1
|
Wamer N, Morse CN, Gadient JN, Dodson TA, Carlson EA, Prestwich EG. Comparison of Small Biomolecule Ionization and Fragmentation in Pseudomonas aeruginosa Using Common MALDI Matrices. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:355-365. [PMID: 36696681 PMCID: PMC9983012 DOI: 10.1021/jasms.2c00157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/05/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Different bacterial cell surface associated biomolecules can be analyzed by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and coupled with collision induced dissociation (CID) for identification. Pseudomonas aeruginosa is an opportunistic, Gram-negative bacterium that causes acute or chronic biofilm infections. Cells of P. aeruginosa communicate through a system of signaling biomolecules known as quorum sensing (QS). The QS system can result in the production of biosurfactant rhamnolipids known to associate and alter the cellular membrane. MALDI-TOF utilizes a variety of matrices that can interact differently with biomolecules for selective ionization. We examined six common matrices to determine the optimal matrix specific to different molecule classes in P. aeruginosa associated with cell surfaces. Three major molecule classes (quinolones, rhamnolipids, and phospholipids) were observed to ionize selectively with the different matrices tested. Sodiated and protonated adducts differed between matrices utilized in our study. Isobaric ions were identified as different molecule classes depending on the matrix used. We highlight the role of matrix selection in MALDI-TOF identification of molecules within a complex biological mixture.
Collapse
Affiliation(s)
- Nathan
C. Wamer
- Department
of Medicinal and Biological Chemistry, University
of Toledo, Toledo, Ohio 43606, United States
| | - Chase N. Morse
- Department
of Medicinal and Biological Chemistry, University
of Toledo, Toledo, Ohio 43606, United States
| | - Jennifer N. Gadient
- The
College of Natural Sciences and Mathematics, NSM Instrumentation Center, University of Toledo, Toledo, Ohio 43606, United States
| | - Taylor A. Dodson
- Department
of Medicinal and Biological Chemistry, University
of Toledo, Toledo, Ohio 43606, United States
| | - Eric A. Carlson
- Department
of Medicinal and Biological Chemistry, University
of Toledo, Toledo, Ohio 43606, United States
| | - Erin G. Prestwich
- Department
of Medicinal and Biological Chemistry, University
of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
2
|
Hou Y, Gao Y, Guo S, Zhang Z, Chen R, Zhang X. Applications of spatially resolved omics in the field of endocrine tumors. Front Endocrinol (Lausanne) 2023; 13:993081. [PMID: 36704039 PMCID: PMC9873308 DOI: 10.3389/fendo.2022.993081] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Endocrine tumors derive from endocrine cells with high heterogeneity in function, structure and embryology, and are characteristic of a marked diversity and tissue heterogeneity. There are still challenges in analyzing the molecular alternations within the heterogeneous microenvironment for endocrine tumors. Recently, several proteomic, lipidomic and metabolomic platforms have been applied to the analysis of endocrine tumors to explore the cellular and molecular mechanisms of tumor genesis, progression and metastasis. In this review, we provide a comprehensive overview of spatially resolved proteomics, lipidomics and metabolomics guided by mass spectrometry imaging and spatially resolved microproteomics directed by microextraction and tandem mass spectrometry. In this regard, we will discuss different mass spectrometry imaging techniques, including secondary ion mass spectrometry, matrix-assisted laser desorption/ionization and desorption electrospray ionization. Additionally, we will highlight microextraction approaches such as laser capture microdissection and liquid microjunction extraction. With these methods, proteins can be extracted precisely from specific regions of the endocrine tumor. Finally, we compare applications of proteomic, lipidomic and metabolomic platforms in the field of endocrine tumors and outline their potentials in elucidating cellular and molecular processes involved in endocrine tumors.
