1
|
Qu X, An Q, Sayed H, Cui L, Mayo KH, Su J. Glucosyltransferase TeGSS from Thermosynechococcus elongatus produces an α-1,2-glucan. Int J Biol Macromol 2024; 280:136152. [PMID: 39357710 DOI: 10.1016/j.ijbiomac.2024.136152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Here, we enzymatically produced a novel α-1,2-glucan, glucosylsucrose, that has a chemical structure significantly different from that of other glucans. This structural difference suggests its potential to modulate new physiological activities compared to known glucans. The enzyme TeGSS catalyzes the synthesis of this α-1,2-glucan from sucrose and UDP-glucose (UDPG). Using NMR spectroscopy, we elucidated the chemical structures of TeGSS-synthesized glucosylsucrose tri-, tetra-, and penta-saccharides in which the monosaccharide units are linked by α-1,2-glycosidic bonds. We also report the crystal structures of TeGSS co-crystallized with UDP and glucosylsucrose tri- and tetra-saccharides. Site-directed mutagenesis of residues in and around the TeGSS catalytic center has allowed us to propose a concerted SNi mechanism of action. Finally, we developed an enzyme-coupled reaction involving TeGSS and SuSyAc that allows production of UDPG for the synthesis of α-1,2-glucan.
Collapse
Affiliation(s)
- Xiaoyu Qu
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Qinghui An
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Hend Sayed
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Liangnan Cui
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Jiyong Su
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
2
|
Wang Y, Perepelov AV, Senchenkova SN, Lu G, Wang X, Ma G, Yang Q, Yuan J, Wang Y, Xie L, Jiang X, Qin J, Liu D, Liu M, Huang D, Liu B. Glycoengineering directs de novo biomanufacturing of UPEC O21 O-antigen polysaccharide based glycoprotein. Int J Biol Macromol 2023; 253:126993. [PMID: 37739281 DOI: 10.1016/j.ijbiomac.2023.126993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Glycoproteins, in which polysaccharides are usually attached to proteins, are an important class of biomolecules that are widely used as therapeutic agents in clinical treatments for decades. Uropathogenic Escherichia coli (UPEC) O21 has been identified as a serogroup that induces urinary tract infections, with a global increasing number among women and young children. Therefore, there is an urgent need to establish protective vaccines against UPEC infection. Herein, we engineered non-pathogenic E. coli MG1655 to achieve robust, cost-effective de novo biosynthesis of O21 O-antigen polysaccharide-based glycoprotein against UPEC O21. Specifically, this glycoengineered E. coli MG1655 was manipulated for high-efficient glucose-glycerol co-utilization and for the gene cluster installation and O-glycosylation machinery assembly. The key pathways of UDP-sugar precursors were also strengthened to enforce more carbon flux towards the glycosyl donors, which enhanced the glycoprotein titer by 5.6-fold. Further optimization of culture conditions yielded glycoproteins of up to 35.34 mg/L. Glycopeptide MS confirmed the preciset biosynthesis of glycoprotein. This glycoprotein elicited antigen-specific IgG immune responses and significantly reduced kidney and bladder colonization. This bacterial cell-based glyco-platform and optimized strategies can provide a guideline for the biosynthesis of other value-added glycoproteins.
Collapse
Affiliation(s)
- Yuhui Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China; National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China
| | - Andrei V Perepelov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Sof'ya N Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Gege Lu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Xiaohan Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Guozhen Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Qian Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Jian Yuan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Yanling Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Lijie Xie
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Xiaolong Jiang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Jingliang Qin
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Dan Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Miaomiao Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Di Huang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China.
