1
|
Di Y, Li L, Xu J, Liu A, Zhao R, Li S, Li Y, Ding J, Chen S, Qu M. MAPK signaling pathway enhances tolerance of Mytilus galloprovincialis to co-exposure of sulfamethoxazole and polyethylene microplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125007. [PMID: 39307337 DOI: 10.1016/j.envpol.2024.125007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Microplastics (MPs) and antibiotics often coexist in complex marine environments, yet their combined detrimental effects on marine organisms remain underexplored. This study evaluated the effects of polyethylene microplastics (PE, 200 μg/L) and sulfamethoxazole (SMX, 50 μg/L), both individually and in combination, on Mytilus galloprovincialis. The exposure lasted 6 days, followed by a 6-day recovery period. Bioaccumulation, DNA damage, pollutants transport/metabolism related responses and responding alterations of mitogen-activated protein kinase (MAPK) signaling pathway were detected in gills and digestive glands. Bioaccumulation of SMX/PE in mussels occurred in a tissue-specific manner, co-exposure altered SMX contents in investigated tissues. Co-exposure did not induce extra DNA damage, elevated DNA damage was alleviated during the recovery period in all treated groups. The exposure of SMX/PE exerted different alterations in pollutants transport/metabolism related responses, characterized by multixenobiotic resistance and relative expression of key genes (cytochrome P450 monooxygenase, glutathione S-transferase, ATP-binding cassette transporters). Key molecules (p38 MAPK, c-jun N-terminal kinase, extracellular regulated protein kinase, nuclear factor-κB and tumor protein p53) in MAPK signaling pathway were activated at transcriptional and translational levels after SMX/PE and co-exposure. Co-regulation between MAPK members and pollutants transport/metabolism related factors was revealed, suggesting MAPK signaling pathway served as a regulating hub in exposed mussels to conquer SMX/PE stress. Overall, this study provides new insights on SMX/PE induced health risks in marine mussels and potential mechanism through MAPK cascades regulation.
Collapse
Affiliation(s)
- Yanan Di
- Ocean College, Zhejiang University, Zhoushan, 316100, China; Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Liya Li
- Ocean College, Zhejiang University, Zhoushan, 316100, China; Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Jianzhou Xu
- Ocean College, Zhejiang University, Zhoushan, 316100, China; Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Ao Liu
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Ruoxuan Zhao
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Shuimei Li
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Yichen Li
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Jiawei Ding
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Siyu Chen
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Mengjie Qu
- Ocean College, Zhejiang University, Zhoushan, 316100, China; Hainan Institute of Zhejiang University, Sanya, 572025, China.
| |
Collapse
|
2
|
Shi Y, Tang L, Shao Q, Jiang Y, Wang Z, Peng C, Gu T, Li Z. The dynamic roles of intracellular vacuoles in heavy metal detoxification by Rhodotorula mucilaginosa. J Appl Microbiol 2024; 135:lxae241. [PMID: 39284782 DOI: 10.1093/jambio/lxae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/20/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
AIMS Rhodotorula mucilaginosa (Rho) can develop a range of strategies to resist the toxicity of heavy metals. This study aimed to investigate the physiological responses and transcriptomic regulation of the fungus under different heavy metal stresses. METHODS AND RESULTS This study applied transmission electron microscopy and RNA-seq to investigate the fungal resistance to Pb, Cd, and Cu stresses. Under Pb stress, the activated autophagy-related genes, vesicle-fusing ATPase, and vacuolar ATP synthase improved vacuolar sequestration. This offsets the loss of lipids. However, the metal sequestration by vacuoles was not improved under Cd stress. Vacuolar fusion was also inhibited following the interference of intravacuolar Ca2+ due to their similar ionic radii. Cu2+ showed the maximum toxic effects due to its lowest cellular sorption (as low as 7%) with respect to Pb2+ and Cd2+, although the efflux pumps and divalent metal ion transporters partially contributed to the detoxification. CONCLUSIONS Divalent cation transporters and vacuolar sequestration are the critical strategies for Rho to resist Pb stress. Superoxide dismutase (SOD) is the main strategy for Cd resistance in Rho. The intracellular Cu level was decreased by efflux pump and divalent metal ion transporters.
Collapse
Affiliation(s)
- Yixiao Shi
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No.1 Weigang, Xiaolingwei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Xiaolingwei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Lingyi Tang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No.1 Weigang, Xiaolingwei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Qi Shao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No.1 Weigang, Xiaolingwei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Yizhou Jiang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No.1 Weigang, Xiaolingwei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Zhijun Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No.1 Weigang, Xiaolingwei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Chao Peng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Xiaolingwei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Tingting Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Xiaolingwei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No.1 Weigang, Xiaolingwei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
- National Research Center for Geoanalysis, Key Laboratory of Eco-geochemistry, Ministry of Natural Resources, No. 26, Baiwanzhuang Avenue, Xicheng District, Beijing 100037, China
| |
Collapse
|
3
|
Yang C, Xia L, Zeng Y, Chen Y, Zhang S. Hexaploid Salix rehderiana is more suitable for remediating lead contamination than diploids, especially male plants. CHEMOSPHERE 2023; 333:138902. [PMID: 37182717 DOI: 10.1016/j.chemosphere.2023.138902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Willows are promising candidates for phytoremediation, but the lead (Pb) phytoremediation potential of different willow ploidy and sex has not yet been exploited. In this study, the Pb uptake, translocation and detoxification capacities of hexaploid and diploid, female and male Salix rehderiana were investigated. The results showed that Pb treatment inhibited biomass accumulation and gas exchange, caused ultrastructural and oxidative damage, and induced antioxidant, phytohormonal and transcriptional regulation in S. rehderiana. Absorbed Pb was mainly accumulated in the roots with restricted root-to-shoot transport. Despite lower biomass, greater transpiration, phytohormonal and transcriptional regulation indicated that hexaploid S. rehderiana had higher tissue Pb concentration, total accumulated Pb amount (4.39 mg, 6.19 mg, 6.60 mg and 10.83 mg in diploid and hexaploid females and males, respectively) as well as bioconcentration factors and translocation factors (0.412, 0.593, 0.921 and 1.320 for bioconcentration factors in roots, and 0.029, 0.032, 0.035 and 0.047 for translocation factors in diploid and hexaploid females and males, respectively) than diploids. Higher soil urease and acid phosphatase activities also favored hexaploids to use more available N and P than diploids in Pb-contaminated soils. Additionally, hexaploid S. rehderiana had stronger antioxidant, phytohormonal and transcriptional responses, and displayed less morphological and ultrastructural damage than diploids after Pb treatment, suggesting that hexaploids have greater Pb uptake, translocation and detoxification capacities than diploids. Moreover, S. rehderiana males had greater Pb uptake and translocation abilities, as well as stronger antioxidant, phytohormonal, and transcriptional regulation mediated Pb detoxification capacities than females. Therefore, hexaploid S. rehderiana are superior to diploids, and males are better than females in Pb phytoremediation. This study provides novel and valuable insights for selecting better willow materials to mitigate Pb contamination.