Collapse
Affiliation(s)
- Yinuo Hou
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Shudi Guo
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhibin Zhang
- General Surgery, Tianjin First Center Hospital, Tianjin, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xiangyang Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Krutilin A, Epp SW, Alejo GML, Busse F, Gitaric D, Schikora H, Schwoerer H, Tellkamp F. Peptide Mass Spectra from Micrometer-Thick Ice Films Produced with Femtosecond Pulses. Anal Chem 2022; 94:13359-13367. [PMID: 36153751 PMCID: PMC9535622 DOI: 10.1021/acs.analchem.2c01810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
We present a cryogenic mass spectrometry protocol with the capability to detect peptides in the attomole dilution range from ice films. Our approach employs femtosecond laser pulses and implements neither substrate modification nor proton donor agents in the aqueous solution, known to facilitate analyte detection in mass spectrometry. In a systematic study, we investigated the impact of temperature, substrate composition, and irradiation wavelength (513 and 1026 nm) on the bradykinin signal onset. Our findings show that substrate choice and irradiation wavelength have a minor impact on signal intensity once the preparation protocol is optimized. However, if the temperature is increased from -140 to 0 °C, which is accompanied by ice film thinning, a somehow complex picture of analyte desorption and ionization is recognizable, which has not been described in the literature yet. Under cryogenic conditions (-140 °C), obtaining a signal is only possible from isolated sweet spots across the film. If the thin ice film is between -100 and -70 °C of temperature, these sweet spots appear more frequently. Ice sublimation triggered by temperatures above -70 °C leads to an intense and robust signal onset that could be maintained for several hours. In addition to the above findings, we notice that a vibrant fragmentation pattern produced is strikingly similar with both wavelengths. Our findings suggest that while following an optimized protocol, femtosecond mass spectrometry has excellent potential to analyze small organic molecules and peptides with a mass range of up to 2.5 kDa in aqueous solution without any matrix, as employed in matrix-assisted laser desorption/ionization (MALDI) or any substrate surface modification, found in surface-assisted laser desorption/ionization (SALDI).
Collapse
Affiliation(s)
- Andrey Krutilin
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Sascha W. Epp
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Glaynel M. L. Alejo
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Frederik Busse
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Djordje Gitaric
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Hendrik Schikora
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Heinrich Schwoerer
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Friedjof Tellkamp
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| |
Collapse
|
4
|
Pathmasiri KC, Nguyen TTA, Khamidova N, Cologna SM. Mass spectrometry-based lipid analysis and imaging. CURRENT TOPICS IN MEMBRANES 2021; 88:315-357. [PMID: 34862030 DOI: 10.1016/bs.ctm.2021.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass spectrometry imaging (MSI) is a powerful tool for in situ mapping of analytes across a sample. With growing interest in lipid biochemistry, the ability to perform such mapping without antibodies has opened many opportunities for MSI and lipid analysis. Herein, we discuss the basics of MSI with particular emphasis on MALDI mass spectrometry and lipid analysis. A discussion of critical advancements as well as protocol details are provided to the reader. In addition, strategies for improving the detection of lipids, as well as applications in biomedical research, are presented.
Collapse
Affiliation(s)
- Koralege C Pathmasiri
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Thu T A Nguyen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Nigina Khamidova
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States; Laboratory of Integrated Neuroscience, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
5
|
Jia Khor M, Broda A, Kostrzewa M, Drobniewski F, Larrouy-Maumus G. An Improved Method for Rapid Detection of Mycobacterium abscessus Complex Based on Species-Specific Lipid Fingerprint by Routine MALDI-TOF. Front Chem 2021; 9:715890. [PMID: 34386482 PMCID: PMC8353234 DOI: 10.3389/fchem.2021.715890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 01/09/2023] Open
Abstract
Rapid diagnostics of bacterial infection is the key to successful recovery and eradication of the disease. Currently, identification of bacteria is based on the detection of highly abundant proteins, mainly ribosomal proteins, by routine MALDI-TOF mass spectrometry. However, relying solely on proteins is limited in subspecies typing for some pathogens. This is the case for, for example, the mycobacteria belonging to the Mycobacterium abscessus (MABS) complex, which is classified into three subspecies, namely, M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense. Being able to detect bacteria accurately and rapidly at the subspecies level could not only reliably identify the pathogen causing the disease but also enable better antibiotic stewardship. For instance, M. abscessus subsp. abscessus and M. abscessus subsp. bolletii possess a functional erm41 (erythromycin ribosomal methylation gene 41) gene, whilst M. abscessus subsp. massiliense does not, resulting in differences in macrolide antibiotic (e.g., clarithromycin and azithromycin) susceptibilities. This presents a challenge for physicians when designing an appropriate treatment regimen. To address this challenge, in addition to proteins, species-specific lipids have now been considered as a game changer in clinical microbiology diagnostics. However, their extraction can be time-consuming, and analysis requires the use of apolar toxic organic solvents (e.g., chloroform). Here, we present a new method to accurately detect species and subspecies, allowing the discrimination of the mycobacteria within the MABS complex and relying on the use of ethanol. We found that a combination of the matrix named super-DHB with 25% ethanol with a bacterial suspension at McFarland 20 gave robust and reproducible data, allowing the discrimination of the bacteria within the MABS complex strains tested in this study (n = 9). Further investigations have to be conducted to validate the method on a larger panel of strains for its use in diagnostic laboratories.