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China.
| |
Collapse
|
3
|
Zhou Y, You S, Zhang J, Wu M, Yan X, Zhang C, Liu Y, Qi W, Su R, He Z. Copper ions binding regulation for the high-efficiency biodegradation of ciprofloxacin and tetracycline-HCl by low-cost permeabilized-cells. BIORESOURCE TECHNOLOGY 2022; 344:126297. [PMID: 34748981 DOI: 10.1016/j.biortech.2021.126297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Cu2+ plays a decisive role for the bio-oxidation in the active center of laccase. In the fermentation-purified process, the loss of Cu2+ reduces the activity and the high cost limits the application of laccase. In this study, a fermentation-permeabilization combined process were developed which based on the regulation of Cu2+ binding time to produce the permeabilized-cells containing laccase, in which Cu2+ can enter the cells freely to greatly improve the laccase activity and reduce the immobilization cost by about 19 times. So, the permeabilized-cells is suitable for biodegradation of antibiotic pollution in the environment, which was applied for the biodegradation of ciprofloxacin (CIP) and tetracycline-HCl (TCH) and the degradation efficiency reached 95.42% and 98.73%, respectively, with low ecotoxicity of the degradation products. Finally, the degradation mechanism was analyzed theoretically by molecular docking. Therefore, this study provided a low-cost, eco-friendly, and widely applicable method for organic pollutants removal.
Collapse
Affiliation(s)
- Yu Zhou
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Shengping You
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Jiaxing Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Min Wu
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Chengyu Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuxuan Liu
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China.
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhimin He
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
4
|
Schwaiger KN, Cserjan-Puschmann M, Striedner G, Nidetzky B. Whole cell-based catalyst for enzymatic production of the osmolyte 2-O-α-glucosylglycerol. Microb Cell Fact 2021; 20:79. [PMID: 33827582 PMCID: PMC8025525 DOI: 10.1186/s12934-021-01569-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Background Glucosylglycerol (2-O-α-d-glucosyl-sn-glycerol; GG) is a natural osmolyte from bacteria and plants. It has promising applications as cosmetic and food-and-feed ingredient. Due to its natural scarcity, GG must be prepared through dedicated synthesis, and an industrial bioprocess for GG production has been implemented. This process uses sucrose phosphorylase (SucP)-catalyzed glycosylation of glycerol from sucrose, applying the isolated enzyme in immobilized form. A whole cell-based enzyme formulation might constitute an advanced catalyst for GG production. Here, recombinant production in Escherichia coli BL21(DE3) was compared systematically for the SucPs from Leuconostoc mesenteroides (LmSucP) and Bifidobacterium adolescentis (BaSucP) with the purpose of whole cell catalyst development. Results Expression from pQE30 and pET21 plasmids in E. coli BL21(DE3) gave recombinant protein at 40–50% share of total intracellular protein, with the monomeric LmSucP mostly soluble (≥ 80%) and the homodimeric BaSucP more prominently insoluble (~ 40%). The cell lysate specific activity of LmSucP was 2.8-fold (pET21; 70 ± 24 U/mg; N = 5) and 1.4-fold (pQE30; 54 ± 9 U/mg, N = 5) higher than that of BaSucP. Synthesis reactions revealed LmSucP was more regio-selective for glycerol glycosylation (~ 88%; position O2 compared to O1) than BaSucP (~ 66%), thus identifying LmSucP as the enzyme of choice for GG production. Fed-batch bioreactor cultivations at controlled low specific growth rate (µ = 0.05 h−1; 28 °C) for LmSucP production (pET21) yielded ~ 40 g cell dry mass (CDM)/L with an activity of 2.0 × 104 U/g CDM, corresponding to 39 U/mg protein. The same production from the pQE30 plasmid gave a lower yield of 6.5 × 103 U/g CDM, equivalent to 13 U/mg. A single freeze–thaw cycle exposed ~ 70% of the intracellular enzyme activity for GG production (~ 65 g/L, ~ 90% yield from sucrose), without releasing it from the cells during the reaction. Conclusions Compared to BaSucP, LmSucP is preferred for regio-selective GG production. Expression from pET21 and pQE30 plasmids enables high-yield bioreactor production of the enzyme as a whole cell catalyst. The freeze–thaw treated cells represent a highly active, solid formulation of the LmSucP for practical synthesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01569-4.
