1
|
Baskaran N, Sakthivel R, Karthik CS, Lin YC, Liu X, Wen HW, Yang W, Chung RJ. Polydopamine-modified 3D flower-like ZnMoO 4 integrated MXene-based label-free electrochemical immunosensor for the food-borne pathogen Listeria monocytogenes detection in milk and seafood. Talanta 2025; 282:127008. [PMID: 39406096 DOI: 10.1016/j.talanta.2024.127008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 11/20/2024]
Abstract
Listeria monocytogenes is a gram-positive bacterium that causes listeriosis in humans. This contaminates the ready-to-eat food products and compromises their safety. Thus, detecting its presence in food samples with high sensitivity and reliability is necessary. Herein, we propose a label-free electrochemical immunosensor based on a mussel-inspired polydopamine-modified zinc molybdate/MXene (PDA@ZnMoO4/MXene) composite for effective and rapid detection of L. monocytogenes in food products. Spectrophotometry approaches were employed to examine the resulting composites. Voltammetry and impedimetry techniques were used to confirm the step-by-step assembly of the immunosensor and its sensitive detection of L. monocytogenes in various food products, such as milk and smoked seafood. The results demonstrated the practicality of the constructed immunosensor, with an appreciable linearity of 10-107 CFU/ml and a reasonably low detection limit (LOD, 12 CFU/ml). Moreover, the immunosensor exhibited excellent selectivity for microbial cocktails and acceptable repeatability, reproducibility, and storage stability. Thus, we believe that the proposed sensitive, reliable, and label-free immunosensor based on the PDA surface modification technique for detecting L. monocytogenes can be extended to monitor various food-borne pathogens to ensure food safety.
Collapse
Affiliation(s)
- Nareshkumar Baskaran
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Rajalakshmi Sakthivel
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan.
| | | | - Yu-Chien Lin
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan; ZhongSun Co., LTD, New Taipei City, 220031, Taiwan
| | - Xinke Liu
- College of Materials Science and Engineering, Chinese Engineering and Research Institute of Microelectronics, Shenzhen University, Shenzhen, 518060, China; Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Hsiao-Wei Wen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, 402202, Taiwan; Food and Animal Product Safety Inspection Center, National Chung Hsing University, Taichung, 402202, Taiwan.
| | - Wei Yang
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan.
| | - Ren-Jei Chung
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan; High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan.
| |
Collapse
|
2
|
Devida JM, Herrera F, Daza Millone MA, Requejo FG, Pallarola D. Electrochemical Fine-Tuning of the Chemoresponsiveness of Langmuir-Blodgett Graphene Oxide Films. ACS OMEGA 2023; 8:27566-27575. [PMID: 37546598 PMCID: PMC10399176 DOI: 10.1021/acsomega.3c03220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023]
Abstract
Graphene oxide has been widely deployed in electrical sensors for monitoring physical, chemical, and biological processes. The presence of abundant oxygen functional groups makes it an ideal substrate for integrating biological functional units to assemblies. However, the introduction of this type of defects on the surface of graphene has a deleterious effect on its electrical properties. Therefore, adjusting the surface chemistry of graphene oxide is of utmost relevance for addressing the immobilization of biomolecules, while preserving its electrochemical integrity. Herein, we describe the direct immobilization of glucose oxidase onto graphene oxide-based electrodes prepared by Langmuir-Blodgett assembly. Electrochemical reduction of graphene oxide allowed to control its surface chemistry and, by this, regulate the nature and density of binding sites for the enzyme and the overall responsiveness of the Langmuir-Blodgett biofilm. X-ray photoelectron spectroscopy, surface plasmon resonance, and electrochemical measurements were used to characterize the compositional and functional features of these biointerfaces. Covalent binding between amine groups on glucose oxidase and epoxy and carbonyl groups on the surface of graphene oxide was successfully used to build up stable and active enzymatic assemblies. This approach constitutes a simple, quick, and efficient route to locally address functional proteins at interfaces without the need for additives or complex modifiers to direct the adsorption process.