Collapse
Affiliation(s)
- Min Jia Khor
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Agnieszka Broda
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Francis Drobniewski
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Lopez SMM, Aguilar JS, Fernandez JBB, Lao AGJ, Estrella MRR, Devanadera MKP, Ramones CMV, Villaraza AJL, Guevarra LA, Santiago-Bautista MR, Santiago LA. Neuroactive venom compounds obtained from Phlogiellus bundokalbo as potential leads for neurodegenerative diseases: insights on their acetylcholinesterase and beta-secretase inhibitory activities in vitro. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210009. [PMID: 34249120 PMCID: PMC8237997 DOI: 10.1590/1678-9199-jvatitd-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/31/2021] [Indexed: 11/22/2022] Open
Abstract
Background Spider venom is a rich cocktail of neuroactive compounds designed to prey capture and defense against predators that act on neuronal membrane proteins, in particular, acetylcholinesterases (AChE) that regulate synaptic transmission through acetylcholine (ACh) hydrolysis - an excitatory neurotransmitter - and beta-secretases (BACE) that primarily cleave amyloid precursor proteins (APP), which are, in turn, relevant in the structural integrity of neurons. The present study provides preliminary evidence on the therapeutic potential of Phlogiellus bundokalbo venom against neurodegenerative diseases. Methods Spider venom was extracted by electrostimulation and fractionated by reverse-phase high-performance liquid chromatography (RP-HPLC) and characterized by matrix-assisted laser desorption ionization-time flight mass spectrometry (MALDI-TOF-MS). Neuroactivity of the whole venom was observed by a neurobehavioral response from Terebrio molitor larvae in vivo and fractions were screened for their inhibitory activities against AChE and BACE in vitro. Results The whole venom from P. bundokalbo demonstrated neuroactivity by inducing excitatory movements from T. molitor for 15 min. Sixteen fractions collected produced diverse mass fragments from MALDI-TOF-MS ranging from 900-4500 Da. Eleven of sixteen fractions demonstrated AChE inhibitory activities with 14.34% (± 2.60e-4) to 62.05% (± 6.40e-5) compared with donepezil which has 86.34% (± 3.90e-5) inhibition (p > 0.05), while none of the fractions were observed to exhibit BACE inhibition. Furthermore, three potent fractions against AChE, F1, F3, and F16 displayed competitive and uncompetitive inhibitions compared to donepezil as the positive control. Conclusion The venom of P. bundokalbo contains compounds that demonstrate neuroactivity and anti-AChE activities in vitro, which could comprise possible therapeutic leads for the development of cholinergic compounds against neurological diseases.
