1
|
Kurniawan DC, Rohman MS, Witasari LD. Heterologous expression, characterization, and application of recombinant thermostable α-amylase from Geobacillus sp. DS3 for porous starch production. Biochem Biophys Rep 2024; 39:101784. [PMID: 39113813 PMCID: PMC11304703 DOI: 10.1016/j.bbrep.2024.101784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Novel Geobacillus sp. DS3, isolated from the Sikidang Crater in Dieng, exhibits promising characteristics for industrial applications, particularly in thermostable α-amylase production. Recombinant technology was used to express thermostable α-amylase in E. coli BL21(DE3) to overcome high-temperature production challenges. The study aimed to express, purify, characterize, and explore potential applications of this novel enzyme. The enzyme was successfully expressed in E. coli BL21(DE3) at 18 °C for 20 h with 0.5 mM IPTG induction. Purification with Ni-NTA column yielded 69.23 % from the initial crude enzyme, with a 3.6-fold increase in specific activity. The enzyme has a molecular weight of ±70 kDa (±58 kDa enzyme+11 kDa SUMO protein). It exhibited activity over a wide temperature range (30-90 °C) and pH range (6-8), with optimal activity at 70 °C and pH 6 with great stability at 60 °C. Kinetic analysis revealed Km and Vmax values of 324.03 mg/ml and 36.5 U/mg, respectively, with dextrin as the preferred substrate without cofactor addition. As a metalloenzyme, it showed the best activity in the presence of Ca2+. The enzyme was used for porous starch production and successfully immobilized with chitosan, exhibiting improved thermal stability. After the fourth reuse, the immobilized enzyme maintained 62 % activity compared to the initial immobilization.
Collapse
Affiliation(s)
- Dina Clarissa Kurniawan
- Biotechnology Study Program, Faculty of Graduate School, Universitas Gadjah Mada, Jl. Teknika Utara, Kocoran, Sleman, D.I. Yogyakarta 55281, Indonesia
| | - Muhammad Saifur Rohman
- Biotechnology Study Program, Faculty of Graduate School, Universitas Gadjah Mada, Jl. Teknika Utara, Kocoran, Sleman, D.I. Yogyakarta 55281, Indonesia
- Dept. of Agricultural Microbiology, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora, Bulaksumur, Sleman, D.I. Yogyakarta 55281, Indonesia
| | - Lucia Dhiantika Witasari
- Biotechnology Study Program, Faculty of Graduate School, Universitas Gadjah Mada, Jl. Teknika Utara, Kocoran, Sleman, D.I. Yogyakarta 55281, Indonesia
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Sleman, D.I. Yogyakarta 55281, Indonesia
| |
Collapse
|
2
|
Bibekar P, Krapp L, Peraro MD. PeSTo-Carbs: Geometric Deep Learning for Prediction of Protein-Carbohydrate Binding Interfaces. J Chem Theory Comput 2024; 20:2985-2991. [PMID: 38602504 PMCID: PMC11044267 DOI: 10.1021/acs.jctc.3c01145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
The Protein Structure Transformer (PeSTo), a geometric transformer, has exhibited exceptional performance in predicting protein-protein binding interfaces and distinguishing interfaces with nucleic acids, lipids, small molecules, and ions. In this study, we introduce PeSTo-Carbs, an extension of PeSTo specifically engineered to predict protein-carbohydrate binding interfaces. We evaluate the performance of this approach using independent test sets and compare them with those of previous methods. Furthermore, we highlight the model's capability to specialize in predicting interfaces involving cyclodextrins, a biologically and pharmaceutically significant class of carbohydrates. Our method consistently achieves remarkable accuracy despite the scarcity of available structural data for cyclodextrins.
Collapse
Affiliation(s)
- Parth Bibekar
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Lucien Krapp
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
- Swiss
Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland
| | - Matteo Dal Peraro
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
- Swiss
Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland
| |
Collapse
|
3
|
Wang YC, Ma JW, Liu HJ, Jiang ZQ, Li YX. Simultaneous improvement of thermostability and maltotriose-forming ability of a fungal α-amylase for bread making by directed evolution. Int J Biol Macromol 2024; 264:130481. [PMID: 38431017 DOI: 10.1016/j.ijbiomac.2024.130481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/03/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
For applications in food industries, a fungal α-amylase from Malbranchea cinnamomea was engineered by directed evolution. Through two rounds of screening, a mutant α-amylase (mMcAmyA) was obtained with higher optimal temperature (70 °C, 5 °C increase) and better hydrolysis properties (18.6 % maltotriose yield, 2.5-fold increase) compared to the wild-type α-amylase (McAmyA). Site-directed mutations revealed that Threonine (Thr) 226 Serine (Ser) substitution was the main reason for the property evolution of mMcAmyA. Through high cell density fermentation, the highest expression level of Thr226Ser was 3951 U/mL. Thr226Ser was further used for bread baking with a dosage of 1000 U/kg flour, resulting in a 17.8 % increase in specific volume and a 35.6 % decrease in hardness compared to the control. The results were a significant improvement on those of McAmyA. Moreover, the mutant showed better anti-staling properties compared to McAmyA, as indicated by the improved sensory evaluation after 4 days of storage at 4 and 25 °C. These findings provide insights into the structure-function relationship of fungal α-amylase and introduce a potential candidate for bread-making industry.
