1
|
Mei Q, Mou H, Liu X, Xiang W. Therapeutic Potential of HUMSCs in Female Reproductive Aging. Front Cell Dev Biol 2021; 9:650003. [PMID: 34041238 PMCID: PMC8143192 DOI: 10.3389/fcell.2021.650003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/09/2021] [Indexed: 01/01/2023] Open
Abstract
With the development of regenerative medicine, stem cells are being considered more frequently for the treatment of reproductive aging. Human umbilical cord mesenchymal stem cells have been reported to improve the reserve function of aging ovaries through their homing and paracrine effects. In this process, paracrine factors secreted by stem cells play an important role in ovarian recovery. Although the transplantation of human umbilical cord mesenchymal stem cells to improve ovarian function has been studied with great success in animal models of reproductive aging, their application in clinical research and therapy is still relatively rare. Therefore, this paper reviews the role of human umbilical cord mesenchymal stem cells in the treatment of reproductive aging and their related mechanisms, and it does so in order to provide a theoretical basis for further research and clinical treatment.
Collapse
Affiliation(s)
- Qiaojuan Mei
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbei Mou
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuemei Liu
- Reproductive Medicine Centre, Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Wenpei Xiang
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Wang C, Chu Z, Liu W, Pang Y, Gao X, Tang Q, Ma J, Lu K, Adam FEA, Dang R, Xiao S, Wang X, Yang Z. Newcastle disease virus V protein inhibits apoptosis in DF-1 cells by downregulating TXNL1. Vet Res 2018; 49:102. [PMID: 30290847 PMCID: PMC6389150 DOI: 10.1186/s13567-018-0599-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/08/2018] [Indexed: 02/06/2023] Open
Abstract
Many viral proteins are related to suppressing apoptosis in target cells and are hence beneficial to viral replication. The V protein of Newcastle disease virus (NDV) is one such protein that plays an important role in inhibiting apoptosis in a species-specific manner. However, to date, there have been no reports clarifying the antiapoptotic mechanisms of the V protein. The present study was undertaken to determine the apoptotic potential of the V protein in a chicken embryo fibroblast cell line (DF-1 cell) and to elucidate its molecular mechanisms of action. Here, a yeast two-hybrid system was used to screen the host proteins that interact with the V protein and identified thioredoxin-like protein 1 (TXNL1) as a potential binding partner. Immuno-colocalization of V protein and TXNL1 protein in DF-1 cells further verified the interaction of the two proteins. Through the overexpression of TXNL1 protein and knockdown of TXNL1 protein in DF-1 cells, the effects of NDV replication and cell apoptosis were examined. Cell apoptosis was detected by flow cytometry. The mRNA and protein expression levels of Bax, Bcl-2 and Caspase-3 were detected by quantitative real-time PCR (Q-PCR) and Western blotting. NDV expression was detected by Q-PCR and plaque assay. The results revealed that the TXNL1 protein induced apoptosis and inhibited NDV replication in DF-1 cells. Furthermore, the Western blot and Q-PCR results suggested that TXNL1 induced cell apoptosis through a pathway involving Bcl-2\Bax and Caspase-3. Finally, this work provides insight into the mechanism by which the V protein inhibits apoptosis.
Collapse
Affiliation(s)
- Caiying Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Zhili Chu
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Wenkai Liu
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Yu Pang
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Xiaolong Gao
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Qiuxia Tang
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Jiangang Ma
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Kejia Lu
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Fathalrhman E. A. Adam
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
- Department of Preventive Medicine and Public Health, Faculty of Veterinary Science, University of Nyala, P.O Box: 155, Nyala, Sudan
| | - Ruyi Dang
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
3
|
Chu Z, Wang C, Tang Q, Shi X, Gao X, Ma J, Lu K, Han Q, Jia Y, Wang X, Adam FEA, Liu H, Xiao S, Wang X, Yang Z. Newcastle Disease Virus V Protein Inhibits Cell Apoptosis and Promotes Viral Replication by Targeting CacyBP/SIP. Front Cell Infect Microbiol 2018; 8:304. [PMID: 30234028 PMCID: PMC6130229 DOI: 10.3389/fcimb.2018.00304] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/07/2018] [Indexed: 11/13/2022] Open
Abstract
Newcastle disease virus (NDV) has been classified by the World Organization for Animal Health (OIE) as a notable disease-causing virus, and this virus has the ability to infect a wide range of birds. V protein is a non-structural protein of NDV. V protein has been reported to inhibit cell apoptosis (Park et al., 2003a) and promote viral replication (Huang et al., 2003), however, the mechanisms of action of V protein have not been elucidated. In the present study, a yeast two-hybrid screen was performed, and V protein was found to interact with the CacyBP/SIP protein. The results of co-immunoprecipitation and immuno-colocalization assays confirmed the interaction between V protein and CacyBP/SIP. The results of quantitative-PCR and viral plaque assays showed that overexpression of CacyBP/SIP inhibited viral replication in DF-1 cells. Overexpression of CacyBP/SIP in DF-1 cells induced caspase3-dependent apoptosis. The effect of knocking down CacyBP/SIP by siRNA was the opposite of that observed upon overexpression. Moreover, it is known that NDV induces cell apoptosis via multiple caspase-dependent pathways. Furthermore, V protein inhibited cell apoptosis and downregulated CacyBP/SIP expression in DF-1 cells. Taken together, the findings of the current study indicate that V protein interacts with CacyBP/SIP, thereby regulating cell apoptosis and viral replication.
Collapse
Affiliation(s)
- Zhili Chu
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Caiying Wang
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qiuxia Tang
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaolei Shi
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaolong Gao
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jiangang Ma
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Kejia Lu
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qingsong Han
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yanqing Jia
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiangwei Wang
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Fathalrhman Eisa Addoma Adam
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Department of Preventive Medicine and Public Health, Faculty of Veterinary Science, University of Nyala, Nyala, Sudan
| | - Haijin Liu
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Sa Xiao
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xinglong Wang
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zengqi Yang
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|