1
|
Tian J, Zhou S, Chen Y, Zhao Y, Li S, Yang P, Xu X, Chen Y, Cheng X, Yang J. Synthesis of Chiral Sulfoxides by A Cyclic Oxidation-Reduction Multi-Enzymatic Cascade Biocatalysis. Chemistry 2024; 30:e202304081. [PMID: 38288909 DOI: 10.1002/chem.202304081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 02/16/2024]
Abstract
Optically pure sulfoxides are valuable organosulfur compounds extensively employed in medicinal and organic synthesis. In this study, we present a biocatalytic oxidation-reduction cascade system designed for the preparation of enantiopure sulfoxides. The system involves the cooperation of a low-enantioselective chimeric oxidase SMO (styrene monooxygenase) with a high-enantioselective reductase MsrA (methionine sulfoxide reductase A), facilitating "non-selective oxidation and selective reduction" cycles for prochiral sulfide oxidation. The regeneration of requisite cofactors for MsrA and SMO was achieved via a cascade catalysis process involving three auxiliary enzymes, sustained by cost-effective D-glucose. Under the optimal reaction conditions, a series of heteroaryl alkyl, aryl alkyl and dialkyl sulfoxides in R configuration were synthesized through this "one-pot, one step" cascade reaction. The obtained compounds exhibited high yields of >90 % and demonstrated enantiomeric excess (ee) values exceeding 90 %. This study represents an unconventional and efficient biocatalytic way in utilizing the low-enantioselective oxidase for the synthesis of enantiopure sulfoxides.
Collapse
Affiliation(s)
- Jin Tian
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Shihuan Zhou
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Yanli Chen
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Yuyan Zhao
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Song Li
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Piao Yang
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Xianlin Xu
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Xiaoling Cheng
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Jiawei Yang
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| |
Collapse
|
2
|
Knaus T, Macheroux P, Mutti FG. Fus-SMO: Kinetics, Biochemical Characterisation and In Silico Modelling of a Chimeric Styrene Monooxygenase Demonstrating Quantitative Coupling Efficiency. Chembiochem 2024; 25:e202300833. [PMID: 38306174 DOI: 10.1002/cbic.202300833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024]
Abstract
The styrene monooxygenase, a two-component enzymatic system for styrene epoxidation, was characterised through the study of Fus-SMO - a chimera resulting from the fusion of StyA and StyB using a flexible linker. Notably, it remains debated whether the transfer of FADH2 from StyB to StyA occurs through diffusion, channeling, or a combination of both. Fus-SMO was identified as a trimer with one bound FAD molecule. In silico modelling revealed a well-distanced arrangement (45-50 Å) facilitated by the flexible linker's loopy structure. Pre-steady-state kinetics elucidated the FADox reduction intricacies (kred=110 s-1 for bound FADox), identifying free FADox binding as the rate-determining step. The aerobic oxidation of FADH2 (kox=90 s-1) and subsequent decomposition to FADox and H2O2 demonstrated StyA's protective effect on the bound hydroperoxoflavin (kdec=0.2 s-1) compared to free cofactor (kdec=1.8 s-1). At varied styrene concentrations, kox for FADH2 ranged from 80 to 120 s-1. Studies on NADH consumption vs. styrene epoxidation revealed Fus-SMO's ability to achieve quantitative coupling efficiency in solution, surpassing natural two-component SMOs. The results suggest that Fus-SMO exhibits enhanced FADH2 channelling between subunits. This work contributes to comprehending FADH2 transfer mechanisms in SMO and illustrates how protein fusion can elevate catalytic efficiency for biocatalytic applications.