Collapse
Affiliation(s)
- Juan M. Devida
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), Universidad Nacional de La Plata,
CONICET, CC 16 Suc. 4, La Plata 1900, Argentina
| | - Facundo Herrera
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), Universidad Nacional de La Plata,
CONICET, CC 16 Suc. 4, La Plata 1900, Argentina
| | - M. Antonieta Daza Millone
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), Universidad Nacional de La Plata,
CONICET, CC 16 Suc. 4, La Plata 1900, Argentina
| | - Félix G. Requejo
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), Universidad Nacional de La Plata,
CONICET, CC 16 Suc. 4, La Plata 1900, Argentina
| | - Diego Pallarola
- Instituto
de Nanosistemas, Universidad Nacional de
General San Martín, Av. 25 de Mayo y Francia, San Martín 1650, Argentina
| |
Collapse
|
3
|
Efficient uranium adsorbent prepared by grafting amidoxime groups on dopamine modified graphene oxide. PROGRESS IN NUCLEAR ENERGY 2023. [DOI: 10.1016/j.pnucene.2022.104515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Singh AK, Jaiswal N, Tiwari I, Ahmad M, Silva SRP. Electrochemical biosensors based on in situ grown carbon nanotubes on gold microelectrode array fabricated on glass substrate for glucose determination. Mikrochim Acta 2023; 190:55. [PMID: 36645527 PMCID: PMC9842592 DOI: 10.1007/s00604-022-05626-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/16/2022] [Indexed: 01/17/2023]
Abstract
A highly sensitive electrochemical sensor is reported for glucose detection using carbon nanotubes grown in situ at low temperatures on photolithographically defined gold microelectrode arrays printed on a glass substrate (CNTs/Au MEA). One of the main advantages of the present design is its potential to monitor 64 samples individually for the detection of glucose. The selectivity of the fabricated MEA towards glucose detection is achieved via modification of CNTs/Au MEA by immobilizing glucose oxidase (GOx) enzyme in the matrix of poly (paraphenylenediamine) (GOx/poly (p-PDA)/CNTs/Au MEA). The electrocatalytic and electrochemical responses of the proposed sensing platform towards glucose determination were examined via cyclic voltammetry and electrochemical impedance spectroscopy. The developed impedimetric biosensor exhibits a good linear response towards glucose detection, i.e., 0.2-27.5 µM concentration range with sensitivity and detection limits of 168.03 kΩ-1 M-1 and 0.2 ± 0.0014 μM, respectively. The proposed glucose biosensor shows excellent reproducibility, good anti-interference property, and was successfully tested in blood serum samples. Further, the applicability of the proposed sensor was successfully validated through HPLC. These results supported the viability of using such devices for the simultaneous detection of multiple electroactive biomolecules of physiological relevance.
Collapse
Affiliation(s)
- Ankit Kumar Singh
- grid.411507.60000 0001 2287 8816Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Nandita Jaiswal
- grid.411507.60000 0001 2287 8816Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Ida Tiwari
- grid.411507.60000 0001 2287 8816Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Muhammad Ahmad
- grid.5475.30000 0004 0407 4824Advanced Technology Institute, University of Surrey, Guildford, GU2 7XH Surrey UK
| | - S. Ravi P. Silva
- grid.5475.30000 0004 0407 4824Advanced Technology Institute, University of Surrey, Guildford, GU2 7XH Surrey UK
| |
Collapse
|
5
|
Qi XW, Liu YM, Hu YK, Yuan H, Ayeni EA, Liao X. Ligand fishing based on tubular microchannel modified with monoamine oxidase B for screening of the enzyme's inhibitors from Crocus sativus and Edgeworthia gardneri. J Sep Sci 2022; 45:2394-2405. [PMID: 35461190 DOI: 10.1002/jssc.202200057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/24/2022] [Accepted: 04/17/2022] [Indexed: 11/07/2022]
Abstract
A novel strategy of performing ligand fishing with enzyme-modified open tubular microchannel was proposed for screening bioactive components present in medicinal plants. Monoamine oxidase B was immobilized onto the surface of the microchannel for the first time to specifically extract its ligands when the plant's extracts solution flows through the channel. The thermal and the storage stability of immobilized monoamine oxidase B were significantly enhanced after immobilization. Crocin I and Ⅱ were extracted from Crocus sativus, and tiliroside was extracted from Edgeworthia gardneri. All the three compounds were inhibitors of the enzyme with the half-maximal inhibitory concentration values of 26.70 ± 0.91, 19.88 ± 2.78, and 15.65 ± 0.85 μM, respectively. The enzyme inhibition kinetics and molecular docking were investigated. This is the first report on the inhibitory effects of tiliroside and crocin Ⅱ. The novel ligand fishing method proposed in this work possesses advantages of rapidness, high efficiency, and tiny sample consumption compared to routine ligand fishing, with promising potential for screening active natural products in complex mixtures.