Collapse
Affiliation(s)
- Congcong Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yi Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yao Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
4
|
Zhu C, Yu J, Cao S, Wu X, Meng W, Hou X. Transcriptomics-based analysis of genes related to lead stress and their expression in the roots of Pogonatherum crinitum. FRONTIERS IN PLANT SCIENCE 2022; 13:1066329. [PMID: 36589065 PMCID: PMC9795032 DOI: 10.3389/fpls.2022.1066329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Revealing plants' tolerance and transport genes to heavy metal stress play an important role in exploring the potential of phytoremediation. Taking the heavy metal lead (Pb) hyperaccumulator plant Pogonatherum crinitum (Thunb.) Kunth as the research object, a hydroponic simulation stress experiment was set up to determine the physiological indicators such as antioxidant enzymes and non-enzymatic antioxidants in the roots of P. crinitum under different Pb concentrations (0, 300, 500, 1000, 2000 mg·L-1). RNA-Seq was performed, the Unigenes obtained by transcriptome sequencing were enriched and annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, and the differential expression genes (DEGs) of root were screened and verified by quantitative real-time polymerase chain reaction (qRT-PCR). The results are as follows: with the increase of Pb concentration, superoxide dismutase (SOD), catalase (CAT), and ascorbic acid (AsA) content increased. Peroxidase (POD), malondialdehyde (MDA), and ascorbic acid-glutathione (AsA-GSH) cycles showed low promotion with high inhibition. A total of 38.21 Gb of bases were obtained by transcriptome sequencing, and the base quality of each sample reached Q20 and Q30, accounting for 90%, making the sequencing results reliable. Combined with transcriptome sequencing, functional annotation, and qRT-PCR validation results, 17 root Pb-tolerant genes of P. crinitum were screened out, which were related to antioxidation, transportation, and transcription functions. Moreover, qRT-PCR verification results under different Pb stress concentrations were consistent with the transcriptome sequencing results and changes in physiological indicators. In brief, the root of P. crinitum can adapt to the Pb stress environment by up-regulating the expression of related genes to regulate the physiological characteristics.
Collapse
Affiliation(s)
- Chenlu Zhu
- Institute of Forestry and Environment, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junbao Yu
- Institute of Forestry and Environment, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuyi Cao
- Institute of Forestry and Environment, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyi Wu
- Institute of Forestry and Environment, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weicai Meng
- Institute of Forestry and Environment, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaolong Hou
- Institute of Forestry and Environment, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of State Administration of Forestry and Grassland on Soil and Water Conservation of Red Soil Region in Southern China, National Forestry and Grassland Administration, Fuzhou, China
- Cross-Strait Collaborative Innovation Center of Soil and Water Conservation, Department of Education of Fujian Province, Fuzhou, China
| |
Collapse
|
5
|
Liu L, Zhang L, Zhao L, Chen Q, Zhang Q, Cao D, Liu Z. Differential Gene Expression and Metabolic Pathway Analysis of Cladophora rupestris under Pb Stress Conditions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13910. [PMID: 36360789 PMCID: PMC9656615 DOI: 10.3390/ijerph192113910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to analyze the transcriptome of C. rupestris under Pb2+ stress by using high-throughput sequencing technology, observe the changes of gene expression and metabolic pathway after three and five days under 1.0 and 5.0 mg/L of Pb2+ treatment, and analyze the differentially expressed genes (DEGs) and related functional genes after Pb2+ treatment. Metabolic pathways were revealed through Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Results show that DEGs increased significantly with the increase of Pb2+ concentration and stress time. A total of 32 genes were closely related to Pb2+ stress response. GO analysis identified two major transporter proteins, namely, ATP-binding transport protein-related (ABC transporters) and zinc finger CCHC domain containing protein (Zfp) in C. rupestris. Pthr19248, pthr19211, Zfp pthr23002, Zfp p48znf pthr12681, Zfp 294 pthr12389, and Zfp pthr23067 played important roles against Pb2+ toxicity and its absorption in C. rupestris. KEGG pathway analysis suggested that ABCA1, ATM, and ABCD3 were closely related to Pb2+ absorption. Pb2+ stress was mainly involved in metallothionein (MT), plant hormone signal transduction, ABC transporters, and glutathione (GSH) metabolism.
Collapse
Affiliation(s)
- Lei Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Lusheng Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Lingyun Zhao
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Qiuyu Chen
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Qian Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Deju Cao
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Zhaowen Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- School of Materials and Environmental Engineering, Chizhou University, Chizhou 247000, China
| |
Collapse
|
6
|
Quantitative Phosphoproteomics of cipk3/ 9/ 23/ 26 Mutant and Wild Type in Arabidopsis thaliana. Genes (Basel) 2021; 12:genes12111759. [PMID: 34828365 PMCID: PMC8623713 DOI: 10.3390/genes12111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
CBL-interacting protein kinases 3/9/23/26 (CIPK3/9/23/26) are central regulation components of magnesium ion homeostasis. CBL2/3 interacts with CIPK3/9/23/26, which phosphorylates their downstream targets, suggesting that protein phosphorylation is a key factor influencing the maintenance of cellular magnesium homeostasis in higher plants. The cipk3/9/23/26 quadruple mutant is very sensitive to high levels of magnesium. In this study, TMT quantitative phosphoproteomics were used to compare the global variations in phosphoproteins in wild type and cipk3/9/23/26 quadruple mutant seedlings of Arabidopsis thaliana, and 12,506 phosphorylation modification sites on 4537 proteins were identified, of which 773 phosphorylated proteins exhibited significant variations at the phosphorylation level under magnesium sensitivity. Subsequently, we used bioinformatics methods to systematically annotate and analyze the data. Certain transporters and signaling components that could be associated with magnesium sensitivity, such as ATP-binding cassette transporters and mitogen-activated protein kinases, were identified. The results of this study further our understanding of the molecular mechanisms of CIPK3/9/23/26 in mediating magnesium homeostasis.
