1
|
Drewe J, Schöning V, Danton O, Schenk A, Boonen G. Machine Learning-Based Analysis Reveals Triterpene Saponins and Their Aglycones in Cimicifuga racemosa as Critical Mediators of AMPK Activation. Pharmaceutics 2024; 16:511. [PMID: 38675172 PMCID: PMC11054181 DOI: 10.3390/pharmaceutics16040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Cimicifuga racemosa (CR) extracts contain diverse constituents such as saponins. These saponins, which act as a defense against herbivores and pathogens also show promise in treating human conditions such as heart failure, pain, hypercholesterolemia, cancer, and inflammation. Some of these effects are mediated by activating AMP-dependent protein kinase (AMPK). Therefore, comprehensive screening for activating constituents in a CR extract is highly desirable. Employing machine learning (ML) techniques such as Deep Neural Networks (DNN), Logistic Regression Classification (LRC), and Random Forest Classification (RFC) with molecular fingerprint MACCS descriptors, 95 CR constituents were classified. Calibration involved 50 randomly chosen positive and negative controls. LRC achieved the highest overall test accuracy (90.2%), but DNN and RFC surpassed it in precision, sensitivity, specificity, and ROC AUC. All CR constituents were predicted as activators, except for three non-triterpene compounds. The validity of these classifications was supported by good calibration, with misclassifications ranging from 3% to 17% across the various models. High sensitivity (84.5-87.2%) and specificity (84.1-91.4%) suggest suitability for screening. The results demonstrate the potential of triterpene saponins and aglycones in activating AMP-dependent protein kinase (AMPK), providing the rationale for further clinical exploration of CR extracts in metabolic pathway-related conditions.
Collapse
Affiliation(s)
- Jürgen Drewe
- Medical Department, Max Zeller Söhne AG, 8590 Romanshorn, Switzerland; (O.D.); (A.S.); (G.B.)
| | - Verena Schöning
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital—University Hospital, 3010 Bern, Switzerland
| | - Ombeline Danton
- Medical Department, Max Zeller Söhne AG, 8590 Romanshorn, Switzerland; (O.D.); (A.S.); (G.B.)
| | - Alexander Schenk
- Medical Department, Max Zeller Söhne AG, 8590 Romanshorn, Switzerland; (O.D.); (A.S.); (G.B.)
| | - Georg Boonen
- Medical Department, Max Zeller Söhne AG, 8590 Romanshorn, Switzerland; (O.D.); (A.S.); (G.B.)
| |
Collapse
|
2
|
Drewe J, Küsters E, Hammann F, Kreuter M, Boss P, Schöning V. Modeling Structure-Activity Relationship of AMPK Activation. Molecules 2021; 26:molecules26216508. [PMID: 34770917 PMCID: PMC8587902 DOI: 10.3390/molecules26216508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
The adenosine monophosphate activated protein kinase (AMPK) is critical in the regulation of important cellular functions such as lipid, glucose, and protein metabolism; mitochondrial biogenesis and autophagy; and cellular growth. In many diseases-such as metabolic syndrome, obesity, diabetes, and also cancer-activation of AMPK is beneficial. Therefore, there is growing interest in AMPK activators that act either by direct action on the enzyme itself or by indirect activation of upstream regulators. Many natural compounds have been described that activate AMPK indirectly. These compounds are usually contained in mixtures with a variety of structurally different other compounds, which in turn can also alter the activity of AMPK via one or more pathways. For these compounds, experiments are complicated, since the required pure substances are often not yet isolated and/or therefore not sufficiently available. Therefore, our goal was to develop a screening tool that could handle the profound heterogeneity in activation pathways of the AMPK. Since machine learning algorithms can model complex (unknown) relationships and patterns, some of these methods (random forest, support vector machines, stochastic gradient boosting, logistic regression, and deep neural network) were applied and validated using a database, comprising of 904 activating and 799 neutral or inhibiting compounds identified by extensive PubMed literature search and PubChem Bioassay database. All models showed unexpectedly high classification accuracy in training, but more importantly in predicting the unseen test data. These models are therefore suitable tools for rapid in silico screening of established substances or multicomponent mixtures and can be used to identify compounds of interest for further testing.