Collapse
Affiliation(s)
- Xu-Wei Qi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Yi-Ming Liu
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi, USA
| | - Yi-Kao Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Hao Yuan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Emmanuel Ayodeji Ayeni
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
| |
Collapse
|
6
|
Immobilization of Cytochrome C by Benzoic Acid (BA)-Functional UiO-66-NO 2 and the Enzyme Activity Assay. Appl Biochem Biotechnol 2022; 194:5167-5184. [PMID: 35699801 DOI: 10.1007/s12010-022-04018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
Recently, metal-organic frameworks (MOFs) are considered to be the moderate hosts for the bio-enzymes owing to their unique 3D pores and controllable surface affinity to the target molecules. In this work, the benzoic acid (BA)-modulated UiO-66-NO2 was introduced, and cytochrome c (Cyt C) was chosen as the target enzyme to evaluate the immobilization efficiency of the resulting UiO-66-NO2-BA. The immobilization conditions including pH, adsorption time, and temperature and the initial concentrations of BA were optimized. The adsorption kinetics and thermodynamics were analyzed to further explore the enhanced adsorption mechanism. It is worth noted that all the UiO-66-NO2-BA exhibited evidently enhanced adsorption capacities in comparison with the unmodified UiO-66-NO2 due to the formation of the chemical bonds between the UiO-66-NO2-BA and cytochrome C, indicating the positive roles of BA modification. Finally, the activities of the immobilized cytochrome C were assessed by using the catalytic oxidation of ABTS in the presence of H2O2, which reactions were also conducted over the free cytochrome C for comparison. The evidently improved stability under definite pH range, prolonged durability against the organic solvents, and the good reusability of the immobilized cytochrome C highlight the prospect applications of functional MOF immobilized enzymes in the practical catalytic reactions.
Collapse
|
7
|
Improved adenylate cyclase activity via affinity immobilization onto co-modified GO with bio-inspired adhesive and PEI. Colloids Surf B Biointerfaces 2021; 205:111888. [PMID: 34091372 DOI: 10.1016/j.colsurfb.2021.111888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022]
Abstract
Adenylate cyclase (AC) can efficiently catalyze the conversion of adenosine triphosphate (ATP) to cyclic adenosine-3', 5'-monophosphate (cAMP). However, AC directly immobilized on substrate is not desirable due to enzyme inactivation. Herein, bio-inspired adhesive of polydopamine and polyethyleneimine (PDA/PEI) was used as flexible chains to graft on graphene oxide (GO), and the AC was directionally immobilized through affinity between metal ions and his-tags of AC. The properties of modified GO and the activity of immobilized AC were studied in detail. PDA/PEI layers have been proved to improve the amino density of GO surface for affinity groups decoration and adjust the interaction between AC and support. And modified GO by this novel method contributes to subsequent grafting and immobilization of AC by affinity. AC immobilized on modified GO exhibited high activity recovery with about 90 % of free AC, while enzyme immobilized on unmodified GO has been inactivated. This study offers a versatile approach for support modification and enzyme oriented immobilization. PDA/PEI functionalized GO can be used as a promising carrier to immobilize other his-tagged enzymes.
Collapse
|
8
|
Li C, Zhang D, Ren W. Phase Change Materials Composite Based on Hybrid Aerogel with Anisotropic Microstructure. MATERIALS 2021; 14:ma14040777. [PMID: 33562191 PMCID: PMC7915827 DOI: 10.3390/ma14040777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/18/2021] [Accepted: 01/31/2021] [Indexed: 12/03/2022]
Abstract
Phase change materials (PCMs) can be thermally enhanced by reduced graphene oxide (rGO)/expanded graphite (EG) aerogel with anisotropic microstructure. An rGO/EG aerogel with anisotropic microstructure was prepared by directionally freezing aqueous suspensions of graphene oxide (GO) and EG, followed by a freeze-drying process and thermal reduction at 250 °C. The anisotropic microstructure of rGO/EG aerogel composite PCM was confirmed by scanning electron microscopy (SEM), thermal conductivity tests and infrared images. The thermal conductivity of PCMs increased remarkably with rGO/EG aerogel. Compared with the thermal conductivity of pure paraffin, it increased by about 50~300% in the longitudinal direction and increased by about 25–150% in the transversal direction. The enhancement of thermal conductivity was attributed to the improvement of the thermal pathway provided by rGO/EG aerogel and the decrease of the interfacial thermal resistance between PCM and fillers. Meanwhile, rGO/EG aerogel was combined with paraffin only by physical adsorption, and no chemical interaction occurs between them, leading to no effect on the phase change behavior. In addition, the addition of rGO/EG aerogel led to a slight increase in the latent heat of the paraffin in the composite PCM.