Collapse
Affiliation(s)
- Tanja Knaus
- Van 't Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Francesco G Mutti
- Van 't Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| |
Collapse
|
3
|
Grimm C, Pompei S, Egger K, Fuchs M, Kroutil W. Anaerobic demethylation of guaiacyl-derived monolignols enabled by a designed artificial cobalamin methyltransferase fusion enzyme. RSC Adv 2023; 13:5770-5777. [PMID: 36816070 PMCID: PMC9930637 DOI: 10.1039/d2ra08005b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Lignin-derived aryl methyl ethers (e.g. coniferyl alcohol, ferulic acid) are expected to be a future carbon source for chemistry. The well-known P450 dependent biocatalytic O-demethylation of these aryl methyl ethers is prone to side product formation especially for the oxidation sensitive catechol products which get easily oxidized in the presence of O2. Alternatively, biocatalytic demethylation using cobalamin dependent enzymes may be used under anaerobic conditions, whereby two proteins, namely a methyltransferase and a carrier protein are required. To make this approach applicable for preparative transformations, fusion proteins were designed connecting the cobalamin-dependent methyltransferase (MT) with the corrinoid-binding protein (CP) from Desulfitobacterium hafniense by variable glycine linkers. From the proteins created, the fusion enzyme MT-L5-CP with the shortest linker performed best of all fusion enzymes investigated showing comparable and, in some aspects, even better performance than the separated proteins. The fusion enzymes provided several advantages like that the cobalamin cofactor loading step required originally for the CP could be skipped enabling a significantly simpler protocol. Consequently, the biocatalytic demethylation was performed using Schlenk conditions allowing the O-demethylation e.g. of the monolignol coniferyl alcohol on a 25 mL scale leading to 75% conversion. The fusion enzyme represents a promising starting point to be evolved for alternative demethylation reactions to diversify natural products and to valorize lignin.
Collapse
Affiliation(s)
- Christopher Grimm
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstraße 28 8010 Graz Austria
| | - Simona Pompei
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstraße 28 8010 Graz Austria
| | - Kristina Egger
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstraße 28 8010 Graz Austria
| | - Michael Fuchs
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstraße 28 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstraße 28 8010 Graz Austria
- BioTechMed Graz 8010 Graz Austria
- Field of Excellence BioHealth, University of Graz 8010 Graz Austria
| |
Collapse
|
4
|
Wu JF, Wan NW, Li YN, Wang QP, Cui BD, Han WY, Chen YZ. Regiodivergent and stereoselective hydroxyazidation of alkenes by biocatalytic cascades. iScience 2021; 24:102883. [PMID: 34401667 PMCID: PMC8353479 DOI: 10.1016/j.isci.2021.102883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 07/14/2021] [Indexed: 12/30/2022] Open
Abstract
Asymmetric functionalization of alkenes allows the direct synthesis of a wide range of chiral compounds. Vicinal hydroxyazidation of alkenes provides a desirable path to 1,2-azidoalcohols; however, existing methods are limited by the control of stereoselectivity and regioselectivity. Herein, we describe a dual-enzyme cascade strategy for regiodivergent and stereoselective hydroxyazidation of alkenes, affording various enantiomerically pure 1,2-azidoalcohols. The biocatalytic cascade process is designed by combining styrene monooxygenase-catalyzed asymmetric epoxidation of alkenes and halohydrin dehalogenase-catalyzed regioselective ring opening of epoxides with azide. Additionally, a one-pot chemo-enzymatic route to chiral β-hydroxytriazoles from alkenes is developed via combining the biocatalytic cascades and Cu-catalyzed azide-alkyne cycloaddition.
Collapse
Affiliation(s)
- Jing-Fei Wu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| | - Ying-Na Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| | - Qing-Ping Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| |
Collapse
|
5
|
An integrative approach to improving the biocatalytic reactions of whole cells expressing recombinant enzymes. World J Microbiol Biotechnol 2021; 37:105. [PMID: 34037845 DOI: 10.1007/s11274-021-03075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Biotransformation is a selective, stereospecific, efficient, and environment friendly method, compared to chemical synthesis, and a feasible tool for industrial and pharmaceutical applications. The design of biocatalysts using enzyme engineering and metabolic engineering tools has been widely reviewed. However, less importance has been given to the biocatalytic reaction of whole cells expressing recombinant enzymes. Along with the remarkable development of biotechnology tools, a variety of techniques have been applied to improve the biocatalytic reaction of whole cell biotransformation. In this review, techniques related to the biocatalytic reaction are examined, reorganized, and summarized via an integrative approach. Moreover, equilibrium-shifted biotransformation is reviewed for the first time.