Collapse
Affiliation(s)
- Yu-Chuan Wang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jun-Wen Ma
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Hai-Jie Liu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Zheng-Qiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yan-Xiao Li
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462000, China.
| |
Collapse
|
4
|
Modulating Glycoside Hydrolase Activity between Hydrolysis and Transfer Reactions Using an Evolutionary Approach. Molecules 2021; 26:molecules26216586. [PMID: 34770995 PMCID: PMC8587830 DOI: 10.3390/molecules26216586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/02/2023] Open
Abstract
The proteins within the CAZy glycoside hydrolase family GH13 catalyze the hydrolysis of polysaccharides such as glycogen and starch. Many of these enzymes also perform transglycosylation in various degrees, ranging from secondary to predominant reactions. Identifying structural determinants associated with GH13 family reaction specificity is key to modifying and designing enzymes with increased specificity towards individual reactions for further applications in industrial, chemical, or biomedical fields. This work proposes a computational approach for decoding the determinant structural composition defining the reaction specificity. This method is based on the conservation of coevolving residues in spatial contacts associated with reaction specificity. To evaluate the algorithm, mutants of α-amylase (TmAmyA) and glucanotransferase (TmGTase) from Thermotoga maritima were constructed to modify the reaction specificity. The K98P/D99A/H222Q variant from TmAmyA doubled the transglycosydation/hydrolysis (T/H) ratio while the M279N variant from TmGTase increased the hydrolysis/transglycosidation ratio five-fold. Molecular dynamic simulations of the variants indicated changes in flexibility that can account for the modified T/H ratio. An essential contribution of the presented computational approach is its capacity to identify residues outside of the active center that affect the reaction specificity.
Collapse
|
5
|
Fuchs T, Melcher F, Rerop ZS, Lorenzen J, Shaigani P, Awad D, Haack M, Prem SA, Masri M, Mehlmer N, Brueck TB. Identifying carbohydrate-active enzymes of Cutaneotrichosporon oleaginosus using systems biology. Microb Cell Fact 2021; 20:205. [PMID: 34711240 PMCID: PMC8555327 DOI: 10.1186/s12934-021-01692-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
Background The oleaginous yeast Cutaneotrichosporon oleaginosus represents one of the most promising microbial platforms for resource-efficient and scalable lipid production, with the capacity to accept a wide range of carbohydrates encapsulated in complex biomass waste or lignocellulosic hydrolysates. Currently, data related to molecular aspects of the metabolic utilisation of oligomeric carbohydrates are sparse. In addition, comprehensive proteomic information for C. oleaginosus focusing on carbohydrate metabolism is not available. Results In this study, we conducted a systematic analysis of carbohydrate intake and utilisation by C. oleaginosus and investigated the influence of different di- and trisaccharide as carbon sources. Changes in the cellular growth and morphology could be observed, depending on the selected carbon source. The greatest changes in morphology were observed in media containing trehalose. A comprehensive proteomic analysis of secreted, cell wall-associated, and cytoplasmatic proteins was performed, which highlighted differences in the composition and quantity of secreted proteins, when grown on different disaccharides. Based on the proteomic data, we performed a relative quantitative analysis of the identified proteins (using glucose as the reference carbon source) and observed carbohydrate-specific protein distributions. When using cellobiose or lactose as the carbon source, we detected three- and five-fold higher diversity in terms of the respective hydrolases released. Furthermore, the analysis of the secreted enzymes enabled identification of the motif with the consensus sequence LALL[LA]L[LA][LA]AAAAAAA as a potential signal peptide. Conclusions Relative quantification of spectral intensities from crude proteomic datasets enabled the identification of new enzymes and provided new insights into protein secretion, as well as the molecular mechanisms of carbo-hydrolases involved in the cleavage of the selected carbon oligomers. These insights can help unlock new substrate sources for C. oleaginosus, such as low-cost by-products containing difficult to utilize carbohydrates. In addition, information regarding the carbo-hydrolytic potential of C. oleaginosus facilitates a more precise engineering approach when using targeted genetic approaches. This information could be used to find new and more cost-effective carbon sources for microbial lipid production by the oleaginous yeast C. oleaginosus. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01692-2.
Collapse
Affiliation(s)
- Tobias Fuchs
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Felix Melcher
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Zora Selina Rerop
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Jan Lorenzen
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Pariya Shaigani
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Martina Haack
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Sophia Alice Prem
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Mahmoud Masri
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.
| | - Thomas B Brueck
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.
| |
Collapse
|
6
|
Chen L, Yi Z, Fang Y, Jin Y, He K, Xiao Y, Zhao D, Luo H, He H, Sun Q, Zhao H. Biochemical and synergistic properties of a novel alpha-amylase from Chinese nong-flavor Daqu. Microb Cell Fact 2021; 20:80. [PMID: 33827572 PMCID: PMC8028695 DOI: 10.1186/s12934-021-01571-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background Daqu is the most important fermentation starter for Chinese liquor, with large number of microbes and enzymes being openly enriched in the Daqu system over thousands of years. However, only a few enzymes have been analyzed with crude protein for total liquefying power and saccharifying power of Daqu. Therefore, the complex enzymatic system present in Daqu has not been completely characterized. Moreover, their pivotal and complicated functions in Daqu are completely unknown. Results
In this study, a novel α-amylase NFAmy13B, from GH13_5 subfamily (according to the Carbohydrate-Active enZYmes Database, CAZy) was successfully heterologous expressed by Escherichia coli from Chinese Nong-flavor (NF) Daqu. It exhibited high stability ranging from pH 5.5 to 12.5, and higher specific activity, compared to other GH13_5 fungal α-amylases. Moreover, NFAmy13B did not show activity loss and retained 96% residual activity after pre-incubation at pH 11 for 21 h and pH 12 for 10 h, respectively. Additionally, 1.25 mM Ca2+ significantly improved its thermostability. NFAmy13B showed a synergistic effect on degrading wheat starch with NFAmy13A (GH13_1), another α-amylase from Daqu. Both enzymes could cleave maltotetraose and maltopentaose in same degradation pattern, and only NFAmy13A could efficiently degrade maltotriose. Moreover, NFAmy13B showed higher catalytic efficiency on long-chain starch, while NFAmy13A had higher catalytic efficiency on short-chain maltooligosaccharides. Their different catalytic efficiencies on starch and maltooligosaccharides may be caused by their discrepant substrate-binding region. Conclusions This study mined a novel GH13_5 fungal α-amylase (NFAmy13B) with outstanding alkali resistance from Nong-flavor (NF) Daqu. Furthermore, its synergistic effect with NFAmy13A (GH13_1) on hydrolyzing wheat starch was confirmed, and their possible contribution in NF Daqu was also speculated. Thus, we not only provide a candidate α-amylase for industry, but also a useful strategy for further studying the interactions in the complex enzyme system of Daqu. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01571-w.