Collapse
|
7
|
Peng D, Liu A, Wang W, Zhang Y, Han Z, Li X, Wang G, Guan C, Ji J. Mechanism of growth amelioration of triclosan-stressed tobacco (Nicotiana tabacum) by endogenous salicylic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:117032. [PMID: 33831628 DOI: 10.1016/j.envpol.2021.117032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/09/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Among emerging organic contaminants (EOCs), triclosan (TCS) is an antibacterial agent and frequently detected in sludge. In this study, RNA sequencing (RNA-seq) was used to obtain the first transcriptomic profile of tobacco with TCS treatment in comparison with control. The results of transcriptome profiling indicated that salicylic acid (SA) signalling pathway actively participated in the tobacco's response to TCS treatment. The accumulation of endogenous SA in transgene tobacco lines transformed with a homologous gene of SA binding protein (LcSABP) was significantly enhanced. The resistance of transgenic tobacco lines to TCS was markedly enhanced revealed by morphological and physiological indexes while the total Chl level and Pn of transgenic individuals showed about 180% and 250% higher than that of WT on average, and the accumulation of H2O2 and O2- induced by TCS in SABP overexpressing tobacco was 35.3%-37.3% and 53.0%-56.0% lower than that of WT. In order to further explore the mechanism of TCS tolerance in transgenic plants, RNA-seq was then performed to obtain the second transcriptomic profile between wild type and transgenic samples with TCS exposure. The results indicated that differentially expressed genes (DEGs) were most highly enriched in MAPK signalling pathway, amino acid synthesis pathway and plant hormone transduction pathway. Especially, genes encoding key proteins such as cytochrome P450, laccase, peroxidase, glycosyl transferase, glutathione S-transferase and ATP-binding cassette were considered to be related to the increased tolerance ability of transgenic tobacco to the treatment of TCS stress. This research will likely provide novel insights into the molecular mechanism of SA-mediated amelioration of TCS stress on tobacco.
Collapse
Affiliation(s)
- Danliu Peng
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Anran Liu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wenjing Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Yue Zhang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zichen Han
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xiaozhou Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300070, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| |
Collapse
|
8
|
Pearson SA, Cowan JA. Glutathione-coordinated metal complexes as substrates for cellular transporters. Metallomics 2021; 13:mfab015. [PMID: 33770183 PMCID: PMC8086996 DOI: 10.1093/mtomcs/mfab015] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/15/2021] [Indexed: 11/15/2022]
Abstract
Glutathione is the major thiol-containing species in both prokaryotes and eukaryotes and plays a wide variety of roles, including detoxification of metals by sequestration, reduction, and efflux. ABC transporters such as MRP1 and MRP2 detoxify the cell from certain metals by exporting the cations as a metal-glutathione complex. The ability of the bacterial Atm1 protein to efflux metal-glutathione complexes appears to have evolved over time to become the ABCB7 transporter in mammals, located in the inner mitochondrial membrane. No longer needed for the role of cellular detoxification, ABCB7 appears to be used to transport glutathione-coordinated iron-sulfur clusters from mitochondria to the cytosol.
Collapse
Affiliation(s)
- Stephen A Pearson
- The Ohio State University Biophysics Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - J A Cowan
- The Ohio State University Biophysics Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Kumari S, Kumar M, Gaur NA, Prasad R. Multiple roles of ABC transporters in yeast. Fungal Genet Biol 2021; 150:103550. [PMID: 33675986 DOI: 10.1016/j.fgb.2021.103550] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/29/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
The ATP binding cassette (ABC) transporters, first discovered as high-affinity nutrient importers in bacteria, rose to prominence when their ability to confer multidrug resistance (MDR) to cancer cells was realized. The most characterized human permeability glycoprotein (P-gp) is a dominant exporter of anti-cancer drugs and its overexpression is directly linked to MDR. The overexpression of drug efflux pumps belonging to the ABC superfamily is also a frequent cause of resistance to antifungals. Fungi has a battery of ABC proteins, but in variable numbers and at different subcellular locations. These proteins perform many critical functions, from serving as gatekeepers for xenobiotic cleansing to translocating various structurally unrelated cargoes, including lipids, fatty acids, ions, peptides, sterols, metabolites and toxins. Their emerging additional roles in cellular physiology and virulence call for attention to analyze and re-examine their divergent functions in yeast. In brief, this review traces the history of ABC transporters in yeast and discusses their typical physiological functions that go beyond their well-known role as antifungal drug efflux pumps.
Collapse
Affiliation(s)
- Sonam Kumari
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Mohit Kumar
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; Amity Institute of Integrative Science and Health, Amity Institute of Biotechnology, Amity University Gurgaon, 122413 Haryana, India
| | - Naseem A Gaur
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Rajendra Prasad
- Amity Institute of Integrative Science and Health, Amity Institute of Biotechnology, Amity University Gurgaon, 122413 Haryana, India.