Collapse
|
9
|
Immobilization of Candida antarctica Lipase on Nanomaterials and Investigation of the Enzyme Activity and Enantioselectivity. Appl Biochem Biotechnol 2020; 193:430-445. [PMID: 33025565 DOI: 10.1007/s12010-020-03443-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/29/2020] [Indexed: 11/27/2022]
Abstract
This study defines the lipase immobilization protocol and enzymatic kinetic resolution of 1-phenyl ethanol with the use of immobilized lipases (LI) as a biocatalyst. Commercially available lipase Candida antarctica B (Cal-B) was immobilized onto graphene oxide (GO), iron oxide (Fe3O4) nanoparticles, and graphene oxide/iron oxide (GO/Fe3O4) nanocomposites. Characterization of pure and enzyme-loaded supports was carried out by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The influences of pH, temperature, immobilization time, crosslinker concentration, glutaraldehyde (GLA), epichlorohydrin (EPH), and surfactant concentrations (Tween 80 and Triton X-100) on the catalytic activity were evaluated for these three immobilized biocatalysts. The highest immobilized enzyme activities were 15.03 U/mg, 14.72 U/mg, and 13.56 U/mg for GO-GLA-CalB, Fe3O4-GLA-CalB, and GO/Fe3O4-GLA-CalB, respectively. Moreover, enantioselectivity and reusability of these immobilized lipases were compared for the kinetic resolution of 1-phenyl ethanol, using toluene as organic solvent and vinyl acetate as acyl donor. The highest values of enantiomeric excess (ees = 99%), enantioselectivity (E = 507.74), and conversion (c = 50.73%) were obtained by using lipase immobilized onto graphene oxide (GO-GLA-CalB). It was obtained that this enzymatic process may be repeated five times without important loss of enantioselectivity.
Collapse
|
10
|
Chen Y, Ren B, Gao S, Cao R. The sandwich-like structures of polydopamine and 8-hydroxyquinoline coated graphene oxide for excellent corrosion resistance of epoxy coatings. J Colloid Interface Sci 2020; 565:436-448. [PMID: 31982710 DOI: 10.1016/j.jcis.2020.01.051] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 01/05/2023]
Abstract
A novel sandwich-like structure material was exploited for the fabrication of an effective corrosion resistance system. An environmentally friendly composite material was synthesized by installing 8-hydroxyquinoline (8-HQ) on the surface of graphene oxide (GO). In order to prevent leakage of corrosion inhibitor 8-HQ, GO/8-HQ was modified by polydopamine (PDA), denoted as GO/8-HQ/PDA. A sandwich-like structure (GO/8-HQ/PDA) enables long-term stable storage of corrosion inhibitor in the protective matrix. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were utilized to verify the sandwich-like structure of GO/8-HQ/PDA. The electrochemical tests in a 3.5 wt% NaCl solution showed that the addition of well-dispersed GO/8-HQ/PDA into epoxy system (GO/8-HQ/PDA-EP) remarkably improved corrosion protection of AZ31b magnesium alloy compared with pure epoxy (EP) coating. The sandwich structure protects the activity and structural integrity of the corrosion inhibitor (8-HQ). The corrosion inhibitor (8-HQ) of the GO/8-HQ/PDA sandwich structure cuts off the ion exchange between the metal alloy and the electrolyte solution, which hinders the electrochemical corrosion of the metal. A possible corrosion resistance mechanism of GO/8-HQ/PDA is fully discussed. This study provides feasibilities for the immobilization of corrosion inhibitors on the metal surface.
Collapse
Affiliation(s)
- Yanning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Baohui Ren
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Shuiying Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; University of Chinese Academy of Science, Beijing 100049, China.
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; University of Chinese Academy of Science, Beijing 100049, China.
| |
Collapse
|
11
|
Lin C, Wu H, Wang J, Huang J, Cao F, Zhuang W, Lu Y, Chen J, Jia H, Ouyang P. Preparation of 5-Hydroxymethylfurfural from High Fructose Corn Syrup Using Organic Weak Acid in Situ as Catalyst. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Changqu Lin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Hongli Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Junyi Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jinsha Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Fei Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yanyu Lu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jiao Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
12
|
Chen G, Hu Q, Shu H, Wang L, Cui X, Han J, Bashir K, Luo Z, Chang C, Fu Q. Fluorescent biosensor based on magnetic cross-linking enzyme aggregates/CdTe quantum dots for the detection of H 2O 2-bioprecursors. NEW J CHEM 2020. [DOI: 10.1039/d0nj03761c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A fluorescent sensing system for H2O2-bioprecursors based on CdTe quantum dots and magnetic cross-linking enzyme aggregates was designed.