Collapse
Affiliation(s)
- Katharina N Schwaiger
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, 8010, Graz, Austria.,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria
| | - Monika Cserjan-Puschmann
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, 8010, Graz, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Gerald Striedner
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, 8010, Graz, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, 8010, Graz, Austria. .,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria.
| |
Collapse
|
5
|
Franceus J, Desmet T. Sucrose Phosphorylase and Related Enzymes in Glycoside Hydrolase Family 13: Discovery, Application and Engineering. Int J Mol Sci 2020; 21:E2526. [PMID: 32260541 PMCID: PMC7178133 DOI: 10.3390/ijms21072526] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Sucrose phosphorylases are carbohydrate-active enzymes with outstanding potential for the biocatalytic conversion of common table sugar into products with attractive properties. They belong to the glycoside hydrolase family GH13, where they are found in subfamily 18. In bacteria, these enzymes catalyse the phosphorolysis of sucrose to yield α-glucose 1-phosphate and fructose. However, sucrose phosphorylases can also be applied as versatile transglucosylases for the synthesis of valuable glycosides and sugars because their broad promiscuity allows them to transfer the glucosyl group of sucrose to a diverse collection of compounds other than phosphate. Numerous process and enzyme engineering studies have expanded the range of possible applications of sucrose phosphorylases ever further. Moreover, it has recently been discovered that family GH13 also contains a few novel phosphorylases that are specialised in the phosphorolysis of sucrose 6F-phosphate, glucosylglycerol or glucosylglycerate. In this review, we provide an overview of the progress that has been made in our understanding and exploitation of sucrose phosphorylases and related enzymes over the past ten years.
Collapse
Affiliation(s)
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
| |
Collapse
|
6
|
Pan BY, Liu YK, Wu HK, Pang XQ, Wang SG, Tang B, Xu CD. Role of phosphoglucomutase in regulating trehalose metabolism in Nilaparvata lugens. 3 Biotech 2020; 10:61. [PMID: 32030330 PMCID: PMC6977789 DOI: 10.1007/s13205-020-2053-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/03/2020] [Indexed: 11/30/2022] Open
Abstract
Phosphoglucomutase (PGM) is a key enzyme in glycolysis and gluconeogenesis, regulating both glycogen and trehalose metabolism in insects. In this study, we explored the potential function of phosphoglucomutase (PGM) using RNA interference technology in Nilaparvata lugens, the brown planthopper. PGM1 and PGM2 were found highly expressed in the midgut of brown planthoppers, with different expression levels in different instar nymphs. The glycogen, glucose, and trehalose levels were also significantly increased after brown planthoppers were injected with dsRNA targeting PGM1 (dsPGM1) or PGM2 (dsPGM2). In addition, injection of dsPGM1 or dsPGM2 resulted in increased membrane-bound trehalase activity but not soluble trehalase activity. Furthermore, the expression of genes related to trehalose and glycogen metabolism decreased significantly after injection with dsPGM1 and dsPGM2. The expression levels of genes involved in chitin metabolism in the brown planthopper were also significantly decreased and the insects showed wing deformities and difficulty molting following RNAi. We suggest that silencing of PGM1 and PGM2 expression directly inhibits trehalose metabolism, leading to impaired chitin synthesis.