| |
Collapse
|
10
|
Shi W, Zhou J, Li J, Ma C, Zhang Y, Deng S, Yu W, Luo ZB. Lead exposure-induced defense responses result in low lead translocation from the roots to aerial tissues of two contrasting poplar species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116346. [PMID: 33387784 DOI: 10.1016/j.envpol.2020.116346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/29/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
To explore whether lead (Pb)-induced defense responses are responsible for the low root-to-shoot Pb translocation, we exposed saplings of the two contrasting poplar species, Populus × canescens with relatively high root-to-shoot Pb translocation and P. nigra with low Pb translocation, to 0 or 8 mM PbCl2. Pb translocation from the roots to aboveground tissues was lower by 57% in P. nigra than that in P. × canescens. Lower Pb concentrations in the roots and aerial tissues, greater root biomass, and lower ROS overproduction in the roots were found in P. nigra than those in P. × canescens treated with Pb. P. nigra roots had higher proportions of cell walls (CWs)-bound Pb and water insoluble Pb compounds, and higher transcript levels of some pivotal genes related to Pb vacuolar sequestration, such as phytochelatin synthetase 1.1 (PCS1.1), ATP-binding cassette transporter C1.1 (ABCC1.1) and ABCC3.1 than P. × canescens roots. Pb exposure induced defense responses including increases in the contents of pectin and hemicellulose, and elevated oxalic acid accumulation, and the transcriptional upregulation of PCS1.1, ABCC1.1 and ABCC3.1 in the roots of P. nigra and P. × canescens. These results suggest that the stronger defense barriers in P. nigra roots are probably associated with the lower Pb translocation from the roots to aerial tissues, and that Pb exposure-induced defense responses can enhance the barriers against Pb translocation in poplar roots.
Collapse
Affiliation(s)
- Wenguang Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jing Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Chaofeng Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yuhong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Shurong Deng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wenjian Yu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhi-Bin Luo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
11
|
Nagamatsu ST, Coutouné N, José J, Fiamenghi MB, Pereira GAG, Oliveira JVDC, Carazzolle MF. Ethanol production process driving changes on industrial strains. FEMS Yeast Res 2021; 21:6070656. [PMID: 33417685 DOI: 10.1093/femsyr/foaa071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Ethanol production has key differences between the two largest producing countries of this biofuel, Brazil and the USA, such as feedstock source, sugar concentration and ethanol titers in industrial fermentation. Therefore, it is highly probable that these specificities have led to genome adaptation of the Saccharomyces cerevisiae strains employed in each process to tolerate different environments. In order to identify particular adaptations, in this work, we have compared the genomes of industrial yeast strains widely used to produce ethanol from sugarcane, corn and sweet sorghum, and also two laboratory strains as reference. The genes were predicted and then 4524 single-copy orthologous were selected to build the phylogenetic tree. We found that the geographic location and industrial process were shown as the main evolutionary drivers: for sugarcane fermentation, positive selection was identified for metal homeostasis and stress response genes, whereas genes involved in membrane modeling have been connected with corn fermentation. In addition, the corn specialized strain Ethanol Red showed an increased number of copies of MAL31, a gene encoding a maltose transporter. In summary, our work can help to guide new strain chassis selection for engineering strategies, to produce more robust strains for biofuel production and other industrial applications.
Collapse
Affiliation(s)
- Sheila Tiemi Nagamatsu
- Division of Human Genetics, Department of Psychiatry, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA.,Laboratório de Genômica e BioEnergia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-970, Brazil
| | - Natalia Coutouné
- Laboratório Nacional de Biorrenováveis (LNBR), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, São Paulo, Brazil
| | - Juliana José
- Laboratório de Genômica e BioEnergia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-970, Brazil
| | - Mateus Bernabe Fiamenghi
- Laboratório de Genômica e BioEnergia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-970, Brazil
| | - Gonçalo Amarante Guimarães Pereira
- Laboratório de Genômica e BioEnergia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-970, Brazil
| | - Juliana Velasco de Castro Oliveira
- Laboratório Nacional de Biorrenováveis (LNBR), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, São Paulo, Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratório de Genômica e BioEnergia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-970, Brazil
| |
Collapse
|
12
|
Liu Q, Zhang Y, Wang Y, Wang W, Gu C, Huang S, Yuan H, Dhankher OP. Quantitative proteomic analysis reveals complex regulatory and metabolic response of Iris lactea Pall. var. chinensis to cadmium toxicity. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123165. [PMID: 32569986 DOI: 10.1016/j.jhazmat.2020.123165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/13/2020] [Accepted: 06/06/2020] [Indexed: 05/28/2023]
Abstract
Cadmium pollution has become a serious environmental problem. Iris lactea var. chinensis showed strong Cd tolerance and accumulation ability, which has significant potential to be applied for the phytoremediation of Cd-contaminated soil. However, the lack of molecular information on the mechanism of I. lactea response to Cd limited the improvement of phytoremediation efficiency. In this study, label-free proteomics analysis of Cd response in I. lactea showed that there were 163 and 196 differentially expressed proteins (DEPs) in the shoots and roots, respectively. Bioinformatics analysis indicated the DEPs responding to Cd stress mainly involved in signal transduction, ion transport, redox etc., and participate in the pathway of amino acid biosynthesis, lignin biosynthesis, glycerolipid metabolism and glutathione metabolism. Besides, differential expression of seven DEPs was validated via gene expression analysis. Finally, we found that a Cd-induced mannose-specific lectin (IlMSL) from I. lactea enhanced the Cd sensitivity and increased Cd accumulation in yeast. The results of this study will enhance our understanding of the molecular mechanism of Cd tolerance and accumulation in I. lactea and ultimately provide valuable resources for using Cd tolerant genes for developing efficient strategies for phytoremediation of Cd-contaminated soils or limiting Cd accumulation in food crops.
Collapse
Affiliation(s)
- Qingquan Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Yongxia Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Yinjie Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Weilin Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Chunsun Gu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Suzhen Huang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Haiyan Yuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China.
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
13
|
Zhang Z, Tong T, Fang Y, Zheng J, Zhang X, Niu C, Li J, Zhang X, Xue D. Genome-Wide Identification of Barley ABC Genes and Their Expression in Response to Abiotic Stress Treatment. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9101281. [PMID: 32998428 PMCID: PMC7599588 DOI: 10.3390/plants9101281] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 05/15/2023]
Abstract
Adenosine triphosphate-binding cassette transporters (ABC transporters) participate in various plant growth and abiotic stress responses. In the present study, 131 ABC genes in barley were systematically identified using bioinformatics. Based on the classification method of the family in rice, these members were classified into eight subfamilies (ABCA-ABCG, ABCI). The conserved domain, amino acid composition, physicochemical properties, chromosome distribution, and tissue expression of these genes were predicted and analyzed. The results showed that the characteristic motifs of the barley ABC genes were highly conserved and there were great diversities in the homology of the transmembrane domain, the number of exons, amino acid length, and the molecular weight, whereas the span of the isoelectric point was small. Tissue expression profile analysis suggested that ABC genes possess non-tissue specificity. Ultimately, 15 differentially expressed genes exhibited diverse expression responses to stress treatments including drought, cadmium, and salt stress, indicating that the ABCB and ABCG subfamilies function in the response to abiotic stress in barley.