Collapse
Affiliation(s)
- Lanchai Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, People's Republic of China
| | - Zhuolin Yi
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yang Fang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yanling Jin
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Kaize He
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yao Xiao
- Analytical and Testing Center, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Dong Zhao
- Wuliangye Group, Yibin, 644007, China
| | - Huibo Luo
- Liquor Making Bio-Technology and Application of Key Laboratory of Sichuan Province, Bioengineering College, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Hui He
- Department of Liquor Making Engineering, Moutai College, Renhuai, 564501, China
| | - Qun Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, People's Republic of China.
| | - Hai Zhao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
7
|
Liu Z, Li J, Jie C, Wu B, Hao N. A multifunctional α-amylase BSGH13 from Bacillus subtilis BS-5 possessing endoglucanase and xylanase activities. Int J Biol Macromol 2021; 171:166-176. [PMID: 33421464 DOI: 10.1016/j.ijbiomac.2021.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/25/2020] [Accepted: 01/01/2021] [Indexed: 10/22/2022]
Abstract
Exploring new multifunctional enzymes and understanding the mechanisms of catalytic promiscuity will be of enormous industrial and academic values. In the present study, we reported the discovery and characterization of a multifunctional enzyme BSGH13 from Bacillus subtilis BS-5. Remarkably, BSGH13 possessed α-amylase, endoglucanase, and xylanase activities. To our knowledge, this was the first report on an amylase from Bacillus species having additional endoglucanase and xylanase activities. Subsequently, we analyzed the effects of aromatic residues substitution at each site of the active site architecture on ligand-binding affinity and catalytic specificity of BSGH13 by a combination of virtual mutation and site-directed mutagenesis approaches. Our results indicated that the introduction of aromatic amino acids Phe or Trp at the positions L182 and L183 altered the local interaction network of BSGH13 towards different substrates, thus changing the multifunctional properties of BSGH13. Moreover, we provided an expanded perspective on studies of multifunctional enzymes.
Collapse
Affiliation(s)
- Zhaoxing Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan road, Nanjing 211816, Jiangsu, China
| | - Jiahuang Li
- School of Biopharmacy, China Pharmaceutical University, 639 Longmian avenue, Nanjing 211198, Jiangsu, China
| | - Chen Jie
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan road, Nanjing 211816, Jiangsu, China
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan road, Nanjing 211816, Jiangsu, China.
| | - Ning Hao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan road, Nanjing 211816, Jiangsu, China.
| |
Collapse
|
8
|
Production, purification and applications of raw starch degrading and calcium-independent α-amylase from soil rich in extremophile. Int J Biol Macromol 2020; 162:873-881. [PMID: 32565305 DOI: 10.1016/j.ijbiomac.2020.06.160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 11/20/2022]
Abstract
Calcium independent, raw starch hydrolyzing, acidic α-amylase (66 kDa) was synthesized by Bacillus subtilis S113 that is an aerobic, rod-shaped and Gram +ve bacteria. Purification of the enzyme was performed by HiTrap Capto Q (Ion-exchange chromatography; 19.28 fold; 22.41% yield). The purified enzyme was found stable at broad acidic pH (4-6.5) and high-temperature range (40-80 °C), that fulfilled the necessary criteria and laid the foundation to be utilized in starch saccharification industry. Kinetic studies of the enzyme revealed that Km and Vmax of the enzyme was 0.22% and 357.14 U/mg respectively. Scanning electron microscopy studies showed that the enzyme was capable of completely hydrolyzing raw wheat and potato starch, further confirming its role in the starch industry. It was found that only 7.93% of the activity was loss at 4 °C when kept for one year.
Collapse
|
9
|
Janíčková Z, Janeček Š. Fungal α-amylases from three GH13 subfamilies: their sequence-structural features and evolutionary relationships. Int J Biol Macromol 2020; 159:763-772. [DOI: 10.1016/j.ijbiomac.2020.05.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 01/12/2023]
|
10
|
A new GH13 subfamily represented by the α-amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles 2019; 24:207-217. [PMID: 31734852 DOI: 10.1007/s00792-019-01147-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/05/2019] [Indexed: 01/16/2023]
Abstract
α-Amylase catalyzes the endohydrolysis of α-1,4-glucosidic linkages in starch and related α-glucans. In the CAZy database, most α-amylases have been classified into the family GH13 counting at present more than 80,000 sequences and ~ 30 different enzyme specificities. The family has already been divided into 42 subfamilies, but additional subfamilies are still emerging. The present bioinformatics study was undertaken in an effort to propose a novel GH13 subfamily around the experimentally characterized α-amylase from the halophilic archaeon Haloarcula hispanica, which until now has not been assigned to any GH13 subfamily. The in silico analysis resulted in collecting a convincing group of putative haloarchaeal α-amylase homologues sharing sequence similarities mainly in their conserved sequence regions (CSRs) and forming a cluster in the evolutionary tree, which is well separated from representatives of established GH13 subfamilies. One of the most exclusive sequence features of the novel GH13 subfamily is the tyrosine (Tyr79 in H. hispanica α-amylase numbering) succeeding the glycine at the beginning of the CSR-VI at the β2 strand of the catalytic TIM-barrel. Evolutionarily, the novel GH13 α-amylase subfamily was most closely related to two clusters of GH13 subfamilies with the specificity of α-amylase, i.e. subfamilies GH13_5, 6 and 7 as well as GH13_15, 24, 27 and 28.