Collapse
Affiliation(s)
- Simon Miguel M Lopez
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008.,Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines, 1101
| | - Jeremey S Aguilar
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008
| | - Jerene Bashia B Fernandez
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008
| | - Angelic Gayle J Lao
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines, 1015.,The Graduate School, University of Santo Tomas, Manila, Philippines, 1015.,Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines, 1101
| | - Mitzi Rain R Estrella
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008
| | - Mark Kevin P Devanadera
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines, 1015.,The Graduate School, University of Santo Tomas, Manila, Philippines, 1015
| | - Cydee Marie V Ramones
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines, 1101
| | - Aaron Joseph L Villaraza
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines, 1101
| | - Leonardo A Guevarra
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines, 1015
| | - Myla R Santiago-Bautista
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines, 1015.,The Graduate School, University of Santo Tomas, Manila, Philippines, 1015
| | - Librado A Santiago
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines, 1015.,The Graduate School, University of Santo Tomas, Manila, Philippines, 1015
| |
Collapse
|
7
|
Vu NQ, DeLaney K, Li L. Neuropeptidomics: Improvements in Mass Spectrometry Imaging Analysis and Recent Advancements. Curr Protein Pept Sci 2021; 22:158-169. [PMID: 33200705 PMCID: PMC8330971 DOI: 10.2174/1389203721666201116115708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022]
Abstract
Neuropeptides are an important class of endogenous peptides in the nervous system that regulate physiological functions such as feeding, glucose homeostasis, pain, memory, reproduction, and many others. In order to understand the functional role of neuropeptides in diseases or disorders, studies investigating their dysregulation in terms of changes in abundance and localization must be carried out. As multiple neuropeptides are believed to play a functional role in each physiological process, techniques capable of global profiling multiple neuropeptides simultaneously are desired. Mass spectrometry is well-suited for this goal due to its ability to perform untargeted measurements without prior comprehensive knowledge of the analytes of interest. Mass spectrometry imaging (MSI) is particularly useful because it has the capability to image a large variety of peptides in a single experiment without labeling. Like all analytical techniques, careful sample preparation is critical to successful MSI analysis. The first half of this review focuses on recent developments in MSI sample preparation and instrumentation for analyzing neuropeptides and other biomolecules in which the sample preparation technique may be directly applicable for neuropeptide analysis. The benefit offered by incorporating these techniques is shown as improvement in a number of observable neuropeptides, enhanced signal to noise, increased spatial resolution, or a combination of these aspects. The second half of this review focuses on recent biological discoveries about neuropeptides resulting from these improvements in MSI analysis. The recent progress in neuropeptide detection and analysis methods, including the incorporation of various tissue washes, matrices, instruments, ionization sources, and computation approaches combined with the advancements in understanding neuropeptide function in a variety of model organisms, indicates the potential for the utilization of MSI analysis of neuropeptides in clinical settings.
Collapse
Affiliation(s)
- Nhu Q. Vu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
8
|
Unger MS, Schumacher L, Enzlein T, Weigt D, Zamek-Gliszczynski MJ, Schwab M, Nies AT, Drewes G, Schulz S, Reinhard FBM, Hopf C. Direct Automated MALDI Mass Spectrometry Analysis of Cellular Transporter Function: Inhibition of OATP2B1 Uptake by 294 Drugs. Anal Chem 2020; 92:11851-11859. [DOI: 10.1021/acs.analchem.0c02186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Melissa S. Unger
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Cellzome - a GlaxoSmithKline company, Meyerhofstr. 1, 69177 Heidelberg, Germany
| | - Lena Schumacher
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - Thomas Enzlein
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - David Weigt
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - Maciej J. Zamek-Gliszczynski
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute for Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
- Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Anne T. Nies
- Dr. Margarete Fischer-Bosch-Institute for Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Gerard Drewes
- Cellzome - a GlaxoSmithKline company, Meyerhofstr. 1, 69177 Heidelberg, Germany
| | - Sandra Schulz
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | | | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
9
|
Stoichiometry of Heavy Metal Binding to Peptides Involved in Alzheimer’s Disease: Mass Spectrometric Evidence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:401-415. [DOI: 10.1007/978-3-030-15950-4_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Weigt D, Sammour DA, Ulrich T, Munteanu B, Hopf C. Automated analysis of lipid drug-response markers by combined fast and high-resolution whole cell MALDI mass spectrometry biotyping. Sci Rep 2018; 8:11260. [PMID: 30050068 PMCID: PMC6062520 DOI: 10.1038/s41598-018-29677-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/13/2018] [Indexed: 12/20/2022] Open
Abstract
Recent advances in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry have enabled whole cell-MALDI mass spectrometry biotyping of drug-treated cultured cells for rapid monitoring of known abundant pharmacodynamic protein markers such as polyacetylated histones. In contrast, generic and automated analytical workflows for discovery of such pharmacodynamic markers, in particular lipid markers, and their use in cellular tests of drug-like compounds are still lacking. Here, we introduce such a workflow and demonstrate its utility for cellular drug-response monitoring of BCR-ABL tyrosine kinase inhibitors in K562 leukemia cells: First, low-molecular mass features indicating drug responses are computationally extracted from groups of MALDI-TOF mass spectra. Then, the lipids/metabolites corresponding to these features are identified by MALDI-Fourier transformation mass spectrometry. To demonstrate utility of the method, we identify the potassium adduct of phosphatidylcholine PC(36:1) as well as heme B, a marker for erythroid differentiation, as markers for a label-free MALDI MS-based test of cellular responses to BCR-ABL inhibitors. Taken together, these results suggest that MALDI-TOF mass spectrometry of lipids and other low molecular mass metabolites could support cell-based drug profiling.