Collapse
|
14
|
Multiple High-Affinity K + Transporters and ABC Transporters Involved in K + Uptake/Transport in the Potassium-Hyperaccumulator Plant Phytolacca acinosa Roxb. PLANTS 2020; 9:plants9040470. [PMID: 32276334 PMCID: PMC7238005 DOI: 10.3390/plants9040470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/20/2022]
Abstract
Potassium is an important essential element for plant growth and development. Long-term potassium deprivation can lead to a severe deficiency phenotype in plants. Interestingly, Phytolacca acinosa is a plant with an unusually high potassium content and can grow well and complete its lifecycle even in severely potassium deficient soil. In this study, we found that its stems and leaves were the main tissues for high potassium accumulation, and P. acinosa showed a strong ability of K+ absorption in roots and a large capability of potassium accumulation in shoots. Analysis of plant growth and physiological characteristics indicated that P. acinosa had an adaptability in a wide range of external potassium levels. To reveal the mechanism of K+ uptake and transport in the potassium-hyperaccumulator plant P. acinosa, K+ uptake-/transport-related genes were screened by transcriptome sequencing, and their expression profiles were compared between K+ starved plants and normal cultured plants. Eighteen members of HAK/KT/KUPs, ten members of AKTs, and one member of HKT were identified in P. acinosa. Among them, six HAKs, and two AKTs and PaHKT1 showed significantly different expression. These transporters might be coordinatively involved in K+ uptake/transport in P. acinosa and lead to high potassium accumulation in plant tissues. In addition, significantly changed expression of some ABC transporters indicated that ABC transporters might be important for K+ uptake and transport in P. acinosa under low K+ concentrations.
Collapse
|
15
|
Xu X, Chen Q, Mo S, Qian Y, Wu X, Jin Y, Ding H. Transcriptome -wide modulation combined with morpho-physiological analyses of Typha orientalis roots in response to lead challenge. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121405. [PMID: 31629596 DOI: 10.1016/j.jhazmat.2019.121405] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Lead (Pb) is a common pollutant in many environments, including in the soil, water, and/or air. Typha orientalis Presl, a large emergent aquatic plant, has been reported to function as a Pb-tolerant and Pb-accumulating plant; however, very little molecular information regarding the tolerance of T. orientalis towards Pb is known. In this study, Pb accumulation and key factors involved in the Pb stress response at different Pb concentrations were investigated. Pb was primarily accumulated in the roots and was mainly located in the cell wall and membrane systems. Differentially expressed genes (DEGs) were identified in T. orientalis roots after Pb exposure via RNA-seq analyses. In the 0.10 mM and 0.25 mM Pb2+-treated groups, a total of 3275 DEGs were detected relative to the control. Many of these genes were associated with oxidation-reduction processes, metal transport, protein kinase/phosphorylation, and DNA binding transcription factors, which were shown to be Pb-responsive DEGs. Mapping Kyoto Encyclopedia of Genes and Genomes (KEGG) database, "phenylpropanoid biosynthesis" was analyzed as the major pathway of the important modules of overlapping DEGs of 0.10 mM and 0.25 mM Pb2+ treatments. Furthermore, a lead response gene named ToLR1 with unknown function was of particular interest. The full-length of ToLR1 sequence was cloned using rapid amplification of cDNA ends (RACE) and overexpressed in Arabidopsis thaliana, which resulted in enhanced resistance to Pb stress. This is the first report providing genomic information detailing Pb responsive genes in T. orientalis. Moreover, this study provides novel insights into the molecular mechanisms underlying the response of T. orientalis and other accumulators towards Pb stress. The key genes identified in this study may serve as potential targets for genetic engineering targeting phytoremediation.
Collapse
Affiliation(s)
- Xiaoying Xu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Qi Chen
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Shuangrong Mo
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Ying Qian
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoxia Wu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Yingen Jin
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Haidong Ding
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
16
|
Cao GH, He S, Chen D, Li T, Zhao ZW. EpABC Genes in the Adaptive Responses of Exophiala pisciphila to Metal Stress: Functional Importance and Relation to Metal Tolerance. Appl Environ Microbiol 2019; 85:e01844-19. [PMID: 31540987 PMCID: PMC6856334 DOI: 10.1128/aem.01844-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/14/2019] [Indexed: 11/20/2022] Open
Abstract
Exophiala pisciphila is one of the dominant dark septate endophytes (DSEs) colonizing metal-polluted slag heaps in southwest China. It shows numerous super-metal-tolerant characteristics, but the molecular mechanisms involved remain largely unknown. In the present study, the functional roles of a specific set of ATP-binding cassette (ABC) transporters in E. pisciphila were characterized. In total, 26 EpABC genes belonging to 6 subfamilies (ABCA to ABCG) were annotated in previous transcriptome sequencing libraries, and all were regulated by metal ions (Pb, Zn, and Cd), which was dependent on the metal species and/or concentrations tested. The results from the heterologous expression of 3 representative EpABC genes confirmed that the expression of EpABC2.1, EpABC3.1, or EpABC4.1 restored the growth of metal-sensitive mutant Saccharomyces cerevisiae strains and significantly improved the tolerance of Arabidopsis thaliana to Pb, Zn, and Cd. Interestingly, the expression of the 3 EpABC genes further altered metal (Pb, Zn, and Cd) uptake and accumulation and promoted growth by alleviating the inhibitory activity in yeast and thale cress caused by toxic ions. These functions along with their vacuolar location suggest that the 3 EpABC transporters may enhance the detoxification of vacuolar compartmentation via transport activities across their membranes. In conclusion, the 26 annotated EpABC transporters may play a major role in maintaining the homeostasis of various metal ions in different cellular compartments, conferring an extreme adaptative advantage to E. pisciphila in metal-polluted slag heaps.IMPORTANCE Many ABC transporters and their functions have been identified in animals and plants. However, little is known about ABC genes in filamentous fungi, especially DSEs, which tend to dominantly colonize the roots of plants growing in stressed environments. Our results deepen the understanding of the function of the ABC genes of a super-metal-tolerant DSE (E. pisciphila) in enhancing its heavy metal resistance and detoxification. Furthermore, the genetic resources of DSEs, e.g., numerous EpABC genes, especially from super-metal-tolerant strains in heavy metal-polluted environments, can be directly used for transgenic applications to improve tolerance and phytoextraction potential.