Collapse
|
6
|
Production of Enantiopure Chiral Epoxides with E. coli Expressing Styrene Monooxygenase. Molecules 2021; 26:molecules26061514. [PMID: 33802034 PMCID: PMC8001364 DOI: 10.3390/molecules26061514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 11/21/2022] Open
Abstract
Styrene monooxygenases are a group of highly selective enzymes able to catalyse the epoxidation of alkenes to corresponding chiral epoxides in excellent enantiopurity. Chiral compounds containing oxirane ring or products of their hydrolysis represent key building blocks and precursors in organic synthesis in the pharmaceutical industry, and many of them are produced on an industrial scale. Two-component recombinant styrene monooxygenase (SMO) from Marinobacterium litorale was expressed as a fused protein (StyAL2StyB) in Escherichia coli BL21(DE3). By high cell density fermentation, 35 gDCW/L of biomass with overexpressed SMO was produced. SMO exhibited excellent stability, broad substrate specificity, and enantioselectivity, as it remained active for months and converted a group of alkenes to corresponding chiral epoxides in high enantiomeric excess (˃95–99% ee). Optically pure (S)-4-chlorostyrene oxide, (S)-allylbenzene oxide, (2R,5R)-1,2:5,6-diepoxyhexane, 2-(3-bromopropyl)oxirane, and (S)-4-(oxiran-2-yl)butan-1-ol were prepared by whole-cell SMO.
Collapse
|
7
|
Paul CE, Eggerichs D, Westphal AH, Tischler D, van Berkel WJH. Flavoprotein monooxygenases: Versatile biocatalysts. Biotechnol Adv 2021; 51:107712. [PMID: 33588053 DOI: 10.1016/j.biotechadv.2021.107712] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022]
Abstract
Flavoprotein monooxygenases (FPMOs) are single- or two-component enzymes that catalyze a diverse set of chemo-, regio- and enantioselective oxyfunctionalization reactions. In this review, we describe how FPMOs have evolved from model enzymes in mechanistic flavoprotein research to biotechnologically relevant catalysts that can be applied for the sustainable production of valuable chemicals. After a historical account of the development of the FPMO field, we explain the FPMO classification system, which is primarily based on protein structural properties and electron donor specificities. We then summarize the most appealing reactions catalyzed by each group with a focus on the different types of oxygenation chemistries. Wherever relevant, we report engineering strategies that have been used to improve the robustness and applicability of FPMOs.
Collapse
Affiliation(s)
- Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Daniel Eggerichs
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
8
|
Li H, Forson B, Eckshtain-Levi M, Valentino H, Martín Del Campo JS, Tanner JJ, Sobrado P. Biochemical Characterization of the Two-Component Flavin-Dependent Monooxygenase Involved in Valanimycin Biosynthesis. Biochemistry 2020; 60:31-40. [PMID: 33350810 DOI: 10.1021/acs.biochem.0c00679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The flavin reductase (FRED) and isobutylamine N-hydroxylase (IBAH) from Streptomyces viridifaciens constitute a two-component, flavin-dependent monooxygenase system that catalyzes the first step in valanimycin biosynthesis. FRED is an oxidoreductase that provides the reduced flavin to IBAH, which then catalyzes the hydroxylation of isobutylamine (IBA) to isobutylhydroxylamine (IBHA). In this work, we used several complementary methods to investigate FAD binding, steady-state and rapid reaction kinetics, and enzyme-enzyme interactions in the FRED:IBAH system. The affinity of FRED for FADox is higher than its affinity for FADred, consistent with its function as a flavin reductase. Conversely, IBAH binds FADred more tightly than FADox, consistent with its role as a monooxygenase. FRED exhibits a strong preference (28-fold) for NADPH over NADH as the electron source for FAD reduction. Isothermal titration calorimetry was used to study the association of FRED and IBAH. In the presence of FAD, either oxidized or reduced, FRED and IBAH associate with a dissociation constant of 7-8 μM. No interaction was observed in the absence of FAD. These results are consistent with the formation of a protein-protein complex for direct transfer of reduced flavin from the reductase to the monooxygenase in this two-component system.
Collapse
Affiliation(s)
- Hao Li
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Benedicta Forson
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Meital Eckshtain-Levi
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Hannah Valentino
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | | | - John J Tanner
- Departments of Biochemistry and Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.,Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
9
|
Optimizing the linker length for fusing an alcohol dehydrogenase with a cyclohexanone monooxygenase. Methods Enzymol 2020; 647:107-143. [PMID: 33482986 DOI: 10.1016/bs.mie.2020.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The use of enzymes in organic synthesis is highly appealing due their remarkably high chemo-, regio- and enantioselectivity. Nevertheless, for biosynthetic routes to be industrially useful, the enzymes must fulfill several requirements. Particularly, in case of cofactor-dependent enzymes self-sufficient systems are highly valuable. This can be achieved by fusing enzymes with complementary cofactor dependency. Such bifunctional enzymes are also relatively easy to handle, may enhance stability, and promote product intermediate channeling. However, usually the characteristics of the linker, fusing the target enzymes, are not thoroughly evaluated. A poor linker design can lead to detrimental effects on expression levels, enzyme stability and/or enzyme performance. In this chapter, the effect of the length of a glycine-rich linker was explored for the case study of ɛ-caprolactone synthesis through an alcohol dehydrogenase-cyclohexanone monooxygenase fusion system. The procedure includes cloning of linker variants, expression analysis, determination of thermostability and effect on activity and conversion levels of 15 variants of different linker sizes. The protocols can also be used for the creation of other protein-protein fusions.
