Plant expansins and fungal swollenin that can disrupt crystalline cellulose have great potential for applications in conversion of biomass. Recent studies have been mainly focused on Trichoderma reesei swollenin that show relatively low activity in the promotion of cellulosic hydrolysis. Our aim was to isolate a novel swollenin with greater disruptive activity, to establish an efficient way of producing recombinant swollenin, and to optimize the procedure using swollenin in facilitation of cellulosic hydrolysis. Results A novel gene encoding a swollenin-like protein, POSWOI, was isolated from the filamentous fungus Penicillium oxalicum by Thermal Asymmetric Interlaced PCR (TAIL-PCR). It consisted of a family 1 carbohydrate-binding module (CBM1) followed by a linker connected to a family 45 endoglucanase-like domain. Using the cellobiohydrolase I promoter, recombinant POSWOI was efficiently produced in T. reesei with a yield of 105 mg/L, and showed significant disruptive activity on crystalline cellulose. Simultaneous reaction with both POSWOI and cellulases enhanced the hydrolysis of crystalline cellulose Avicel by approximately 50%. Using a POSWOI-pretreatment procedure, cellulases can produce nearly twice as many reducing sugars as without pretreatment. The mechanism by which POSWOI facilitates the saccharification of cellulose was also studied using a cellulase binding assay. Conclusion We present a novel fungal swollenin with considerable disruptive activity on crystalline cellulose, and develop a better procedure for using swollenin in facilitating cellulosic hydrolysis. We thus provide a new approach for the effective bioconversion of cellulosic biomass.
Collapse
|
11
|
Cerato-platanin shows expansin-like activity on cellulosic materials. Appl Microbiol Biotechnol 2013; 98:175-84. [DOI: 10.1007/s00253-013-4822-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
|
12
|
Biomass Converting Enzymes as Industrial Biocatalysts for Fuels and Chemicals: Recent Developments. Catalysts 2012. [DOI: 10.3390/catal2020244] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
13
|
Baccelli I, Comparini C, Bettini PP, Martellini F, Ruocco M, Pazzagli L, Bernardi R, Scala A. The expression of the cerato-platanin gene is related to hyphal growth and chlamydospores formation in Ceratocystis platani. FEMS Microbiol Lett 2012; 327:155-63. [DOI: 10.1111/j.1574-6968.2011.02475.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Ivan Baccelli
- Dipartimento di Biotecnologie Agrarie; Università di Firenze; Florence; Italy
| | - Cecilia Comparini
- Dipartimento di Biotecnologie Agrarie; Università di Firenze; Florence; Italy
| | - Priscilla P. Bettini
- Dipartimento di Biologia Evoluzionistica ‘Leo Pardi’; Università di Firenze; Florence; Italy
| | | | - Michelina Ruocco
- Istituto per la Protezione delle Piante; CNR; Portici (NA); Italy
| | - Luigia Pazzagli
- Dipartimento di Scienze Biochimiche; Università di Firenze; Florence; Italy
| | - Rodolfo Bernardi
- Dipartimento di Biologia delle Piante Agrarie; Università di Pisa; Pisa; Italy
| | - Aniello Scala
- Dipartimento di Biotecnologie Agrarie; Università di Firenze; Florence; Italy
| |
Collapse
|
14
|
Jäger G, Girfoglio M, Dollo F, Rinaldi R, Bongard H, Commandeur U, Fischer R, Spiess AC, Büchs J. How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis. BIOTECHNOLOGY FOR BIOFUELS 2011; 4:33. [PMID: 21943248 PMCID: PMC3203333 DOI: 10.1186/1754-6834-4-33] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/23/2011] [Indexed: 05/02/2023]
Abstract
BACKGROUND In order to generate biofuels, insoluble cellulosic substrates are pretreated and subsequently hydrolyzed with cellulases. One way to pretreat cellulose in a safe and environmentally friendly manner is to apply, under mild conditions, non-hydrolyzing proteins such as swollenin - naturally produced in low yields by the fungus Trichoderma reesei. To yield sufficient swollenin for industrial applications, the first aim of this study is to present a new way of producing recombinant swollenin. The main objective is to show how swollenin quantitatively affects relevant physical properties of cellulosic substrates and how it affects subsequent hydrolysis. RESULTS After expression in the yeast Kluyveromyces lactis, the resulting swollenin was purified. The adsorption parameters of the recombinant swollenin onto cellulose were quantified for the first time and were comparable to those of individual cellulases from T. reesei. Four different insoluble cellulosic substrates were then pretreated with swollenin. At first, it could be qualitatively shown by macroscopic evaluation and