Collapse
Affiliation(s)
- Guoning Chen
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Qianqian Hu
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Hua Shu
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Lu Wang
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Xia Cui
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Jili Han
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Kamran Bashir
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Zhimin Luo
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Chun Chang
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Qiang Fu
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| |
Collapse
|
13
|
Low Fouling, Peptoid-Coated Polysulfone Hollow Fiber Membranes-the Effect of Grafting Density and Number of Side Chains. Appl Biochem Biotechnol 2019; 191:824-837. [PMID: 31872336 DOI: 10.1007/s12010-019-03218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
The development of low fouling membranes to minimize protein adsorption has relevance in various biomedical applications. Here, electrically neutral peptoids containing 2-methoxyethyl glycine (NMEG) side chains were attached to polysulfone hollow fiber membranes via polydopamine. The number of side chains and grafting density were varied to determine the effect on coating properties and the ability to prevent fouling. NMEG peptoid coatings have high hydrophilicity compared to unmodified polysulfone membranes. The extent of biofouling was evaluated using bovine serum albumin, as well as platelet adhesion. The results suggest that both the number of side chains and grafting density play a role in the surface properties that drive biofouling. Protein adsorption decreased with increasing peptoid grafting density and is lowest above a critical grafting density specific to peptoid chain length. Our findings show that the optimization of grafting density and hydration of the surface are important factors for achieving the desired antifouling performance.
Collapse
|
14
|
Performance of a glucose-reactive enzyme-based biofuel cell system for biomedical applications. Sci Rep 2019; 9:10872. [PMID: 31350441 PMCID: PMC6659637 DOI: 10.1038/s41598-019-47392-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/16/2019] [Indexed: 01/12/2023] Open
Abstract
A glucose-reactive enzyme-based biofuel cell system (EBFC) was recently introduced in the scientific community for biomedical applications, such as implantable artificial organs and biosensors for drug delivery. Upon direct contact with tissues or organs, an implanted EBFC can exert effects that damage or stimulate intact tissue due to its byproducts or generated electrical cues, which have not been investigated in detail. Here, we perform a fundamental cell culture study using a glucose dehydrogenase (GDH) as an anode enzyme and bilirubin oxidase (BOD) as a cathode enzyme. The fabricated EBFC had power densities of 15.26 to 38.33 nW/cm2 depending on the enzyme concentration in media supplemented with 25 mM glucose. Despite the low power density, the GDH-based EBFC showed increases in cell viability (~150%) and cell migration (~90%) with a relatively low inflammatory response. However, glucose oxidase (GOD), which has been used as an EBFC anode enzyme, revealed extreme cytotoxicity (~10%) due to the lethal concentration of H2O2 byproducts (~1500 µM). Therefore, with its cytocompatibility and cell-stimulating effects, the GDH-based EBFC is considered a promising implantable tool for generating electricity for biomedical applications. Finally, the GDH-based EBFC can be used for introducing electricity during cell culture and the fabrication of organs on a chip and a power source for implantable devices such as biosensors, biopatches, and artificial organs.
Collapse
|
15
|
Improved features of a highly stable protease from Penaeus vannamei by immobilization on glutaraldehyde activated graphene oxide nanosheets. Int J Biol Macromol 2019; 130:564-572. [DOI: 10.1016/j.ijbiomac.2019.02.163] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/05/2019] [Accepted: 02/28/2019] [Indexed: 12/16/2022]
|
16
|
Zhang T, Li Y, Hong W, Chen Z, Peng P, Yuan S, Qu J, Xiao M, Xu L. Glucose oxidase and polydopamine functionalized iron oxide nanoparticles: combination of the photothermal effect and reactive oxygen species generation for dual-modality selective cancer therapy. J Mater Chem B 2019; 7:2190-2200. [PMID: 32073578 DOI: 10.1039/c8tb03320j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer cells possess some inherent characteristics, such as glucose-dependence and intolerance to heat and exogenous reactive oxygen species (ROS). In this study, a strategy has been developed to target these vulnerable weaknesses of cancer cells using glucose oxidase (GOx) and polydopamine (PDA) functionalized iron oxide nanoparticles (Fe3O4@PDA/GOx NPs). PDA is first deposited on the surfaces of iron oxide NPs through self-polymerization, and then GOx is covalently linked with PDA upon mixing the enzyme and Fe3O4@PDA under alkaline conditions. In this system, the PDA layer along with iron oxide NPs serves as a photothermal transfer material converting near infrared (NIR) radiation into heat. The covalently linked GOx can competitively consume glucose and spontaneously generate ROS H2O2 that can be further converted by the iron oxide NPs into more toxic ˙OH, inducing apoptosis of cancer cells. The selective toxicity of Fe3O4@PDA/GOx NPs on cancer cells is demonstrated both in vitro and in vivo. In particular, a single injection rather than multiple doses results in significant suppression of tumors, and does not induce apparent histological lesions in the 4T1 tumor-bearing Balb/c mice. The versatility of the functionalization strategy reported in this study will contribute to developing efficient therapies for selective cancer treatment.