Collapse
Affiliation(s)
- Guan-Hua Cao
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, Yunnan, China
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen He
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Di Chen
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Tao Li
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, Yunnan, China
| | - Zhi-Wei Zhao
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
17
|
Trilisenko L, Zvonarev A, Valiakhmetov A, Penin AA, Eliseeva IA, Ostroumov V, Kulakovskiy IV, Kulakovskaya T. The Reduced Level of Inorganic Polyphosphate Mobilizes Antioxidant and Manganese-Resistance Systems in Saccharomyces cerevisiae. Cells 2019; 8:cells8050461. [PMID: 31096715 PMCID: PMC6562782 DOI: 10.3390/cells8050461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/23/2022] Open
Abstract
Inorganic polyphosphate (polyP) is crucial for adaptive reactions and stress response in microorganisms. A convenient model to study the role of polyP in yeast is the Saccharomyces cerevisiae strain CRN/PPN1 that overexpresses polyphosphatase Ppn1 with stably decreased polyphosphate level. In this study, we combined the whole-transcriptome sequencing, fluorescence microscopy, and polyP quantification to characterize the CRN/PPN1 response to manganese and oxidative stresses. CRN/PPN1 exhibits enhanced resistance to manganese and peroxide due to its pre-adaptive state observed in normal conditions. The pre-adaptive state is characterized by up-regulated genes involved in response to an external stimulus, plasma membrane organization, and oxidation/reduction. The transcriptome-wide data allowed the identification of particular genes crucial for overcoming the manganese excess. The key gene responsible for manganese resistance is PHO84 encoding a low-affinity manganese transporter: Strong PHO84 down-regulation in CRN/PPN1 increases manganese resistance by reduced manganese uptake. On the contrary, PHM7, the top up-regulated gene in CRN/PPN1, is also strongly up-regulated in the manganese-adapted parent strain. Phm7 is an unannotated protein, but manganese adaptation is significantly impaired in Δphm7, thus suggesting its essential function in manganese or phosphate transport.
Collapse
Affiliation(s)
- Ludmila Trilisenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 5, Pushchino 142290, Russia.
| | - Anton Zvonarev
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 5, Pushchino 142290, Russia.
| | - Airat Valiakhmetov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 5, Pushchino 142290, Russia.
| | - Alexey A Penin
- Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny per. 19 bld .1, Moscow 127051, Russia.
| | - Irina A Eliseeva
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, Pushchino 142290, Russia.
| | - Vladimir Ostroumov
- Institute of Physicochemical and Biological Problems of Soil Science, FRC Pushchino Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 2, Pushchino 142290, Russia.
| | - Ivan V Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina 3, Moscow GSP-1 119991, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, Moscow GSP-1 119991, Russia.
- Institute of Mathematical Problems of Biology RAS-the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Vitkevicha 1, Pushchino 142290, Russia.
| | - Tatiana Kulakovskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 5, Pushchino 142290, Russia.
| |
Collapse
|
18
|
Borovička J, Braeuer S, Sácký J, Kameník J, Goessler W, Trubač J, Strnad L, Rohovec J, Leonhardt T, Kotrba P. Speciation analysis of elements accumulated in Cystoderma carcharias from clean and smelter-polluted sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:1570-1581. [PMID: 30340302 DOI: 10.1016/j.scitotenv.2018.08.202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/03/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Collections of Cystoderma carcharias sporocarps were sampled from clean and smelter-polluted sites and analyzed for Ag, As, Cd, Cu, Pb, Se, and Zn contents. Concentrations of all elements were significantly higher in samples from the smelter-polluted area. Except for As and Pb, all elements were effectively accumulated in the sporocarps at both clean and polluted sites. With the highest concentration of 604 mg Cd kg-1, C. carcharias can be considered as Cd hyperaccumulator. As revealed by HPLC-ICPQQQMS analysis, the As species in sporocarps from clean and polluted areas involved besides the major arsenobetaine a variety of known and unknown arsenicals; the occurrence of dimethylarsinoylacetate and trimethylarsoniopropionate is reported for the first time for gilled fungi (Agaricales). Size-exclusion chromatography of C. carcharias extracts supported by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and RP-HPLC data indicated that detoxification of intracellular Cd and Cu may largely rely on metallothioneins (MT) or MT-like peptides, not phytochelatins.
Collapse
Affiliation(s)
- Jan Borovička
- Institute of Geology, Czech Academy of Sciences, Rozvojová 269, 16500 Prague 6, Czech Republic; Nuclear Physics Institute, Czech Academy of Sciences, Hlavní 130, 25068 Husinec-Řež, Czech Republic.