Collapse
Affiliation(s)
- Jürgen Drewe
- Medical Department, Max Zeller Söhne AG, CH-8590 Romanshorn, Switzerland;
- Correspondence:
| | | | - Felix Hammann
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital University Hospital, CH-3012 Bern, Switzerland; (F.H.); (V.S.)
| | - Matthias Kreuter
- Medical Department, Max Zeller Söhne AG, CH-8590 Romanshorn, Switzerland;
| | - Philipp Boss
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, D-13125 Berlin, Germany;
| | - Verena Schöning
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital University Hospital, CH-3012 Bern, Switzerland; (F.H.); (V.S.)
| |
Collapse
|
3
|
Song Q, He Z, Li B, Liu J, Liu L, Liao W, Xiong Y, Song C, Yang S, Liu Y. Melatonin inhibits oxalate-induced endoplasmic reticulum stress and apoptosis in HK-2 cells by activating the AMPK pathway. Cell Cycle 2020; 19:2600-2610. [PMID: 32871086 DOI: 10.1080/15384101.2020.1810401] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Deposition of various crystal and organic substances in the kidney can lead to kidney stone formation. Melatonin is an effective endogenous antioxidant that can prevent crystalluria and kidney damage due to crystal formation and aggregation. In this study, we investigated the mechanism by which melatonin inhibits endoplasmic reticulum (ER) stress and apoptosis. Methods: We treated HK-2 cells with oxalate to establish an in vitro kidney stone model, and treated these cells with different concentrations of melatonin (0, 5, 10, 20 μmol/L) and the AMP-activated protein kinase (AMPK) inhibitor Compound C. We measured levels of stress response markers including reactive oxygen species (ROS), lactate dehydrogenase (LDH), glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), and factors in the stress response pathway, such as ATF6, GRP78, DDIT3, PERK, p-PERK, IRE1, p-IRE1, XBP1s, AMPK, and p-AMPK, using real time-PCR, western blot, and immunofluorescence analyzes. We measured mitochondrial membrane potential and caspases-3 activity using the CCK8, enzyme-linked immunosorbent, and flow cytometry assays to assess HK-2 cell viability and apoptosis. Results: Melatonin improved the total antioxidant capacity (T-AOC) of the HK-2 cells, as evidenced by the dose-dependent reduction in apoptosis, ROS levels, and protein expression of ATF6, GRP78, DDIT3, p-PERK, p-IRE1, XBP1s, caspase-12, cleaved caspase-3 and cleaved caspase-9. Addition of the AMPK inhibitor, Compound C, partially reversed the protective effect of melatonin. Conclusion: Our study revealed that the protective effects of melatonin on oxalate-induced ER stress and apoptosis is partly dependent on AMPK activation in HK-2 cells. These findings provide insight into the prevention and treatment of kidney stones.
Collapse
Affiliation(s)
- Qianlin Song
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Ziqi He
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Bin Li
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Junwei Liu
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Lang Liu
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Wenbiao Liao
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Yunhe Xiong
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Chao Song
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Yunlong Liu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
4
|
Zhang M, Zhang Y, Xiao D, Zhang J, Wang X, Guan F, Zhang M, Chen L. Highly bioavailable berberine formulation ameliorates diabetic nephropathy through the inhibition of glomerular mesangial matrix expansion and the activation of autophagy. Eur J Pharmacol 2020; 873:172955. [PMID: 32001218 DOI: 10.1016/j.ejphar.2020.172955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/20/2022]
Abstract
Glomerular mesangial matrix expansion and cell autophagy are the most important factors in the development of kidney damage under diabetic conditions. The activation of AMPK might be an important treatment target for diabetic nephropathy. Berberine has multiple effects on all types of diabetic complications as an activator of AMPK. However, the poor bioavailability of berberine limits its clinical applications. Huang-Gui Solid Dispersion (HGSD), a new formulation of berberine developed in our lab, has 4-fold greater bioavailability than berberine. However, its therapeutic application and mechanism still need to be explored. In the present study, the effect of HGSD on kidney function in type 2 diabetic rats and db/db mice was investigated. The results demonstrated that HGSD improved kidney function in these two animal models, decreased the glomerular volume and increased autophagy. Meanwhile, AMPK phosphorylation levels and autophagy-related protein expression were significantly increased, and extracellular matrix protein deposition-related protein expression was decreased after treatment. The present study indicated that HGSD protected against diabetic kidney dysfunction by inhibiting glomerular mesangial matrix expansion and activating autophagy. The mechanism of HGSD in the treatment of diabetic nephropathy might be connected to the activation of AMPK phosphorylation.