Collapse
Affiliation(s)
- Tiantian Zhang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li D, Fang Z, Duan H, Liang L. Polydopamine-mediated synthesis of core–shell gold@calcium phosphate nanoparticles for enzyme immobilization. Biomater Sci 2019; 7:2841-2849. [DOI: 10.1039/c9bm00283a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Constructing calcium phosphate (CaP)–gold (Au) nanocomposites for enzyme immobilization to overcome the bottleneck of loss of enzyme activity upon immobilization.
Collapse
Affiliation(s)
- Di Li
- State Key Lab of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- School of Food Science and Technology
| | - Zheng Fang
- State Key Lab of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- School of Food Science and Technology
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
- Singapore
| | - Li Liang
- State Key Lab of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- School of Food Science and Technology
| |
Collapse
|
18
|
Huang J, Zhuang W, Ge L, Wang K, Wang Z, Niu H, Wu J, Zhu C, Chen Y, Ying H. Improving biocatalytic microenvironment with biocompatible ε-poly-l-lysine for one step gluconic acid production in low pH enzymatic systems. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Bolibok P, Roszek K, Wiśniewski M. Chemical and Biochemical Approach to Make a Perfect Biocatalytic System on Carbonaceous Matrices. Methods Enzymol 2018; 609:221-245. [PMID: 30244791 DOI: 10.1016/bs.mie.2018.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Enzymatic processes are widely used in food industry, pharmacy, cosmetic and household chemistry, and medicine. However, the common and efficient application of the biological catalysts is limited by a number of factors that influence enzymes activity. One of the most frequent methods to improve the biocatalysts' properties is immobilization. This chapter presents a recent overview of our attempts to obtain the perfect biocatalytic system. The experimental approach, proposed in this chapter, includes the critical points like: the choice of adequate immobilization method, most suitable carrier, determination of enzyme kinetic parameters, stability, and toxicity of obtained systems. As carbon materials including graphene-derived materials offer unique properties and a plenty of different modifications, these parameters seem to be of decisive importance to understand chemistry of complex systems. Consideration of all the mentioned requirements lead us to the conclusion that graphene oxide could be the best candidate for support in perfect biocatalytic systems.
Collapse
Affiliation(s)
- Paulina Bolibok
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Marek Wiśniewski
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Toruń, Poland.
| |
Collapse
|
20
|
Zhao J, Yang D, Shi J, Li J, Zhang S, Wu Y, Jiang Z. Robust and Recyclable Two-Dimensional Nanobiocatalysts for Biphasic Reactions in Pickering Emulsions. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jingjing Zhao
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People’s Republic of China
| | | | - Jiafu Shi
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People’s Republic of China
| | | | - Shaohua Zhang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People’s Republic of China
| | - Yizhou Wu
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People’s Republic of China
| | - Zhongyi Jiang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People’s Republic of China
| |
Collapse
|
21
|
Wang R, Yang C, Fang K, Cai Y, Hao L. Removing the residual cellulase by graphene oxide to recycle the bio-polishing effluent for dyeing cotton fabrics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 207:423-431. [PMID: 29190485 DOI: 10.1016/j.jenvman.2017.11.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 10/13/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
In this research, a stable graphene oxide (GO) suspension was prepared by chemical reduction method from graphite powder. By TEM, the irregular GO sheets with single-atom-layered structure could be observed. The zeta potentials measurement indicated the surface charges of GO were strongly related to pH. BET analysis showed the GO had a specific surface area of 30.7 m2/g and pore volume of 0.10 cm3/g. When the GO was used to remove the residual cellulase in bio-polishing effluent, it was found the removal capacity reached its maximum value at the pH 4-5. The kinetics studies showed that the removal process of cellulase followed a pseudo-second-order kinetic model with a rate constant (k2) of 0.276 × 10-3 g/mg min and equilibrium adsorption capacity of 278.55 mg/g, respectively. By plotting the adsorption isotherms, it was found the Langmuir model fitted the experimental data well with a cellulase adsorption capacity of 574.71 mg/g, indicating the adsorption of cellulase by GO in a monolayer manner. When dyeing the cotton fabrics with reactive dyes, it was found that the cotton fabrics could acquire similar color properties in the recycled bio-polishing effluent as in fresh water, meaning the effectiveness of removing cellulase by GO and the feasibility of recycling the bio-polishing effluent.