| | - Simone Braeuer
- University of Graz, Institute of Chemistry, Universitätsplatz 1, 8010 Graz, Austria
| | - Jan Sácký
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Jan Kameník
- Nuclear Physics Institute, Czech Academy of Sciences, Hlavní 130, 25068 Husinec-Řež, Czech Republic
| | - Walter Goessler
- University of Graz, Institute of Chemistry, Universitätsplatz 1, 8010 Graz, Austria
| | - Jakub Trubač
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Prague, Albertov 6, 12843 Prague 2, Czech Republic
| | - Ladislav Strnad
- Laboratories of the Geological Institutes, Faculty of Science, Charles University, Albertov 6, 12843 Prague 2, Czech Republic
| | - Jan Rohovec
- Institute of Geology, Czech Academy of Sciences, Rozvojová 269, 16500 Prague 6, Czech Republic
| | - Tereza Leonhardt
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Pavel Kotrba
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 3, 166 28 Prague, Czech Republic
| |
Collapse
|
19
|
Shi WG, Liu W, Yu W, Zhang Y, Ding S, Li H, Mrak T, Kraigher H, Luo ZB. Abscisic acid enhances lead translocation from the roots to the leaves and alleviates its toxicity in Populus × canescens. JOURNAL OF HAZARDOUS MATERIALS 2019; 362:275-285. [PMID: 30243250 DOI: 10.1016/j.jhazmat.2018.09.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 05/18/2023]
Abstract
To shed light on physiological mechanisms underlying abscisic-acid (ABA)-mediated lead (Pb) uptake, translocation and detoxification, we exposed Populus × canescens saplings to either 0 or 3 mM Pb2+ in combination with either 0 or 10 μM exogenous ABA. Pb was taken up by the roots and accumulated mainly in the cortex. A fraction of the Pb in the roots was translocated to the leaves, thereby resulting in decreased photosynthesis and biomass. Pb accumulation caused a burst of reactive oxygen species (ROS), with higher concentrations of total thiols, glutathione, and ascorbate in the roots and/or leaves. Exogenous ABA stimulated Pb uptake, decreased Pb deposition in the cortex, and enhanced Pb vascular loading in the roots. Exogenous ABA alleviated the Pb-induced reductions in photosynthesis and root biomass, and decreased Pb-triggered ROS overproduction in the roots and/or leaves. Correspondingly, exogenous ABA stimulated the mRNA levels of a few genes involved in Pb uptake, transport, and detoxification, including NRAMP1.4, ABCG40, FRD3.1, PCS1.1, and ABCC1.1. These results suggest that exogenous ABA enhances Pb uptake and translocation, and alleviates Pb toxicity in poplars through the ABA-induced movement of Pb from the root cortex to the vascular stele, and transcriptionally regulated key genes involved in Pb tolerance.
Collapse
Affiliation(s)
- Wen-Guang Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of The State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Wenzhe Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of The State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Wenjian Yu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of The State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yuhong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of The State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Shen Ding
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Li
- Postgraduate School, Chinese Academy of Forestry, Beijing 100091, China
| | - Tanja Mrak
- Slovenian Forestry Institute, Vecna pot 2, 1000 ljubljana, Slovenia
| | - Hojka Kraigher
- Slovenian Forestry Institute, Vecna pot 2, 1000 ljubljana, Slovenia
| | - Zhi-Bin Luo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of The State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
20
|
Oestreicher J, Morgan B. Glutathione: subcellular distribution and membrane transport 1. Biochem Cell Biol 2018; 97:270-289. [PMID: 30427707 DOI: 10.1139/bcb-2018-0189] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glutathione (γ-l-glutamyl-l-cysteinylglycine) is a small tripeptide found at millimolar concentrations in nearly all eukaryotes as well as many prokaryotic cells. Glutathione synthesis is restricted to the cytosol in animals and fungi and to the cytosol and plastids in plants. Nonetheless, glutathione is found in virtually all subcellular compartments. This implies that transporters must exist that facilitate glutathione transport into and out of the various subcellular compartments. Glutathione may also be exported and imported across the plasma membrane in many cells. However, in most cases, the molecular identity of these transporters remains unclear. Whilst glutathione transport is essential for the supply and replenishment of subcellular glutathione pools, recent evidence supports a more active role for glutathione transport in the regulation of subcellular glutathione redox homeostasis. However, our knowledge of glutathione redox homeostasis at the level of specific subcellular compartments remains remarkably limited and the role of glutathione transport remains largely unclear. In this review, we discuss how new tools and techniques have begun to yield insights into subcellular glutathione distribution and glutathione redox homeostasis. In particular, we discuss the known and putative glutathione transporters and examine their contribution to the regulation of subcellular glutathione redox homeostasis.
Collapse
Affiliation(s)
- Julian Oestreicher
- a Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany.,b Institute of Biochemistry, Center of Human and Molecular Biology (ZHMB), University of the Saarland, Campus B 2.2, D-66123 Saarbrücken, Germany
| | - Bruce Morgan
- a Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany.,b Institute of Biochemistry, Center of Human and Molecular Biology (ZHMB), University of the Saarland, Campus B 2.2, D-66123 Saarbrücken, Germany
| |
Collapse
|
21
|
Kulakovskaya T. Inorganic polyphosphates and heavy metal resistance in microorganisms. World J Microbiol Biotechnol 2018; 34:139. [DOI: 10.1007/s11274-018-2523-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022]
|
22
|
Lead poisoning: acute exposure of the heart to lead ions promotes changes in cardiac function and Cav1.2 ion channels. Biophys Rev 2017; 9:807-825. [PMID: 28836190 DOI: 10.1007/s12551-017-0303-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/28/2017] [Indexed: 01/02/2023] Open
Abstract
Lead ions (Pb2+) possess characteristics similar to Ca2+. Because of this and its redox capabilities, lead causes different toxic effects. The neurotoxic effects have been well documented; however, the toxic effects on cardiac tissues remain allusive. We utilized isolated guinea pig hearts and measured the effects of Pb2+ on their contractility and excitability. Acute exposure to extracellular Pb2+ had a negative inotropic effect and increased diastolic tension. The speed of contraction and relaxation were affected, though the effects were more dramatic on the speed of contraction. Excitability was also altered. Heart beat frequency increased and later diminished after lead ion exposure. Pro-arrhytmic events, such as early after-depolarization and a reduction of the action potential plateau, were also observed. In isolated cardiomyocytes and tsA 201 cells, extracellular lead blocked currents through Cav1.2 channels, diminished their activation, and enhanced their fast inactivation, negatively affecting their gating currents. Thus, Pb2+ was cardiotoxic and reduced cardiac contractility, making the heart prone to arrhythmias. This was due, in part, to Pb2+ effects on the Cav1.2 channels; however, other channels, transporters or pathways may also be involved. Acute cardiotoxic effects were observed at Pb2+ concentrations achievable during acute lead poisoning. The results suggest how Cav1.2 gating can be affected by divalent cations, such as Pb2, and also suggest a more thorough evaluation of heart function in individuals affected by lead poisoning.