Collapse
|
11
|
Wang YC, Hu HF, Ma JW, Yan QJ, Liu HJ, Jiang ZQ. A novel high maltose-forming α-amylase from Rhizomucor miehei and its application in the food industry. Food Chem 2019; 305:125447. [PMID: 31499289 DOI: 10.1016/j.foodchem.2019.125447] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 12/23/2022]
Abstract
A novel α-amylase gene (RmAmyA) from Rhizomucor miehei was cloned and expressed in Pichia pastoris. RmAmyA showed 70% amino acid identity with the α-amylase from Rhizomucor pusillus. A high α-amylase activity of 29,794.2 U/mL was found through high cell density fermentation. The molecular mass of RmAmyA was determined to be 49.9 kDa via SDS-PAGE. RmAmyA was optimally active at 75 °C and pH 6.0, and it did not require Ca2+ to improve its activity. It exhibited broad substrate specificity towards amylose, amylopectin, soluble starch, pullulan, and cyclodextrins. High level of maltose (54%, w/w) was produced after liquefied starch was hydrolysed with RmAmyA for 16 h. Moreover, the addition of RmAmyA into Chinese steamed bread resulted in 7.7% increment in the specific volume, and 17.2% and 11.5% reduction in the chewiness and hardness, respectively. These results indicate that RmAmyA might be a potential candidate for applications in the food industry.
Collapse
Affiliation(s)
- Yu-Chuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hui-Fang Hu
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Jun-Wen Ma
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Qiao-Juan Yan
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Hai-Jie Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Zheng-Qiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
12
|
Afzali E, Forootanfar H, Eslaminejad T, Amirpour-Rostami S, Ansari M. Enhancing purification of α-amylase by superparamagnetic complex with alginate/chitosan/β-cyclodextrin/TPP. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2018.1529171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Elham Afzali
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Touba Eslaminejad
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sahar Amirpour-Rostami
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ansari
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Food and Drug Control, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Wang J, Zhang Y, Wang X, Shang J, Li Y, Zhang H, Lu F, Liu F. Biochemical characterization and molecular mechanism of acid denaturation of a novel α-amylase from Aspergillus niger. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Du R, Song Q, Zhang Q, Zhao F, Kim RC, Zhou Z, Han Y. Purification and characterization of novel thermostable and Ca-independent α-amylase produced by Bacillus amyloliquefaciens BH072. Int J Biol Macromol 2018; 115:1151-1156. [PMID: 29729336 DOI: 10.1016/j.ijbiomac.2018.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/08/2018] [Accepted: 05/01/2018] [Indexed: 11/24/2022]
Abstract
In the present study, a novel α-amylase produced by Bacillus amyloliquefaciens BH072 was purified and characterized. The molecular weight of purified α-amylase was approximately 68 kDa, determined by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) and ten amino acid of N-terminal was NSGLNGYLTH. The kinetic parameters Km and Vmax were 4.27 ± 0.21 mg/mL and 987.34 ± 23.34 U/mg, respectively. Purified α-amylase showed maximal activity at pH 7 and 60 °C. Enzyme remained stable in pH range 6.0-7.0 and 50-80 °C. The activity of the α-amylase was Ca2+ independent and stability in the presence of surfactant, oxidizing and bleaching agents. The β-mercaptoethanol and EDTA greatly enhanced and reduced α-amylase activity, respectively. This enzyme has high hydrolysis rate toward corn, wheat and potato starch and hydrolyzes soluble starch to glucose, maltose, maltotriose and maltotetraose, indicating that the α-amylase represents a promising candidate for applications in the food industry.
Collapse
Affiliation(s)
- Renpeng Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Qiaozhi Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Qiaoge Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Fangkun Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Rak-Chon Kim
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Han Dok Su Pyongyang University of Light Industry, Pyongyang 999093, Democratic People's Republic of Korea
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
15
|
Yi Z, Fang Y, He K, Liu D, Luo H, Zhao D, He H, Jin Y, Zhao H. Directly mining a fungal thermostable α-amylase from Chinese Nong-flavor liquor starter. Microb Cell Fact 2018; 17:30. [PMID: 29471820 PMCID: PMC5822527 DOI: 10.1186/s12934-018-0878-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chinese Nong-flavor (NF) liquor is continuously and stably produced by solid-state fermentation technology for 1000 years, resulting in enrichment of special microbial community and enzymes system in its starter. Based on traditional culture-dependent methods, these functional enzymes are hardly obtained. According to our previous metatranscriptomic analysis, which identifies plenty of thermostable carbohydrate-active enzymes in NF liquor starter, the aim of this study is to provide a direct and efficient way to mine these thermostable enzymes. RESULTS In present study, an alpha-amylase (NFAmy13A) gene, which showed the highest expression level of enzymes in starch degradation at high temperature stage (62 °C), was directly obtained by functional metatranscriptomics from Chinese Nong-flavor liquor starter and expressed in Pichia pastoris. NFAmy13A had a typical signal peptide and shared the highest sequence identity of 64% with α-amylase from Aspergillus niger. The recombinant enzyme of NFAmy13A showed an optimal pH at 5.0-5.5 and optimal temperature at 60 °C. NFAmy13A was activated and stabilized by Ca2+, and its half-lives at 60 and 70 °C were improved significantly from 1.5 and 0.4 h to 16 and 0.7 h, respectively, in the presence of 10 mM CaCl2. Meanwhile, Hg2+, Co2+ and SDS largely inhibited its activity. NFAmy13A showed the maximum activity on amylopectin, followed by various starches, amylose, glycogen, and pullulan, and its specificity activity on amylopectin was 200.4 U/mg. Moreover, this α-amylase efficiently hydrolyzed starches (from corn, wheat, and potato) at high concentrations up to 15 mg/ml. CONCLUSIONS This study provides a direct way to mine active enzymes from man-made environment of NF liquor starter, by which a fungal thermostable α-amylase (NFAmy13A) is successfully obtained. The good characteristics of NFAmy13A in degrading starch at high temperature are consistent with its pivotal role in solid-state fermentation of NF liquor brewing. This work would stimulate mining more enzymes from NF liquor starter and studying their potentially synergistic roles in NF liquor brewing, thus paving the way toward the optimization of liquor production and improvement of liquor quality in future.