Collapse
Affiliation(s)
- Rui Wang
- Textile and Chemical Engineering College of Qingdao University, Qingdao 266071, China
| | - Chao Yang
- Textile and Chemical Engineering College of Qingdao University, Qingdao 266071, China
| | - Kuanjun Fang
- Textile and Chemical Engineering College of Qingdao University, Qingdao 266071, China; The Growing Base for State Key Laboratory of Fiber Materials and Modern Textiles, Collaborative Innovation Center for Ecological Textile of Shandong Province, Qingdao 266071, China
| | - Yuqing Cai
- Textile and Chemical Engineering College of Qingdao University, Qingdao 266071, China
| | - Longyun Hao
- Textile and Chemical Engineering College of Qingdao University, Qingdao 266071, China; The Growing Base for State Key Laboratory of Fiber Materials and Modern Textiles, Collaborative Innovation Center for Ecological Textile of Shandong Province, Qingdao 266071, China.
| |
Collapse
|
22
|
Stanton MM, Park BW, Miguel-López A, Ma X, Sitti M, Sánchez S. Biohybrid Microtube Swimmers Driven by Single Captured Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603679. [PMID: 28299891 DOI: 10.1002/smll.201603679] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/31/2017] [Indexed: 06/06/2023]
Abstract
Bacteria biohybrids employ the motility and power of swimming bacteria to carry and maneuver microscale particles. They have the potential to perform microdrug and cargo delivery in vivo, but have been limited by poor design, reduced swimming capabilities, and impeded functionality. To address these challenge, motile Escherichia coli are captured inside electropolymerized microtubes, exhibiting the first report of a bacteria microswimmer that does not utilize a spherical particle chassis. Single bacterium becomes partially trapped within the tube and becomes a bioengine to push the microtube though biological media. Microtubes are modified with "smart" material properties for motion control, including a bacteria-attractant polydopamine inner layer, addition of magnetic components for external guidance, and a biochemical kill trigger to cease bacterium swimming on demand. Swimming dynamics of the bacteria biohybrid are quantified by comparing "length of protrusion" of bacteria from the microtubes with respect to changes in angular autocorrelation and swimmer mean squared displacement. The multifunctional microtubular swimmers present a new generation of biocompatible micromotors toward future microbiorobots and minimally invasive medical applications.
Collapse
Affiliation(s)
- Morgan M Stanton
- Lab-in-a-Tube and Nanorobotic Biosensors, Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
| | - Byung-Wook Park
- Physical Intelligence, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
| | - Albert Miguel-López
- Smart Nano-Bio-Devices, Institut de Bioenginyeria de Catalunya (IBEC), 08028, Barcelona, Spain
| | - Xing Ma
- Lab-in-a-Tube and Nanorobotic Biosensors, Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
- School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen Graduate School, 518055, Shenzhen, China
| | - Metin Sitti
- Physical Intelligence, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
| | - Samuel Sánchez
- Lab-in-a-Tube and Nanorobotic Biosensors, Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
- Smart Nano-Bio-Devices, Institut de Bioenginyeria de Catalunya (IBEC), 08028, Barcelona, Spain
- Institució Catalana de Recerca i EstudisAvancats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
23
|
Qiu C, Bennet KE, Khan T, Ciubuc JD, Manciu FS. Raman and Conductivity Analysis of Graphene for Biomedical Applications. MATERIALS 2016; 9:ma9110897. [PMID: 28774016 PMCID: PMC5457257 DOI: 10.3390/ma9110897] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 11/16/2022]
Abstract
In this study, we present a comprehensive investigation of graphene's optical and conductive properties using confocal Raman and a Drude model. A comparative analysis between experimental findings and theoretical predictions of the material's changes and improvements as it transitioned from three-dimensional graphite is also presented and discussed. Besides spectral recording by Raman, which reveals whether there is a single, a few, or multi-layers of graphene, the confocal Raman mapping allows for distinction of such domains and a direct visualization of material inhomogeneity. Drude model employment in the analysis of the far-infrared transmittance measurements demonstrates a distinct increase of the material's conductivity with dimensionality reduction. Other particularly important material characteristics, including carrier concentration and time constant, were also determined using this model and presented here. Furthermore, the detection of micromolar concentration of dopamine on graphene surfaces not only proves that the Raman technique facilitates ultrasensitive chemical detection of analytes, besides offering high information content about the biomaterial under study, but also that carbon-based materials are biocompatible and favorable micro-environments for such detection. Such information is valuable for the development of bio-medical sensors, which is the main application envisioned for this analysis.