Collapse
Affiliation(s)
- David Weigt
- Center for biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163, Mannheim, Germany
- HBIGS International Graduate School of Molecular and Cellular Biology, Heidelberg University, Im Neuenheimer Feld 501, 69120, Heidelberg, Germany
| | - Denis A Sammour
- Center for biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163, Mannheim, Germany
| | - Timon Ulrich
- Center for biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163, Mannheim, Germany
| | - Bogdan Munteanu
- Center for biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163, Mannheim, Germany
| | - Carsten Hopf
- Center for biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163, Mannheim, Germany.
- HBIGS International Graduate School of Molecular and Cellular Biology, Heidelberg University, Im Neuenheimer Feld 501, 69120, Heidelberg, Germany.
| |
Collapse
|
11
|
Shin HC, Deterra D, Park J, Kim H, Nishikiori M, Uetrecht C, Ahlquist PG, Arbulu M, Blick RH. Ultra-high mass multimer analysis of protein-1a capping domains by a silicon nanomembrane detector. J Proteomics 2018; 175:5-11. [PMID: 29199149 DOI: 10.1016/j.jprot.2017.11.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 11/17/2022]
Abstract
Conventional time of flight ion detectors are based on secondary electron multipliers encountering a significant loss in detection efficiency, sensitivity and resolution with protein mass above 50kDa. In this work we employ a silicon nanomembrane detector in a Matrix-Assisted Laser Desorption/Ionization coupled to time of flight (MALDI-TOF) mass spectrometer. The operating principle relies on phonon-assisted field emission with excellent performance in the high mass range from 0.001-2MDa. In addition to the analysis of standard proteins the nanomembrane detector (NMD) has the potential for the detection and structural investigation of complex macromolecular assemblies through non-covalent interactions. In order to investigate this hypothesis, the N-terminal capping/methyltransferase domain (CAP) of the Brome Mosaic Virus (BMV) 1a replication protein by MALDI-TOF-NMD is analyzed. The signals detected at the high m/z-ratios of 912.6/982.7 (×103) and 1333.3 (×103) could be modified species of CAP-tricta/tetractamer and the octadecamer. For the first time, the NMD is applied to detect biologically complex macromolecular protein assemblies. Hence, this technology overcomes the limitations of conventional TOF-detectors and increases the analytical range of MALDI-TOF. This technology will be a future alternative for the structural analysis of intact virus capsids that will complement other MS-based techniques such as native mass spectrometry.
Collapse
Affiliation(s)
- H C Shin
- Department of Material Science and Engineering, University of Wisconsin-Madison, 1509 University Avenue, Madison, WI 53706, United States
| | - D Deterra
- Center for Hybrid Nanostructures (CHyN), Institute of Nanostructure and Solid State Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - J Park
- Department of Electrical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - H Kim
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, United States
| | - M Nishikiori
- Morgridge Institute for Research, University of Wisconsin-Madison, 330 N Orchard Street, Madison, WI 53715, United States
| | - Ch Uetrecht
- Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Martinistr. 52, 20251, Hamburg & European XFEL GmbH, Notkestraße 85, 22607 Hamburg, Germany
| | - P G Ahlquist
- Morgridge Institute for Research, University of Wisconsin-Madison, 330 N Orchard Street, Madison, WI 53715, United States; University of Wisconsin-Madison, School of Medicine and Public Health, McArdle Laboratory for Cancer Research, 1111 Highland Avenue, Madison, WI 53705-2275, United States
| | - M Arbulu
- CIC-nanoGUNE, Tolosa Hiribidea 76, 20018 Donostia - San Sebastian, Spain.