Collapse
Affiliation(s)
- Zhuolin Yi
- Meat-processing Application Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, China.,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yang Fang
- Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, China.,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Kaize He
- Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, China.,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dayu Liu
- Meat-processing Application Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Huibo Luo
- Liquor Making Bio-Technology & Application of Key Laboratory of Sichuan Province, Bioengineering College, Sichuan University of Science & Engineering, Zigong, China
| | | | - Hui He
- Department of Liquor Making Engineering, Moutai College, Renhuai, China
| | - Yanling Jin
- Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, China. .,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Hai Zhao
- Meat-processing Application Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China. .,Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, China. .,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
16
|
Hüttner S, Nguyen TT, Granchi Z, Chin-A-Woeng T, Ahrén D, Larsbrink J, Thanh VN, Olsson L. Combined genome and transcriptome sequencing to investigate the plant cell wall degrading enzyme system in the thermophilic fungus Malbranchea cinnamomea. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:265. [PMID: 29158777 PMCID: PMC5683368 DOI: 10.1186/s13068-017-0956-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/04/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Genome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal species. The information obtained enables the investigation and discovery of genes encoding proteins involved in plant cell wall degradation, which are crucial for saccharification of lignocellulosic biomass in second-generation biorefinery applications. The thermophilic fungus Malbranchea cinnamomea is an efficient producer of many industrially relevant enzymes and a detailed analysis of its genomic content will considerably enhance our understanding of its lignocellulolytic system and promote the discovery of novel proteins. RESULTS The 25-million-base-pair genome of M. cinnamomea FCH 10.5 was sequenced with 225× coverage. A total of 9437 protein-coding genes were predicted and annotated, among which 301 carbohydrate-active enzyme (CAZyme) domains were found. The putative CAZymes of M. cinnamomea cover cellulases, hemicellulases, chitinases and pectinases, equipping the fungus with the ability to grow on a wide variety of biomass types. Upregulation of 438 and 150 genes during growth on wheat bran and xylan, respectively, in comparison to growth on glucose was revealed. Among the most highly upregulated CAZymes on xylan were glycoside hydrolase family GH10 and GH11 xylanases, as well as a putative glucuronoyl esterase and a putative lytic polysaccharide monooxygenase (LPMO). AA9-domain-containing proteins were also found to be upregulated on wheat bran, as well as a putative cutinase and a protein harbouring a CBM9 domain. Several genes encoding secreted proteins of unknown function were also more abundant on wheat bran and xylan than on glucose. CONCLUSIONS The comprehensive combined genome and transcriptome analysis of M. cinnamomea provides a detailed insight into its response to growth on different types of biomass. In addition, the study facilitates the further exploration and exploitation of the repertoire of industrially relevant lignocellulolytic enzymes of this fungus.
Collapse
Affiliation(s)
- Silvia Hüttner
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Thanh Thuy Nguyen
- Centre for Industrial Microbiology, Food Industries Research Institute, Thanh Xuan, Ha Noi, Vietnam
| | - Zoraide Granchi
- GenomeScan B.V., Plesmanlaan 1/D, 2333 BZ Leiden, The Netherlands
| | | | - Dag Ahrén
- National Bioinformatics Infrastructure Sweden (NBIS), Institute of Biology, Lund University, 223 62 Lund, Sweden
| | - Johan Larsbrink
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Vu Nguyen Thanh
- Centre for Industrial Microbiology, Food Industries Research Institute, Thanh Xuan, Ha Noi, Vietnam
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
17
|
Yusuf *M, Baroroh *U, Hasan K, Rachman SD, Ishmayana S, Subroto T. Computational Model of the Effect of a Surface-Binding Site on the Saccharomycopsis fibuligera R64 α-Amylase to the Substrate Adsorption. Bioinform Biol Insights 2017; 11:1177932217738764. [PMID: 29162975 PMCID: PMC5676498 DOI: 10.1177/1177932217738764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/16/2017] [Indexed: 11/15/2022] Open
Abstract
α-Amylase is one of the important enzymes in the starch-processing industry. However, starch processing requires high temperature, thus resulting in high cost. The high adsorptivity of α-amylase to the substrate allows this enzyme to digest the starch at a lower temperature. α-Amylase from Saccharomycopsis fibuligera R64 (Sfamy R64), a locally sourced enzyme from Indonesia, has a high amylolytic activity but low starch adsorptivity. The objective of this study was to design a computational model of Sfamy R64 with increased starch adsorptivity using bioinformatics method. The model structure of Sfamy R64 was compared with the positive control, ie, Aspergillus niger α-amylase. The structural comparison showed that Sfamy R64 lacks the surface-binding site (SBS). An SBS was introduced to the structure of Sfamy R64 by S383Y/S386W mutations. The dynamics and binding affinity of the SBS of mutant to the substrate were also improved and comparable with that of the positive control.
Collapse
Affiliation(s)
- *Muhammad Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
- Research Center of Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
| | - *Umi Baroroh
- Master of Biotechnology Program, Postgraduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Khomaini Hasan
- Faculty of Medicine, Universitas Jenderal Achmad Yani, Cimahi, Indonesia
| | - Saadah Diana Rachman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Safri Ishmayana
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Toto Subroto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
- Research Center of Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
18
|
Genome Sequence of the Thermophilic Biomass-Degrading Fungus Malbranchea cinnamomea FCH 10.5. GENOME ANNOUNCEMENTS 2017; 5:5/33/e00779-17. [PMID: 28818895 PMCID: PMC5604768 DOI: 10.1128/genomea.00779-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the annotated draft genome sequence of the thermophilic biomass-degrading fungus Malbranchea cinnamomea strain FCH 10.5, isolated from compost at a waste treatment plant in Vietnam. The genome sequence contains 24.96 Mb with an overall GC content of 49.79% and comprises 9,437 protein-coding genes.