Collapse
Affiliation(s)
- Meishuang Zhang
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun, 130021, China
| | - Yining Zhang
- Research Institution of Paediatrics, Department of Pediatric Endocrinology, The First Clinical Hospital Affiliated to Jilin University, Changchun, 130021, China
| | - Dong Xiao
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun, 130021, China
| | - Jing Zhang
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun, 130021, China
| | - Xinxin Wang
- Senior Officials Inpatient Ward, The First Clinical Hospital Affiliated to Jilin University, Changchun, 130021, China
| | - Fengying Guan
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun, 130021, China
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun, 130021, China.
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun, 130021, China.
| |
Collapse
|
5
|
Zhou TT, Zhao T, Ma F, Zhang YN, Jiang J, Ruan Y, Yan QY, Wang GH, Ren J, Guan XW, Guo J, Zhao YH, Ye JM, Hu LH, Chen J, Shen X. Small molecule IVQ, as a prodrug of gluconeogenesis inhibitor QVO, efficiently ameliorates glucose homeostasis in type 2 diabetic mice. Acta Pharmacol Sin 2019; 40:1193-1204. [PMID: 30833709 DOI: 10.1038/s41401-018-0208-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/23/2018] [Indexed: 02/07/2023] Open
Abstract
Gluconeogenesis is a major source of hyperglycemia in patients with type 2 diabetes mellitus (T2DM), thus targeting gluconeogenesis to suppress glucose production is a promising strategy for anti-T2DM drug discovery. In our preliminary in vitro studies, we found that a small-molecule (E)-3-(2-(quinoline-4-yl)vinyl)-1H-indol-6-ol (QVO) inhibited the hepatic glucose production (HGP) in primary hepatocytes. We further revealed that QVO suppressed hepatic gluconeogenesis involving calmodulin-dependent protein kinase kinase β- and liver kinase B1-adenosine monophosphate-activated protein kinase (AMPK) pathways as well as AMPK-independent mitochondrial function-related signaling pathway. To evaluate QVO's anti-T2DM activity in vivo, which was impeded by the complicated synthesis route of QVO with a low yield, we designed and synthesized 4-[2-(1H-indol-3-yl)vinyl]quinoline (IVQ) as a prodrug with easier synthesis route and higher yield. IVQ did not inhibit the HGP in primary hepatocytes in vitro. Pharmacokinetic studies demonstrated that IVQ was quickly converted to QVO in mice and rats following administration. In both db/db and ob/ob mice, oral administration of IVQ hydrochloride (IVQ-HCl) (23 and 46 mg/kg every day, for 5 weeks) ameliorated hyperglycemia, and suppressed hepatic gluconeogenesis and activated AMPK signaling pathway in the liver tissues. Furthermore, IVQ caused neither cardiovascular system dysfunction nor genotoxicity. The good druggability of IVQ has highlighted its potential in the treatment of T2DM and the prodrug design for anti-T2DM drug development.