Collapse
Affiliation(s)
- Bi-Ying Pan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 Zhejiang People’s Republic of China
| | - Yong-Kang Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 Zhejiang People’s Republic of China
| | - Hong-Kai Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 Zhejiang People’s Republic of China
| | - Xiao-Qing Pang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 Zhejiang People’s Republic of China
| | - Shi-Gui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 Zhejiang People’s Republic of China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 Zhejiang People’s Republic of China
| | - Cai-Di Xu
- College of Education, Hangzhou
Normal University, Hangzhou, 310036 Zhejiang People’s Republic of China
| |
Collapse
|
7
|
Trobo-Maseda L, Orrego AH, Moreno-Pérez S, Fernández-Lorente G, Guisan JM, Rocha-Martin J. Stabilization of multimeric sucrose synthase from Acidithiobacillus caldus via immobilization and post-immobilization techniques for synthesis of UDP-glucose. Appl Microbiol Biotechnol 2017; 102:773-787. [PMID: 29177938 DOI: 10.1007/s00253-017-8649-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/06/2017] [Accepted: 11/12/2017] [Indexed: 02/06/2023]
Abstract
Sucrose synthases (SuSys) have been attracting great interest in recent years in industrial biocatalysis. They can be used for the cost-effective production of uridine 5'-diphosphate glucose (UDP-glucose) or its in situ recycling if coupled to glycosyltransferases on the production of glycosides in the food, pharmaceutical, nutraceutical, and cosmetic industry. In this study, the homotetrameric SuSy from Acidithiobacillus caldus (SuSyAc) was immobilized-stabilized on agarose beads activated with either (i) glyoxyl groups, (ii) cyanogen bromide groups, or (iii) heterogeneously activated with both glyoxyl and positively charged amino groups. The multipoint covalent immobilization of SuSyAc on glyoxyl agarose at pH 10.0 under optimized conditions provided a significant stabilization factor at reaction conditions (pH 5.0 and 45 °C). However, this strategy did not stabilize the enzyme quaternary structure. Thus, a post-immobilization technique using functionalized polymers, such as polyethyleneimine (PEI) and dextran-aldehyde (dexCHO), was applied to cross-link all enzyme subunits. The coating of the optimal SuSyAc immobilized glyoxyl agarose with a bilayer of 25 kDa PEI and 25 kDa dexCHO completely stabilized the quaternary structure of the enzyme. Accordingly, the combination of immobilization and post-immobilization techniques led to a biocatalyst 340-fold more stable than the non-cross-linked biocatalyst, preserving 60% of its initial activity. This biocatalyst produced 256 mM of UDP-glucose in a single batch, accumulating 1 M after five reaction cycles. Therefore, this immobilized enzyme can be of great interest as a biocatalyst to synthesize UDP-glucose.
Collapse
Affiliation(s)
- Lara Trobo-Maseda
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - Alejandro H Orrego
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - Sonia Moreno-Pérez
- Pharmacy and Biotechnology Department, School of Biomedical Sciences, Universidad Europea, 28670, Madrid, Spain
| | - Gloria Fernández-Lorente
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - José M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
| | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
8
|
Jia Z, Ma H, Huang Y, Huang Y, Ren P, Song S, Hu M, Tao Y. Production of (R)-3-quinuclidinol by a whole-cell biocatalyst with high efficiency. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1400019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zhenhua Jia
- Biology Institute, Hebei Academy of sciences, Shijiazhuang, P. R. China
| | - Hong Ma
- Biology Institute, Hebei Academy of sciences, Shijiazhuang, P. R. China
| | - Yali Huang
- Biology Institute, Hebei Academy of sciences, Shijiazhuang, P. R. China
| | - Yuanyuan Huang
- Biology Institute, Hebei Academy of sciences, Shijiazhuang, P. R. China
| | - Pengju Ren
- Biology Institute, Hebei Academy of sciences, Shijiazhuang, P. R. China
| | - Shuishan Song
- Biology Institute, Hebei Academy of sciences, Shijiazhuang, P. R. China
| | - Meirong Hu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
9
|
Blaß LK, Weyler C, Heinzle E. Network design and analysis for multi-enzyme biocatalysis. BMC Bioinformatics 2017; 18:366. [PMID: 28797226 PMCID: PMC5553788 DOI: 10.1186/s12859-017-1773-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/30/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND As more and more biological reaction data become available, the full exploration of the enzymatic potential for the synthesis of valuable products opens up exciting new opportunities but is becoming increasingly complex. The manual design of multi-step biosynthesis routes involving enzymes from different organisms is very challenging. To harness the full enzymatic potential, we developed a computational tool for the directed design of biosynthetic production pathways for multi-step