Collapse
|
19
|
Rational Engineering of a Cold-Adapted α-Amylase from the Antarctic Ciliate Euplotes focardii for Simultaneous Improvement of Thermostability and Catalytic Activity. Appl Environ Microbiol 2017; 83:AEM.00449-17. [PMID: 28455329 PMCID: PMC5478988 DOI: 10.1128/aem.00449-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/18/2017] [Indexed: 12/04/2022] Open
Abstract
The α-amylases are endo-acting enzymes that hydrolyze starch by randomly cleaving the 1,4-α-d-glucosidic linkages between the adjacent glucose units in a linear amylose chain. They have significant advantages in a wide range of applications, particularly in the food industry. The eukaryotic α-amylase isolated from the Antarctic ciliated protozoon Euplotes focardii (EfAmy) is an alkaline enzyme, different from most of the α-amylases characterized so far. Furthermore, EfAmy has the characteristics of a psychrophilic α-amylase, such as the highest hydrolytic activity at a low temperature and high thermolability, which is the major drawback of cold-active enzymes in industrial applications. In this work, we applied site-directed mutagenesis combined with rational design to generate a cold-active EfAmy with improved thermostability and catalytic efficiency at low temperatures. We engineered two EfAmy mutants. In one mutant, we introduced Pro residues on the A and B domains in surface loops. In the second mutant, we changed Val residues to Thr close to the catalytic site. The aim of these substitutions was to rigidify the molecular structure of the enzyme. Furthermore, we also analyzed mutants containing these combined substitutions. Biochemical enzymatic assays of engineered versions of EfAmy revealed that the combination of mutations at the surface loops increased the thermostability and catalytic efficiency of the enzyme. The possible mechanisms responsible for the changes in the biochemical properties are discussed by analyzing the three-dimensional structural model. IMPORTANCE Cold-adapted enzymes have high specific activity at low and moderate temperatures, a property that can be extremely useful in various applications as it implies a reduction in energy consumption during the catalyzed reaction. However, the concurrent high thermolability of cold-adapted enzymes often limits their applications in industrial processes. The α-amylase from the psychrophilic Antarctic ciliate Euplotes focardii (named EfAmy) is a cold-adapted enzyme with optimal catalytic activity in an alkaline environment. These unique features distinguish it from most α-amylases characterized so far. In this work, we engineered a novel EfAmy with improved thermostability, substrate binding affinity, and catalytic efficiency to various extents, without impacting its pH preference. These characteristics can be considered important properties for use in the food, detergent, and textile industries and in other industrial applications. The enzyme engineering strategy developed in this study may also provide useful knowledge for future optimization of molecules to be used in particular industrial applications.
Collapse
|
20
|
|
21
|
Duan X, Liu Y, You X, Jiang Z, Yang S, Yang S. High-level expression and characterization of a novel cutinase from Malbranchea cinnamomea suitable for butyl butyrate production. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:223. [PMID: 28932264 PMCID: PMC5606096 DOI: 10.1186/s13068-017-0912-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/11/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Butyl butyrate has been considered as a promising fuel source because it is a kind of natural ester which can be converted from renewable and sustainable lignocellulosic biomass. Compared with the conventional chemical methods for butyl butyrate production, the enzymatic approach has been demonstrated to be more attractive, mainly owing to the mild reaction conditions, high specificity, low energy consumption, and environmental friendliness. Cutinases play an important role in the butyl butyrate production process. However, the production level of cutinases is still relatively low. Thus, to identify novel cutinases suitable for butyl butyrate synthesis and enhance their yields is of great value in biofuel industry. RESULTS A novel cutinase gene (McCut) was cloned from a thermophilic fungus Malbranchea cinnamomea and expressed in Pichia pastoris. The highest cutinase activity of 12, 536 U/mL was achieved in 5-L fermentor, which is by far the highest production for a cutinase. McCut was optimally active at pH 8.0 and 45 °C. It exhibited excellent stability within the pH range of 3.0-10.5 and up to 75 °C. The cutinase displayed broad substrate specificity with the highest activity towards p-nitrophenyl butyrate and tributyrin. It was capable of hydrolyzing cutin, polycaprolactone, and poly(butylene succinate). Moreover, McCut efficiently synthesized butyl butyrate with a maximum esterification efficiency of 96.9% at 4 h. The overall structure of McCut was resolved as a typical α/β-hydrolase fold. The structural differences between McCut and Aspergillus oryzae cutinase in groove and loop provide valuable information for redesign of McCut. These excellent features make it useful in biosynthesis and biodegradation fields. CONCLUSIONS A novel cutinase from M. cinnamomea was identified and characterized for the first time. High-level expression by P. pastoris is by far the highest for a cutinase. The enzyme exhibited excellent stability and high esterification efficiency for butyl butyrate production, which may make it a good candidate in biofuel and chemical industries.
Collapse
Affiliation(s)
- Xiaojie Duan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100083 China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Yu Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100083 China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Xin You
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100083 China
- College of Engineering, China Agricultural University, Beijing, 100083 China
| | - Zhengqiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100083 China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Shaoxiang Yang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing, 100048 China
| | - Shaoqing Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100083 China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| |
Collapse
|
22
|
Marine Microbiological Enzymes: Studies with Multiple Strategies and Prospects. Mar Drugs 2016; 14:md14100171. [PMID: 27669268 PMCID: PMC5082319 DOI: 10.3390/md14100171] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/04/2016] [Accepted: 09/14/2016] [Indexed: 11/16/2022] Open
Abstract
Marine microorganisms produce a series of promising enzymes that have been widely used or are potentially valuable for our daily life. Both classic and newly developed biochemistry technologies have been broadly used to study marine and terrestrial microbiological enzymes. In this brief review, we provide a research update and prospects regarding regulatory mechanisms and related strategies of acyl-homoserine lactones (AHL) lactonase, which is an important but largely unexplored enzyme. We also detail the status and catalytic mechanism of the main types of polysaccharide-degrading enzymes that broadly exist among marine microorganisms but have been poorly explored. In order to facilitate understanding, the regulatory and synthetic biology strategies of terrestrial microorganisms are also mentioned in comparison. We anticipate that this review will provide an outline of multiple strategies for promising marine microbial enzymes and open new avenues for the exploration, engineering and application of various enzymes.