Collapse
|
6
|
Cao S, Yu S, Cheng L, Yan J, Zhu Y, Deng Y, Qiu F, Kang N. 9-O-benzoyl-substituted berberine exerts a triglyceride-lowering effect through AMPK signaling pathway in human hepatoma HepG2 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:11-17. [PMID: 30268048 DOI: 10.1016/j.etap.2018.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Berberine is an isoquinoline alkaloid extracted from Rhizoma coptidis and shows anti-hyperlipidemia effect in vivo and in vitro. We previously found that berberine could decrease the intracellular triglyceride content in human hepatoma HepG2 cells through activation of AMP-activated protein kinase (AMPK), a major regulator of lipid metabolism. Herein, to find a more effective agent, several berberine analogues (A1-A13) were isolated and synthesized, and the triglyceride-lowering effects and potential mechanisms were investigated in HepG2 cells. Among these berberine analogues, 9-O-benzoyl-substituted berberine (A13) showed strong affinity to AMPK and significantly up-regulated the levels of phospho-Thr172 AMPK α subunit. Meanwhile, A13 reduced the cellular triglyceride levels. Furthermore, A13 could mediate the mRNA levels of downstream proteins involved in triglyceride synthesis and fatty acid oxidation of AMPK signaling pathway. These results suggested that A13 exerts a triglyceride-lowering effect via stimulation of AMPK pathway, which may be beneficial to regulate hyperlipidemia.
Collapse
Affiliation(s)
- Shijie Cao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China
| | - Shengyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China
| | - Lina Cheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China
| | - Jiankun Yan
- College of Science and Technology, Agricultural University of Hebei, Huanghua, 061100, PR China
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China
| | - Yanru Deng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China
| | - Feng Qiu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China.
| | - Ning Kang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China.
| |
Collapse
|
7
|
AMP-Activated Protein Kinase (AMPK)-Dependent Regulation of Renal Transport. Int J Mol Sci 2018; 19:ijms19113481. [PMID: 30404151 PMCID: PMC6274953 DOI: 10.3390/ijms19113481] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023] Open
Abstract
AMP-activated kinase (AMPK) is a serine/threonine kinase that is expressed in most cells and activated by a high cellular AMP/ATP ratio (indicating energy deficiency) or by Ca2+. In general, AMPK turns on energy-generating pathways (e.g., glucose uptake, glycolysis, fatty acid oxidation) and stops energy-consuming processes (e.g., lipogenesis, glycogenesis), thereby helping cells survive low energy states. The functional element of the kidney, the nephron, consists of the glomerulus, where the primary urine is filtered, and the proximal tubule, Henle's loop, the distal tubule, and the collecting duct. In the tubular system of the kidney, the composition of primary urine is modified by the reabsorption and secretion of ions and molecules to yield final excreted urine. The underlying membrane transport processes are mainly energy-consuming (active transport) and in some cases passive. Since active transport accounts for a large part of the cell's ATP demands, it is an important target for AMPK. Here, we review the AMPK-dependent regulation of membrane transport along nephron segments and discuss physiological and pathophysiological implications.
Collapse
|
8
|
Chen XL, Wang Y, Peng WW, Zheng YJ, Zhang TN, Wang PJ, Huang JD, Zeng QY. Effects of interleukin-6 and IL-6/AMPK signaling pathway on mitochondrial biogenesis and astrocytes viability under experimental septic condition. Int Immunopharmacol 2018; 59:287-294. [PMID: 29674256 DOI: 10.1016/j.intimp.2018.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Interleukin-6 (IL-6) is a neuromodulation factor with extensive and complex biological activities. IL-6 has been reported to activate AMPK, while AMPK regulates mitochondrial biogenesis and autophagy. The aim of this study was to investigate the role of IL-6 in mitochondrial biogenesis using astrocytes under experimental septic condition and examined how IL-6/AMPK signaling pathway affected this process. METHODS The primary cultures of cerebral cortical astrocytes were randomly allocated into six groups: control group, LPS+IFN-γ group, IL-6 group (LPS+IFN-γ+IL-6), C group (LPS+IFN-γ+IL-6+Compound C), siRNA group (LPS+IFN-γ+IL-6+IL-6R siRNA) and siRNA+C group (LPS+IFN-γ+IL-6+IL-6R siRNA+ Compound C). All groups were stimulated for 6 h. Cytokines and reactive oxygen species (ROS) analyses, detection of adenosine triphosphate (ATP), mtDNA content and cell viability, evaluation of the mitochondrial ultrastructure and volume density, western blots of proteins associated with mitochondrial biogenesis and phospho-adenosine monophosphate activated protein kinase (p-AMPK) were performed respectively. RESULTS Compared with LPS+IFN-γ group, IL-6 group had milder ultrastructural damage of mitochondria, higher mtDNA content and mitochondrial volume density, higher expression of proteins associated with mitochondrial biogenesis (PGC-1α, NRF-1 and TFAM) and p-AMPK, and thus higher cell viability, whereas blocking IL-6/AMPK signaling pathway, the protective effect of IL-6 has been diminished, compared with IL-6 group. CONCLUSION IL-6 enhances mitochondrial biogenesis in astrocytes under experimental septic condition through IL-6/AMPK signaling pathway.