Collapse
|
23
|
Phenotypic Consequences of a Spontaneous Loss of Heterozygosity in a Common Laboratory Strain of Candida albicans. Genetics 2016; 203:1161-76. [PMID: 27206717 DOI: 10.1534/genetics.116.189274] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/17/2016] [Indexed: 11/18/2022] Open
Abstract
By testing the susceptibility to DNA damaging agents of several Candida albicans mutant strains derived from the commonly used laboratory strain, CAI4, we uncovered sensitivity to methyl methanesulfonate (MMS) in CAI4 and its derivatives, but not in CAF2-1. This sensitivity is not a result of URA3 disruption because the phenotype was not restored after URA3 reintroduction. Rather, we found that homozygosis of a short region of chromosome 3R (Chr3R), which is naturally heterozygous in the MMS-resistant-related strains CAF4-2 and CAF2-1, confers MMS sensitivity and modulates growth polarization in response to MMS. Furthermore, induction of homozygosity in this region in CAF2-1 or CAF4-2 resulted in MMS sensitivity. We identified 11 genes by SNP/comparative genomic hybridization containing only the a alleles in all the MMS-sensitive strains. Four candidate genes, SNF5, POL1, orf19.5854.1, and MBP1, were analyzed by generating hemizygous configurations in CAF2-1 and CAF4-2 for each allele of all four genes. Only hemizygous MBP1a/mbp1b::SAT1-FLIP strains became MMS sensitive, indicating that MBP1a in the homo- or hemizygosis state was sufficient to account for the MMS-sensitive phenotype. In yeast, Mbp1 regulates G1/S genes involved in DNA repair. A second region of homozygosis on Chr2L increased MMS sensitivity in CAI4 (Chr3R homozygous) but not CAF4-2 (Chr3R heterozygous). This is the first example of sign epistasis in C. albicans.
Collapse
|
24
|
Cordente AG, Capone DL, Curtin CD. Unravelling glutathione conjugate catabolism in Saccharomyces cerevisiae: the role of glutathione/dipeptide transporters and vacuolar function in the release of volatile sulfur compounds 3-mercaptohexan-1-ol and 4-mercapto-4-methylpentan-2-one. Appl Microbiol Biotechnol 2015; 99:9709-22. [PMID: 26227410 DOI: 10.1007/s00253-015-6833-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/07/2015] [Accepted: 07/11/2015] [Indexed: 11/29/2022]
Abstract
Sulfur-containing aroma compounds are key contributors to the flavour of a diverse range of foods and beverages, such as wine. The tropical fruit characters of Sauvignon Blanc wines are attributed to the presence of the aromatic thiols 3-mercaptohexan-1-ol (3-MH), its acetate ester 3-mercaptohexyl acetate (3-MHA), and 4-mercapto-4-methylpentan-2-one (4-MMP). These aromatic thiols are not detectable in grape juice to any significant extent but are released by yeast during alcoholic fermentation. While the processes involved in the release of 3-MH and 4-MMP from their cysteinylated precursors have been studied extensively, degradation pathways for glutathione S-conjugates (GSH-3-MH and GSH-4-MMP) have not. In this study, a candidate gene approach was taken, focusing on genes known to play a role in glutathione and glutathione-S-conjugate turnover in Saccharomyces cerevisiae. Our results confirm the role of Opt1p as the major transporter responsible for uptake of GSH-3-MH and GSH-4-MMP, and identify vacuolar Ecm38p as a key determinant of 3-MH release from GSH-3-MH. ECM38 was unimportant, on the other hand, for release of 4-MMP, and abolition of vacuolar biogenesis caused an increase in the amount of 4-MMP released. The alternative cytosolic glutathione degradation pathway was not involved in release of either thiol from their glutathionylated precursors. Finally, cycling of GSH-3-MH and/or its breakdown intermediates between the cytosol and the vacuole or extracellular space was implicated in modulation of 3-MH formation. Together, these results provide new targets for development of yeast strains that optimize release of these potent volatile sulfur compounds, and further our understanding of the processes involved in glutathione-S-conjugate turnover.
Collapse
Affiliation(s)
- Antonio G Cordente
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, Adelaide, SA, 5064, Australia
| | - Dimitra L Capone
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, Adelaide, SA, 5064, Australia
| | - Chris D Curtin
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, Adelaide, SA, 5064, Australia.
| |
Collapse
|
25
|
Mesquita VA, Machado MD, Silva CF, Soares EV. Impact of multi-metals (Cd, Pb and Zn) exposure on the physiology of the yeast Pichia kudriavzevii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:11127-11136. [PMID: 25794581 DOI: 10.1007/s11356-015-4326-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/05/2015] [Indexed: 06/04/2023]
Abstract
Metal contamination of the environment is frequently associated to the presence of two or more metals. This work aimed to study the impact of a mixture of metals (Cd, Pb and Zn) on the physiology of the non-conventional yeast Pichia kudriavzevii. The incubation of yeast cells with 5 mg/l Cd, 10 mg/l Pb and 5 mg/l Zn, for 6 h, induced a loss of metabolic activity (assessed by FUN-1 staining) and proliferation capacity (evaluated by a clonogenic assay), with a small loss of membrane integrity (measured by trypan blue exclusion assay). The staining of yeast cells with calcofluor white revealed that no modification of chitin deposition pattern occurred during the exposure to metal mixture. Extending for 24 h, the exposure of yeast cells to metal mixture provoked a loss of membrane integrity, which was accompanied by the leakage of intracellular components. A marked loss of the metabolic activity and the loss of proliferation capacity were also observed. The analysis of the impact of a single metal has shown that, under the conditions studied, Pb was the metal responsible for the toxic effect observed in the metal mixture. Intracellular accumulation of Pb seems to be correlated with the metals' toxic effects observed.
Collapse
Affiliation(s)
- Vanessa A Mesquita
- Bioengineering Laboratory, Chemical Engineering Department, ISEP-School of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| | | | | | | |
Collapse
|