Collapse
|
23
|
Sethi BK, Jana A, Nanda PK, DasMohapatra PK, Sahoo SL, Patra JK. Production of α-Amylase by Aspergillus terreus NCFT 4269.10 Using Pearl Millet and Its Structural Characterization. FRONTIERS IN PLANT SCIENCE 2016; 7:639. [PMID: 27242841 PMCID: PMC4870861 DOI: 10.3389/fpls.2016.00639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/25/2016] [Indexed: 05/28/2023]
Abstract
In this investigation, Aspergillus terreus NCFT4269.10 was employed in liquid static surface (LSSF) and solid state (SSF) fermentation to assess the optimal conditions for α-amylase biosynthesis. One-variable-at-a-time approach (quasi-optimum protocol) was primarily used to investigate the effect of each parameter on production of amylase. The maximum amylase production was achieved using pearl millet (PM) as substrate by SSF (19.19 ± 0.9 Ug(-1)) and also in presence of 1 mM magnesium sulfate, 0.025% (w/v) gibberellic acid, and 30 mg/100 ml (w/v) of vitamin E (~60-fold higher production of amylase) with the initial medium pH of 7.0 and incubation at 30 °C for 96 h. In addition, maltose, gelatin and isoleucine also influenced the α-amylase production. Amylase was purified to homogeneity with molecular mass around 15.3 kDa. The enzyme comprised of a typical secondary structure containing α-helix (12.2%), β-pleated sheet (23.6%), and β-turn (27.4%). Exploitation of PM for α-amylase production with better downstream makes it the unique enzyme for various biotechnological applications.
Collapse
Affiliation(s)
- Bijay K. Sethi
- Microbiology Research Laboratory, Post Graduate Department of Botany, Utkal UniversityBhubaneswar, India
| | - Arijit Jana
- Department of Microbiology, Vidyasagar UniversityMidnapore, India
| | | | | | - Santi L. Sahoo
- Microbiology Research Laboratory, Post Graduate Department of Botany, Utkal UniversityBhubaneswar, India
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk UniversityGoyang, South Korea
| |
Collapse
|
24
|
Singh B, Poças-Fonseca MJ, Johri BN, Satyanarayana T. Thermophilic molds: Biology and applications. Crit Rev Microbiol 2016; 42:985-1006. [DOI: 10.3109/1040841x.2015.1122572] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Tong X, Busk PK, Lange L. Characterization of a newsn-1,3-regioselective triacylglycerol lipase fromMalbranchea cinnamomea. Biotechnol Appl Biochem 2015; 63:471-8. [DOI: 10.1002/bab.1394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/05/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoxue Tong
- Section for Sustainable Biotechnology; Department of Chemistry and Bioscience; Aalborg University Copenhagen; Denmark
| | - Peter Kamp Busk
- Section for Sustainable Biotechnology; Department of Chemistry and Bioscience; Aalborg University Copenhagen; Denmark
- Barentzymes A/S; A C Meyers Vaenge 15; Copenhagen SV Denmark
| | - Lene Lange
- Section for Sustainable Biotechnology; Department of Chemistry and Bioscience; Aalborg University Copenhagen; Denmark
- Barentzymes A/S; A C Meyers Vaenge 15; Copenhagen SV Denmark
| |
Collapse
|
26
|
Xian L, Wang F, Luo X, Feng YL, Feng JX. Purification and characterization of a highly efficient calcium-independent α-amylase from Talaromyces pinophilus 1-95. PLoS One 2015; 10:e0121531. [PMID: 25811759 PMCID: PMC4374950 DOI: 10.1371/journal.pone.0121531] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 02/02/2015] [Indexed: 12/03/2022] Open
Abstract
Alpha-amylase is a very important enzyme in the starch conversion process. Most of the α-amylases are calcium-dependent and exhibit poor performance in the simultaneous saccharification and fermentation process of industrial bioethanol production that uses starch as feedstock. In this study, an extracellular amylolytic enzyme was purified from the culture broth of newly isolated Talaromyces pinophilus strain 1-95. The purified amylolytic enzyme, with an apparent molecular weight of 58 kDa on SDS-PAGE, hydrolyzed maltopentaose, maltohexaose, and maltoheptaose into mainly maltose and maltotriose and minor amount of glucose, confirming the endo-acting mode of the enzyme, and hence, was named Talaromyces pinophilus α-amylase (TpAA). TpAA was most active at pH 4.0-5.0 (with the temperature held at 37°C) and 55°C (at pH 5.0), and stable within the pH range of 5.0-9.5 (at 4°C) and below 45°C (at pH 5.0). Interestingly, the Ca2+ did not improve its enzymatic activity, optimal temperature, or thermostability of the enzyme, indicating that the TpAA was Ca2+-independent. TpAA displayed higher enzyme activity toward malto-oligosaccharides and dextrin than other previously reported α-amylases. This highly active Ca2+-independent α-amylase may have potential applications in starch-to-ethanol conversion process.