catalysis with in vitro enzyme cascades, cell hydrolysates and permeabilized cells. RESULTS We present a method which encompasses the reconstruction of a genome-scale pan-organism metabolic network, path-finding and the ranking of the resulting pathway candidates for proposing suitable synthesis pathways. The network is based on reaction and reaction pair data from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the thermodynamics calculator eQuilibrator. The pan-organism network is especially useful for finding the most suitable pathway to a target metabolite from a thermodynamic or economic standpoint. However, our method can be used with any network reconstruction, e.g. for a specific organism. We implemented a path-finding algorithm based on a mixed-integer linear program (MILP) which takes into account both topology and stoichiometry of the underlying network. Unlike other methods we do not specify a single starting metabolite, but our algorithm searches for pathways starting from arbitrary start metabolites to a target product of interest. Using a set of biochemical ranking criteria including pathway length, thermodynamics and other biological characteristics such as number of heterologous enzymes or cofactor requirement, it is possible to obtain well-designed meaningful pathway alternatives. In addition, a thermodynamic profile, the overall reactant balance and potential side reactions as well as an SBML file for visualization are generated for each pathway alternative. CONCLUSION We present an in silico tool for the design of multi-enzyme biosynthetic production pathways starting from a pan-organism network. The method is highly customizable and each module can be adapted to the focus of the project at hand. This method is directly applicable for (i) in vitro enzyme cascades, (ii) cell hydrolysates and (iii) permeabilized cells.
Collapse
Affiliation(s)
- Lisa Katharina Blaß
- Biochemical Engineering Institute, Saarland University, Campus A1.5, Saarbrücken, 66123, Germany
| | - Christian Weyler
- Biochemical Engineering Institute, Saarland University, Campus A1.5, Saarbrücken, 66123, Germany
| | - Elmar Heinzle
- Biochemical Engineering Institute, Saarland University, Campus A1.5, Saarbrücken, 66123, Germany.
| |
Collapse
|
10
|
Gutmann A, Nidetzky B. Unlocking the Potential of Leloir Glycosyltransferases for Applied Biocatalysis: Efficient Synthesis of Uridine 5′-Diphosphate-Glucose by Sucrose Synthase. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600754] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
| |
Collapse
|
11
|
Lemmerer M, Schmölzer K, Gutmann A, Nidetzky B. Downstream Processing of Nucleoside-Diphospho-Sugars from Sucrose Synthase Reaction Mixtures at Decreased Solvent Consumption. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600540] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Martin Lemmerer
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
| | - Katharina Schmölzer
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
| | - Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology; NAWI Graz; Petersgasse 12/I 8010 Graz Austria
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology; NAWI Graz; Petersgasse 12/I 8010 Graz Austria
| |
Collapse
|
12
|
Synthesis of natural variants and synthetic derivatives of the cyclic nonribosomal peptide luminmide in permeabilized E. coli Nissle and product formation kinetics. Appl Microbiol Biotechnol 2016; 101:131-138. [PMID: 27542382 DOI: 10.1007/s00253-016-7770-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/15/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022]
Abstract
We used a recombinant, permeabilized E. coli Nissle strain harbouring the plu3263 gene cluster from Photorhabdus luminescens for the synthesis of luminmide type cyclic pentapeptides belonging to the class of nonribosomally biosynthesized peptides (NRP). Cells could be fully permeabilized using 1 % v/v toluene. Synthesis of luminmides was increased fivefold when 0.3 mM EDTA was added to the substrate mixture acting as an inhibitor of metal proteases. Luminmide formation was studied applying different amino acid concentrations. Apparent kinetic parameters for the synthesis of the main product luminmide A from leucine, phenylalanine and valine were calculated from the collected data. K sapp values ranged from 0.17 mM for leucine to 0.57 mM for phenylalanine, and r maxapp was about 3 × 10-8 mmol min-1(g CDW)-1). By removing phenylalanine from the substrate mixture, the formation of luminmide A was reduced tenfold while luminmide B was increased from 50 to 500 μg/l becoming the main product. Two new luminmides were synthesized in this study. Luminmide H incorporates tryptophan replacing phenylalanine in luminmide A. In luminmide I, leucine was replaced with 4,5-dehydro-leucine, a non-proteinogenic amino acid fed to the incubation mixture. Our study shows new opportunities for increasing the spectrum of luminmide variants produced, for improving production selectivity and for kinetic in vitro studies of the megasynthetases.