| | - R H Blick
- Department of Material Science and Engineering, University of Wisconsin-Madison, 1509 University Avenue, Madison, WI 53706, United States; Center for Hybrid Nanostructures (CHyN), Institute of Nanostructure and Solid State Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, United States; CIC-nanoGUNE, Tolosa Hiribidea 76, 20018 Donostia - San Sebastian, Spain
| |
Collapse
|
12
|
Smolira A, Hałas S. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometric analysis of lysozyme contained in hen egg white. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2016; 22:9-17. [PMID: 26863071 DOI: 10.1255/ejms.1403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
As a natural antibacterial peptide, lysozyme (LZ) is widely used in medicine and the food industry. Despite many years of research on this compound, its new antibacterial properties are still to be determined. The primary aim of this work is to demonstrate the application of the matrix-assisted laser desorption ionization (MALDI) time-of-flight mass spectrometric analysis of LZ directly in hen egg white samples without extraction thereof. The egg white samples were kept over 10 weeks at room temperature and measured every week. The resulting positive and negative ion mass spectra were then compared to determine the intensity of the LZ mass peak. Storage of the egg white for over 10 weeks did not influence the LZ mass peak intensity (both positive and negative). It can be concluded that the LZ concentration in the egg white samples did not vary with time. The effect of the matrix/sample ratio on LZ detection was also examined, and it was found to be different in the case of positive and negative ionization. The mass peaks of LZ oligomeric forms were observed in all mass spectra, so the MALDI method could be used in subsequent studies.
Collapse
Affiliation(s)
- Anna Smolira
- Mass Spectrometry Laboratory, Institute of Physics, Maria Curie Sklodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland..
| | - Stanisław Hałas
- Mass Spectrometry Laboratory, Institute of Physics, Maria Curie Sklodowska University, Pl. M. Curie- Skłodowskiej 1, 20-031 Lublin, Poland..
| |
Collapse
|
13
|
Smolira A, Hałas S, Wessely-Szponder J. Quantification of the PR-39 cathelicidin compound in porcine blood by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1811-1816. [PMID: 26331932 DOI: 10.1002/rcm.7284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE The PR-39 porcine cathelicidin occurs naturally in animal neutrophils. Its main function is antimicrobial activity, which potentially can be used in antibiotic treatments in veterinary medicine. Investigations concerning such a use require the detection and quantification of PR-39 in a given sample. The aim of this work is to determine the concentration of PR-39 contained in porcine blood. METHODS Prior to matrix-assisted laser desorption/ionization (MALDI) analysis, the porcine blood sample was subjected to crude extraction in order to release the active form of PR-39 from the neutrophil granules. Next, gel filtration chromatography was performed to separate PR-39 from other cathelicidins present in porcine blood. Positive ion MALDI time-of-flight (TOF) mass spectra of the resulting portion of lyophilisate with unknown PR-39 content were acquired in linear mode. To quantify PR-39 in the lyophilisate sample, the standard addition method was applied. The PR-39 concentration obtained in the lyophilisate sample was then converted into the peptide concentration in porcine blood. RESULTS The linear fit function of the constructed calibration curve indicates an excellent correlation between the PR-39 peak intensity and the added quantity of synthetic PR-39 (R(2) = 0.994) and a low relative standard deviation of the slope = 1.98%. From the x-intercept of the straight line, we estimated the PR-39 concentration in porcine blood to be 20.5 ± 4.6 ng/mL. CONCLUSIONS The MALDI method was successfully applied for the quantitative analysis of PR-39 found in porcine blood. Compared with other available methods, it is relatively easy, inexpensive and not time-consuming. Despite the method having lower accuracy than the enzyme-linked immunosorbent assay (ELISA), the results obtained here, by a much simpler method, are in good agreement with the literature data.
Collapse
Affiliation(s)
- Anna Smolira
- Mass Spectrometry Laboratory, Institute of Physics, Maria Curie Sklodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031, Lublin, Poland
| | - Stanisław Hałas
- Mass Spectrometry Laboratory, Institute of Physics, Maria Curie Sklodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031, Lublin, Poland
| | - Joanna Wessely-Szponder
- Department of Pathophysiology, Chair of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
| |
Collapse
|