Collapse
Affiliation(s)
- Liang Xian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Fei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiang Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yu-Liang Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
27
|
Purification and characterization of a novel α-glucosidase from Malbranchea cinnamomea. Biotechnol Lett 2015; 37:1279-86. [PMID: 25724718 DOI: 10.1007/s10529-015-1798-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To characterize a novel α-glucosidase from the thermophilic fungus Malbranchea cinnamomea. RESULTS The enzyme was purified to homogeneity with purification fold of 40 and a recovery of 7.2 %. It was a monomer with molecular mass of 65.7 kDa on SDS-PAGE. It was optimally active at pH 6 and 50 °C (measured over 10 min) and exhibited a wide range of substrate specificity with the highest specific activity of 47.4 U mg(-1) for p-nitrophenyl α-D-glucopyranoside (pNPGlu) followed by isomaltose, panose and sucrose, suggesting that the enzyme belongs to the type I α-glucosidases. The K m values of the α-glucosidase for pNPGlu and isomaltose were 1.1 and 19.3 mM, respectively. CONCLUSION Because of its unique properties, the α-glucosidase may have a potential in several industrial applications.
Collapse
|
28
|
Purification and characterization of a novel alkaline β-1,3-1,4-glucanase (lichenase) from thermophilic fungus Malbranchea cinnamomea. ACTA ACUST UNITED AC 2014; 41:1487-95. [DOI: 10.1007/s10295-014-1494-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/20/2014] [Indexed: 11/26/2022]
Abstract
Abstract
A novel alkaline β-1,3-1,4-glucanase (McLic1) from a thermophilic fungus, Malbranchea cinnamomea, was purified and biochemically characterized. McLic1 was purified to homogeneity with a purification fold of 3.1 and a recovery yield of 3.7 %. The purified enzyme was most active at pH 10.0 and 55 °C, and exhibited a wide range of pH stability (pH 4.0–10.0). McLic1 displayed strict substrate specificity for barley β-glucan, oat β-glucan and lichenan, but did not show activity towards other tested polysaccharides and synthetic p-nitrophenyl derivates, suggesting that it is a specific β-1,3-1,4-glucanase. The K m values for barley β-glucan, oat β-glucan and lichenan were determined to be 0.69, 1.11 and 0.63 mg mL−1, respectively. Moreover, the enzyme was stable in various non ionic surfactants, oxidizing agents and several commercial detergents. Thus, the alkaline β-1,3-1,4-glucanase may have potential in industrial applications, such as detergent, paper and pulp industries.
Collapse
|
29
|
Fan G, Yang S, Yan Q, Guo Y, Li Y, Jiang Z. Characterization of a highly thermostable glycoside hydrolase family 10 xylanase from Malbranchea cinnamomea. Int J Biol Macromol 2014; 70:482-9. [DOI: 10.1016/j.ijbiomac.2014.07.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/06/2014] [Accepted: 07/07/2014] [Indexed: 11/24/2022]
|
30
|
Ribeiro LFC, De Lucas RC, Vitcosque GL, Ribeiro LF, Ward RJ, Rubio MV, Damásio ARL, Squina FM, Gregory RC, Walton PH, Jorge JA, Prade RA, Buckeridge MS, Polizeli MDLTM. A novel thermostable xylanase GH10 from Malbranchea pulchella expressed in Aspergillus nidulans with potential applications in biotechnology. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:115. [PMID: 25788980 PMCID: PMC4364333 DOI: 10.1186/1754-6834-7-115] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/15/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND The search for novel thermostable xylanases for industrial use has intensified in recent years, and thermophilic fungi are a promising source of useful enzymes. The present work reports the heterologous expression and biochemical characterization of a novel thermostable xylanase (GH10) from the thermophilic fungus Malbranchea pulchella, the influence of glycosylation on its stability, and a potential application in sugarcane bagasse hydrolysis. RESULTS Xylanase MpXyn10A was overexpressed in Aspergillus nidulans and was active against birchwood xylan, presenting an optimum activity at pH 5.8 and 80°C. MpXyn10A was 16% glycosylated and thermostable, preserving 85% activity after 24 hours at 65°C, and deglycosylation did not affect thermostability. Circular dichroism confirmed the high alpha-helical content consistent with the canonical GH10 family (β/α)8 barrel fold observed in molecular modeling. Primary structure analysis revealed the existence of eight cysteine residues which could be involved in four disulfide bonds, and this could explain the high thermostability of this enzyme even in the deglycosylated form. MpXyn10A showed promising results in biomass degradation, increasing the amount of reducing sugars in bagasse in natura and in three pretreated sugarcane bagasses. CONCLUSIONS MpXyn10A was successfully secreted in Aspergillus nidulans, and a potential use for sugarcane bagasse biomass degradation was demonstrated.
Collapse
Affiliation(s)
- Liliane FC Ribeiro
- />Immunology and Biochemistry Department of Faculdade de Medicina de Ribeirão Preto - USP, Ribeirão Preto, SP Brazil
| | - Rosymar C De Lucas
- />Immunology and Biochemistry Department of Faculdade de Medicina de Ribeirão Preto - USP, Ribeirão Preto, SP Brazil
| | - Gabriela L Vitcosque
- />Immunology and Biochemistry Department of Faculdade de Medicina de Ribeirão Preto - USP, Ribeirão Preto, SP Brazil
| | - Lucas F Ribeiro
- />Immunology and Biochemistry Department of Faculdade de Medicina de Ribeirão Preto - USP, Ribeirão Preto, SP Brazil
| | - Richard J Ward
- />Chemistry Department of Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - USP, Ribeirão Preto, SP Brazil
- />Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Campinas, SP Brazil
| | - Marcelo V Rubio
- />Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Campinas, SP Brazil
| | - Andre RL Damásio
- />Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Campinas, SP Brazil
| | - Fabio M Squina
- />Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Campinas, SP Brazil
| | | | - Paul H Walton
- />Department of Chemistry, The University of York, York, UK
| | - João A Jorge
- />Biology Department of Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14040-901 Brazil
| | - Rolf A Prade
- />Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK USA
| | | | - Maria de Lourdes TM Polizeli
- />Biology Department of Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14040-901 Brazil
| |
Collapse
|