Collapse
|
13
|
Toogood HS, Tait S, Jervis A, Ní Cheallaigh A, Humphreys L, Takano E, Gardiner JM, Scrutton NS. Natural Product Biosynthesis in Escherichia coli: Mentha Monoterpenoids. Methods Enzymol 2016; 575:247-70. [PMID: 27417932 DOI: 10.1016/bs.mie.2016.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The era of synthetic biology heralds in a new, more "green" approach to fine chemical and pharmaceutical drug production. It takes the knowledge of natural metabolic pathways and builds new routes to chemicals, enables nonnatural chemical production, and/or allows the rapid production of chemicals in alternative, highly performing organisms. This route is particularly useful in the production of monoterpenoids in microorganisms, which are naturally sourced from plant essential oils. Successful pathways are constructed by taking into consideration factors such as gene selection, regulatory elements, host selection and optimization, and metabolic considerations of the host organism. Seamless pathway construction techniques enable a "plug-and-play" switching of genes and regulatory parts to optimize the metabolic functioning in vivo. Ultimately, synthetic biology approaches to microbial monoterpenoid production may revolutionize "natural" compound formation.
Collapse
Affiliation(s)
- H S Toogood
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - S Tait
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - A Jervis
- Manchester Institute of Biotechnology, SYNBIOCHEM, University of Manchester, Manchester, United Kingdom
| | - A Ní Cheallaigh
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - L Humphreys
- GlaxoSmithKline, Medicines Research Centre, Stevenage, United Kingdom
| | - E Takano
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - J M Gardiner
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - N S Scrutton
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
14
|
Weyler C, Bureik M, Heinzle E. Selective oxidation of UDP-glucose to UDP-glucuronic acid using permeabilized Schizosaccharomyces pombe expressing human UDP-glucose 6-dehydrogenase. Biotechnol Lett 2015; 38:477-81. [PMID: 26582015 DOI: 10.1007/s10529-015-1995-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To use permeabilized cells of the fission yeast, Schizosaccharomyces pombe, that expresses human UDP-glucose 6-dehydrogenase (UGDH, EC 1.1.1.22), for the production of UDP-glucuronic acid from UDP-glucose. RESULTS In cell extracts no activity was detected. Therefore, cells were permeabilized with 0.3 % (v/v) Triton X-100. After washing away all low molecular weight metabolites, the permeabilized cells were directly used as whole cell biocatalyst. Substrates were 5 mM UDP-glucose and 10 mM NAD(+). Divalent cations were not added to the reaction medium as they promoted UDP-glucose hydrolysis. With this reaction system 5 mM UDP-glucose were converted into 5 mM UDP-glucuronic acid within 3 h. CONCLUSIONS Recombinant permeabilized cells of S. pombe can be used to synthesize UDP-glucuronic acid with 100 % yield and selectivity.
Collapse
Affiliation(s)
- Christian Weyler
- Biochemical Engineering Institute, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Building 24, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| | - Elmar Heinzle
- Biochemical Engineering Institute, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany.
| |
Collapse
|
15
|
Kitaoka M. Diversity of phosphorylases in glycoside hydrolase families. Appl Microbiol Biotechnol 2015; 99:8377-90. [PMID: 26293338 DOI: 10.1007/s00253-015-6927-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/05/2015] [Indexed: 01/02/2023]
Abstract
Phosphorylases are useful catalysts for the practical preparation of various sugars. The number of known specificities was 13 in 2002 and is now 30. The drastic increase in available genome sequences has facilitated the discovery of novel activities. Most of these novel phosphorylase activities have been identified through the investigations of glycoside hydrolase families containing known phosphorylases. Here, the diversity of phosphorylases in each family is described in detail.
Collapse
Affiliation(s)
- Motomitsu Kitaoka
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan.
| |
Collapse
|