1
|
Expression and purification of S5 196-272 and S6 200-317 proteins from Tilapia Lake Virus (TiLV) and their potential use as vaccines. Protein Expr Purif 2021; 190:106013. [PMID: 34752859 DOI: 10.1016/j.pep.2021.106013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022]
Abstract
Tilapia Lake Virus Disease (TiLVD) is caused by Tilapia Lake Virus (TiLV), and it has a cumulative mortality rate of up to 90% in Nile tilapia (Oreochromis niloticus). TiLV is a negative enveloped single-stranded RNA virus with 10 genomic segments. Segment 5 (S5) and segment 6 (S6) were predicted to include a signaling peptide, suggesting that the encoded proteins of these two segments may exist as part of the virus envelope. Based on bioinformatic predictions, the S5 and S6 proteins in this study were produced, including S527-343, S527-172, S5196-272, S630-317, S630-190, and S6200-317. All proteins were tested for their expression in Escherichia coli. Only S5196-272 and S6200-317 were expressed as soluble and insoluble proteins, respectively. The soluble protein was purified using affinity chromatography, whereas the insoluble protein was solubilized using 6 M urea lysis buffer before purification. Both proteins were further purified using gel filtration chromatography, and the results showed a symmetric peak of both proteins suggested a high degree of uniformity in the conformation of these proteins. Antigenicity results indicated that these proteins were recognized by serum from TiLV-infected fish. The immunization tests revealed that serum antibodies levels in Nile tilapia produced by S5196-272 and S6200-317 were significantly increased (p-value < 0.05) at 7 days post-immunization (dpi) compared to antibody levels on Day 0 (D0). All the results combined suggested a potential vaccine candidate of S5 and S6 for TiLV protection in Nile tilapia.
Collapse
|
2
|
Lohia N, Baranwal M. Immune responses to highly conserved influenza A virus matrix 1 peptides. Microbiol Immunol 2017; 61:225-231. [PMID: 28429374 DOI: 10.1111/1348-0421.12485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 01/07/2023]
Abstract
Influenza vaccine development is considered to be complicated and challenging. Constantly evolving influenza viruses require continuous global monitoring and reformulation of the vaccine strains. Peptides that are conserved among different strains and subtypes of influenza A virus are strongly considered to be attractive targets for development of cross protective influenza vaccines that stimulate cellular responses. In this study, three highly conserved (>90%) matrix 1 peptides that contain multiple T cell epitopes, ILGFVFTLTVPSERGLQRRRF (PM 1), LIRHENRMVLASTTAKA (PM 2) and LQAYQKRMGVQMQR (PM 3), were assessed for their immunogenic potential in vitro by subjecting peripheral blood mononuclear cells from healthy volunteers to repetitive stimulation with these chemically synthesised peptides and measuring their IFN-γ concentrations, proliferation by ELISA, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, respectively. Seven samples were screened for immunogenicity of PM 1 and PM 2, and six for that of PM 3. All six samples had positive responses (IFN-γ secretion) to PM 3 stimulation, as did five and three for PM 2 and PM 1 respectively. In contrast, seven (PM 1 and PM 2) and four (PM 3) samples showed proliferative response as compared with unstimulated cells. The encouraging immunogenic response generated by these highly conserved matrix 1 peptides indicates they are prospective candidates for development of broadly reactive influenza vaccines.
Collapse
Affiliation(s)
- Neha Lohia
- Department of Biotechnology, Thapar University, Patiala147004, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar University, Patiala147004, India
| |
Collapse
|
3
|
Chen Y, Li Q, Yang J, Xie H. Promoting Tag Removal of a MBP-Fused Integral Membrane Protein by TEV Protease. Appl Biochem Biotechnol 2016; 181:939-947. [PMID: 27696139 DOI: 10.1007/s12010-016-2260-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/19/2016] [Indexed: 11/30/2022]
Abstract
Tag removal is a prerequisite issue for structural and functional analysis of affinity-purified membrane proteins. The present study took a MBP-fused membrane protein, MrpF, as a model to investigate the tag removal by TEV protease. Influences of the linking sequence between TEV cleavage site and MrpF on protein expression and predicted secondary structure were investigated. The steric accessibility of TEV protease to cleavage site of MBP-fused MrpF was explored. It was found that reducing the size of hydrophilic group of detergents and/or extending the linking sequence between cleavage site and target protein can significantly improve the accessibility of the cleavage site and promote tag removal by TEV protease.