microscopy that swollenin caused deagglomeration of bigger cellulose agglomerates as well as dispersion of cellulose microfibrils (amorphogenesis). Afterwards, the effects of swollenin on cellulose particle size, maximum cellulase adsorption and cellulose crystallinity were quantified. The pretreatment with swollenin resulted in a significant decrease in particle size of the cellulosic substrates as well as in their crystallinity, thereby substantially increasing maximum cellulase adsorption onto these substrates. Subsequently, the pretreated cellulosic substrates were hydrolyzed with cellulases. Here, pretreatment of cellulosic substrates with swollenin, even in non-saturating concentrations, significantly accelerated the hydrolysis. By correlating particle size and crystallinity of the cellulosic substrates with initial hydrolysis rates, it could be shown that the swollenin-induced reduction in particle size and crystallinity resulted in high cellulose hydrolysis rates. CONCLUSIONS Recombinant swollenin can be easily produced with the robust yeast K. lactis. Moreover, swollenin induces deagglomeration of cellulose agglomerates as well as amorphogenesis (decrystallization). For the first time, this study quantifies and elucidates in detail how swollenin affects different cellulosic substrates and their hydrolysis.
Collapse
Affiliation(s)
- Gernot Jäger
- AVT-Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University,
Worringerweg 1, D-52074 Aachen, Germany
| | - Michele Girfoglio
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringerweg 1,
D-52074 Aachen, Germany
| | - Florian Dollo
- AVT-Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University,
Worringerweg 1, D-52074 Aachen, Germany
| | - Roberto Rinaldi
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470
Mülheim an der Ruhr, Germany
| | - Hans Bongard
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470
Mülheim an der Ruhr, Germany
| | - Ulrich Commandeur
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringerweg 1,
D-52074 Aachen, Germany
| | - Rainer Fischer
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringerweg 1,
D-52074 Aachen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME),
Forckenbeckstrasse 6, D-52074 Aachen, Germany
| | - Antje C Spiess
- AVT-Aachener Verfahrenstechnik, Enzyme Process Technology, RWTH Aachen University,
Worringerweg 1, D-52074 Aachen, Germany
| | - Jochen Büchs
- AVT-Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University,
Worringerweg 1, D-52074 Aachen, Germany
| |
Collapse
|
15
|
Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 2011; 77:7007-15. [PMID: 21821740 DOI: 10.1128/aem.05815-11] [Citation(s) in RCA: 280] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several members of the glycoside hydrolase 61 (GH61) family of proteins have recently been shown to dramatically increase the breakdown of lignocellulosic biomass by microbial hydrolytic cellulases. However, purified GH61 proteins have neither demonstrable direct hydrolase activity on various polysaccharide or lignacious components of biomass nor an apparent hydrolase active site. Cellobiose dehydrogenase (CDH) is a secreted flavocytochrome produced by many cellulose-degrading fungi with no well-understood biological function. Here we demonstrate that the binary combination of Thermoascus aurantiacus GH61A (TaGH61A) and Humicola insolens CDH (HiCDH) cleaves cellulose into soluble, oxidized oligosaccharides. TaGH61A-HiCDH activity on cellulose is shown to be nonredundant with the activities of canonical endocellulase and exocellulase enzymes in microcrystalline cellulose cleavage, and while the combination of TaGH61A and HiCDH cleaves highly crystalline bacterial cellulose, it does not cleave soluble cellodextrins. GH61 and CDH proteins are coexpressed and secreted by the thermophilic ascomycete Thielavia terrestris in response to environmental cellulose, and the combined activities of T. terrestris GH61 and T. terrestris CDH are shown to synergize with T. terrestris cellulose hydrolases in the breakdown of cellulose. The action of GH61 and CDH on cellulose may constitute an important, but overlooked, biological oxidoreductive system that functions in microbial lignocellulose degradation and has applications in industrial biomass utilization.
Collapse
|
16
|
Zhou Q, Lv X, Zhang X, Meng X, Chen G, Liu W. Evaluation of swollenin from Trichoderma pseudokoningii as a potential synergistic factor in the enzymatic hydrolysis of cellulose with low cellulase loadings. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0650-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|