Collapse
Affiliation(s)
- Xiao-Lan Chen
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yang Wang
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Wan-Wan Peng
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yi-Jun Zheng
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Tian-Nan Zhang
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Ping-Jun Wang
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jin-Da Huang
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Qi-Yi Zeng
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Balmith M, Soliman MES. Potential Ebola drug targets — filling the gap: a critical step forward towards the design and discovery of potential drugs. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Costa R, Rodrigues I, Guardão L, Rocha-Rodrigues S, Silva C, Magalhães J, Ferreira-de-Almeida M, Negrão R, Soares R. Xanthohumol and 8-prenylnaringenin ameliorate diabetic-related metabolic dysfunctions in mice. J Nutr Biochem 2017; 45:39-47. [DOI: 10.1016/j.jnutbio.2017.03.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/31/2017] [Accepted: 03/16/2017] [Indexed: 01/12/2023]
|
11
|
Yang G, Lee J, Lee S, Kwak D, Choe W, Kang I, Kim SS, Ha J. Krill Oil Supplementation Improves Dyslipidemia and Lowers Body Weight in Mice Fed a High-Fat Diet Through Activation of AMP-Activated Protein Kinase. J Med Food 2016; 19:1120-1129. [DOI: 10.1089/jmf.2016.3720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Goowon Yang
- Department of Biochemistry and Molecular Biology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jihyun Lee
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | | | | | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Graduate School, Kyung Hee University, Seoul, Korea
- Medical Research Center and Biomedical Science Institute, Kyung Hee University, Seoul, Korea
| |
Collapse
|
12
|
Kim J, Yang G, Ha J. Targeting of AMP-activated protein kinase: prospects for computer-aided drug design. Expert Opin Drug Discov 2016; 12:47-59. [PMID: 27797589 DOI: 10.1080/17460441.2017.1255194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Dysregulation of energy homeostasis has been implicated in a number of human chronic diseases including diabetes, obesity, cancer, and inflammation. Given the functional attributes as a central regulator of energy homeostasis, AMP-activated protein kinase (AMPK) is emerging as a therapeutic target for these diseases, and lines of evidence have highlighted the need for rational and robust screening systems for identifying specific AMPK modulators with a therapeutic potential for preventing and/or curing these diseases. Areas covered: Here, the authors review the recent advances in the understanding of three-dimensional structures of AMPK in relationship with the regulatory mechanisms, potentials of AMPK as a therapeutic target in human chronic diseases, and prospects of computer-based drug design for AMPK. Expert opinion: Accumulating information of AMPK structure has provided us with deep insight into the molecular basis underlying the regulatory mechanisms, and further discloses several structural domains, which can be served for a target site for computer-based drug design. Molecular docking and simulations provides useful information about the binding sites between potent drugs and AMPK as well as a rational screening format to discover isoform-specific AMPK modulators. For these reasons, the authors suggest that computer-aided virtual screening methods hold promise as a rational approach for discovering more specific AMPK modulators.
Collapse
Affiliation(s)
- Joungmok Kim
- a Department of Oral Biochemistry and Molecular Biology, School of Dentistry , Kyung Hee University , Dongdaemun-gu , Republic of Korea
| | - Goowon Yang
- b Department of Biochemistry and Molecular Biology, Graduate School , Kyung Hee University , Seoul , Republic of Korea
| | - Joohun Ha
- b Department of Biochemistry and Molecular Biology, Graduate School , Kyung Hee University , Seoul , Republic of Korea
| |
Collapse
|