Collapse
Affiliation(s)
- Yanke Chen
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qichang Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Jun Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Hao Xie
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
4
|
Lin Q, Yang K, He F, Jiang J, Li T, Chen Z, Li R, Chen Y, Li S, Zhao Q, Xia N. Production of Influenza Virus HA1 Harboring Native-Like Epitopes by Pichia pastoris. Appl Biochem Biotechnol 2016; 179:1275-89. [PMID: 27040529 DOI: 10.1007/s12010-016-2064-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 03/28/2016] [Indexed: 01/17/2023]
Abstract
The outbreak of the H5N1 highly pathogenic avian influenza which exhibits high variation had brought a serious threat to the safety of humanity. To overcome this high variation, hemagglutinin-based recombinant subunit vaccine with rational design has been considered as a substitute for traditional virion-based vaccine development. Here, we expressed HA1 part of the hemagglutinin protein using the Pichia pastoris expression system and attained a high yield of about 120 mg/L through the use of fed-batch scalable fermentation. HA1 protein in the culture supernatant was purified using two-step ion-exchange chromatography. The resultant HA1 protein was homogeneous in solution in a glycosylated form, as confirmed by endoglycosidase H treatment. Sedimentation velocity tests, silver staining of protein gels, and immunoblotting were used for verification. The native HA1 reacted well with conformational, cross-genotype, neutralizing monoclonal antibodies, whereas a loss of binding activity was noted with the denatured HA1 form. Moreover, the murine anti-HA1 serum exhibited a virus-capture capability in the hemagglutination inhibition assay, which suggests that HA1 harbors native-like epitopes. In conclusion, soluble HA1 was efficiently expressed and purified in this study. The functional glycosylated protein will be an alternative for the development of recombinant protein-based influenza vaccine.
Collapse
Affiliation(s)
- Qingshan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China
| | - Kunyu Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China
| | - Fangping He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China
| | - Jie Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China
| | - Zhenqin Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China
| | - Rui Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China
| | - Yixin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China.
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China.
| | - Qinjian Zhao
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, Fujian, 361002, People's Republic of China
| |
Collapse
|
5
|
Wang M, Jiang S, Han Z, Zhao B, Wang L, Zhou Z, Wang Y. Expression and immunogenic characterization of recombinant gp350 for developing a subunit vaccine against Epstein-Barr virus. Appl Microbiol Biotechnol 2015; 100:1221-1230. [PMID: 26433969 DOI: 10.1007/s00253-015-7027-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 09/04/2015] [Accepted: 09/20/2015] [Indexed: 01/27/2023]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus that is linked to the development of various malignancies. There is an urgent need for effective vaccines against EBV. EBV envelope glycoprotein gp350 is an attractive candidate for a prophylactic vaccine. This study was undertaken to produce the truncated (codons 1-443) gp350 protein (gp350(1-443)) in Pichia pastoris and evaluate its immunogenicity. The gp350(1-443) protein was expressed as a secretory protein with an N-terminal His-tag in P. pastoris and purified through Ni-NTA chromatography. Immunization with the recombinant gp350(1-443) could elicit high levels of gp350(1-443)-specific antibodies in mice. Moreover, gp350(1-443)-immunized mice developed strong lymphoproliferative and Th1/Th2 cytokine responses. Furthermore, the recombinant gp350(1-443) could stimulate CD4(+) and CD8(+) T cell responses in vaccinated mice. Collectively, these findings demonstrated that the yeast-expressed gp350(1-443) retained strong immunogenicity. This study will provide a useful source for developing EBV subunit vaccine candidates.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China.
| | - Shuai Jiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhenwei Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bing Zhao
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China
| | - Li'ao Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China
| | - Zhixia Zhou
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China
| | - Yefu Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
6
|
Lohia N, Baranwal M. Identification of Conserved Peptides Comprising Multiple T Cell Epitopes of Matrix 1 Protein in H1N1 Influenza Virus. Viral Immunol 2015; 28:570-9. [PMID: 26398199 DOI: 10.1089/vim.2015.0060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cell mediated immune response plays a key role in combating viral infection and thus identification of new vaccine targets manifesting T cell mediated response may serve as an ideal approach for influenza vaccine. The present study involves the application of an immunoinformatics-based consensus approach for epitope prediction (three epitope prediction tools each for CD4+ and CD8+ T cell epitopes) and molecular docking to identify peptide sequences containing T cell epitopes using the conserved sequences from all the Matrix 1 protein sequences of H1N1 virus available until April 2015. Three peptides comprising CD4+ and CD8+ T cell epitopes were obtained, which were not exactly reported in earlier studies. Population coverage study of these multi-epitope peptides revealed that they are capable of inducing a potent immune response belonging to individuals from different populations and ethnicity distributed around the globe. Conservation study with other subtypes of influenza virus infecting humans (H2N2, H5N1, H7N9, and H3N2) revealed that these three peptides were conserved (>90%), with 100% identity in most of these strains. Hence, these peptides can impart immunity against H1N1 as well as other subtypes of influenza virus. A molecular docking study of the predicted peptides with class I and II human leukocyte antigen (HLA) molecules has shown that the majority of them have comparable binding energies to that of native peptides. Hence, these peptides from Matrix 1 protein of H1N1 appear to be promising candidates for universal vaccine design.
Collapse
Affiliation(s)
- Neha Lohia
- Department of Biotechnology, Thapar University , Patiala, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar University , Patiala, India
| |
Collapse
|