Collapse
Affiliation(s)
- Chao Qiu
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Kevin E Bennet
- Division of Engineering, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA.
| | - Tamanna Khan
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA.
| | - John D Ciubuc
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Felicia S Manciu
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA.
| |
Collapse
|
24
|
Riveros G. D, Cordova K, Michiels C, Verachtert H, Derdelinckx G. Polydopamine imprinted magnetic nanoparticles as a method to purify and detect class II hydrophobins from heterogeneous mixtures. Talanta 2016; 160:761-767. [DOI: 10.1016/j.talanta.2016.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 11/26/2022]
|
25
|
Zeng S, Zhou G, Guo J, Zhou F, Chen J. Molecular simulations of conformation change and aggregation of HIV-1 Vpr13-33 on graphene oxide. Sci Rep 2016; 6:24906. [PMID: 27097898 PMCID: PMC4838942 DOI: 10.1038/srep24906] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/05/2016] [Indexed: 11/09/2022] Open
Abstract
Recent experiments have reported that the fragment of viral protein R (Vpr), Vpr13-33, can assemble and change its conformation after adsorbed on graphene oxide (GO) and then reduce its cytotoxicity. This discovery is of great importance, since the mutation of Vpr13-33 can decrease the viral replication, viral load and delay the disease progression. However, the interactions between Vpr13-33 and GO at atomic level are still unclear. In this study, we performed molecular dynamics simulation to investigate the dynamic process of the adsorption of Vpr13-33 onto GO and the conformation change after aggregating on GO surface. We found that Vpr13-33 was adsorbed on GO surface very quickly and lost its secondary structure. The conformation of peptides-GO complex was highly stable because of π-π stacking and electrostatic interactions. When two peptides aggregated on GO, they did not dimerize, since the interactions between the two peptides were much weaker than those between each peptide and GO.
Collapse
Affiliation(s)
- Songwei Zeng
- School of Information and Industry, Zhejiang A & F University, Lin’an 311300, China
| | - Guoquan Zhou
- Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, School of Sciences, Zhejiang A & F University, Lin’an 311300, China
| | - Jianzhong Guo
- Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, School of Sciences, Zhejiang A & F University, Lin’an 311300, China
| | - Feng Zhou
- Zhe Jiang province environmental radiation monitoring center, Hangzhou 310012, China
| | - Junlang Chen
- School of Information and Industry, Zhejiang A & F University, Lin’an 311300, China
- Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, School of Sciences, Zhejiang A & F University, Lin’an 311300, China
| |
Collapse
|
26
|
Ali S, Nawaz W. Biotransformation of L-tyrosine to Dopamine by a Calcium Alginate Immobilized Mutant Strain of Aspergillus oryzae. Appl Biochem Biotechnol 2016; 179:1435-44. [PMID: 27068833 DOI: 10.1007/s12010-016-2075-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/03/2016] [Indexed: 11/30/2022]
Abstract
The present research work is concerned with the biotransformation of L-tyrosine to dopamine (DA) by calcium alginate entrapped conidiospores of a mutant strain of Aspergillus oryzae. Different strains of A. oryzae were isolated from soil. Out of 13 isolated strains, isolate-2 (I-2) was found to be a better DA producer. The wild-type I-2 was chemically improved by treating it with different concentrations of ethyl methyl sulfonate (EMS). Among seven mutant variants, EMS-6 exhibiting maximal DA activity of 43 μg/ml was selected. The strain was further exposed with L-cysteine HCl to make it resistant against diversion and environmental stress. The conidiospores of selected mutant variant A. oryzae EMS-6 strain were entrapped in calcium alginate beads. Different parameters for immobilization were investigated. The activity was further improved from 44 to 62 μg/ml under optimized conditions (1.5 % sodium alginate, 2 ml inoculum, and 2 mm bead size). The best resistant mutant variable exhibited over threefold increase in DA activity (62 μg/ml) than did wild-type I-2 (21 μg/ml) in the reaction mixture. From the results presented in the study, it was observed that high titers of DA activity in vitro could effectively be achieved by the EMS-induced mutagenesis of filamentous fungus culture used.
Collapse
Affiliation(s)
- Sikander Ali
- Institute of Industrial Biotechnology (IIB), GC University, Lahore, Pakistan.
| | - Wajeeha Nawaz
- Institute of Industrial Biotechnology (IIB), GC University, Lahore, Pakistan
| |
Collapse
|