Collapse
|
10
|
Cui C, Lin H, Pu W, Guo C, Liu Y, Pei XQ, Wu ZL. Asymmetric Epoxidation and Sulfoxidation Catalyzed by a New Styrene Monooxygenase from Bradyrhizobium. Appl Biochem Biotechnol 2020; 193:65-78. [PMID: 32808246 DOI: 10.1007/s12010-020-03413-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
Abstract
Asymmetric epoxidation catalyzed with styrene monooxygenase (SMO) is a powerful enzymatic process producing enantiopure styrene epoxide derivatives. To establish a more diversified reservoir of SMOs, a new SMO from Bradyrhizobium sp. ORS 375, named BrSMO, was mined from the database and characterized. BrSMO was constituted of an epoxygenase component of 415 amino acid residues and an NADH-dependent flavin reductase component of 175 residues. BrSMO catalyzed the epoxidation of styrene and 7 more styrene derivatives, yielding the corresponding (S)-epoxides with excellent enantiomeric excesses (95- > 99% ee), with the highest activity achieved for styrene. BrSMO also catalyzed the asymmetric sulfoxidation of 7 sulfides, producing the corresponding (R)-sulfoxides (20-90% ee) with good yields.
Collapse
Affiliation(s)
- Can Cui
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Lin
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China.
| | - Wei Pu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Guo
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yan Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiao-Qiong Pei
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhong-Liu Wu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
11
|
Tischler D, Kumpf A, Eggerichs D, Heine T. Styrene monooxygenases, indole monooxygenases and related flavoproteins applied in bioremediation and biocatalysis. FLAVIN-DEPENDENT ENZYMES: MECHANISMS, STRUCTURES AND APPLICATIONS 2020; 47:399-425. [DOI: 10.1016/bs.enz.2020.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Tian R, Gu W, Gu Y, Geng C, Xu F, Wu Q, Chao J, Xue W, Zhou C, Wang F. Methyl jasmonate promote protostane triterpenes accumulation by up-regulating the expression of squalene epoxidases in Alisma orientale. Sci Rep 2019; 9:18139. [PMID: 31792343 PMCID: PMC6889204 DOI: 10.1038/s41598-019-54629-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
Protostane triterpenes, which are found in Alisma orientale, are tetracyclic triterpenes with distinctive pharmacological activities. The natural distribution of protostane triterpenes is limited mainly to members of the botanical family Alismataceae. Squalene epoxidase (SE) is the key rate-limiting enzyme in triterpene biosynthesis. In this study, we report the characterization of two SEs from A. orientale. AoSE1 and AoSE2 were expressed as fusion proteins in E. coli, and the purified proteins were used in functional research. In vitro enzyme assays showed that AoSE1 and AoSE2 catalyze the formation of oxidosqualene from squalene. Immunoassays revealed that the tubers contain the highest levels of AoSE1 and AoSE2. After MeJA induction, which is the main elicitor of triterpene biosynthesis, the contents of 2,3-oxidosqualene and alisol B 23-acetate increased by 1.96- and 2.53-fold, respectively. In addition, the expression of both AoSE proteins was significantly increased at four days after MeJA treatment. The contents of 2,3-oxidosqualene and alisol B 23-acetate were also positively correlated with AoSEs expression at different times after MeJA treatment. These results suggest that AoSE1 and AoSE2 are the key regulatory points in protostane triterpenes biosynthesis, and that MeJA regulates the biosynthesis of these compounds by increasing the expression of AoSE1 and AoSE2.
Collapse
Affiliation(s)
- Rong Tian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yuchen Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chao Geng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fei Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qinan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianguo Chao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenda Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chen Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
13
|
Heine T, Scholtissek A, Hofmann S, Koch R, Tischler D. Accessing Enantiopure Epoxides and Sulfoxides: Related Flavin‐Dependent Monooxygenases Provide Reversed Enantioselectivity. ChemCatChem 2019. [DOI: 10.1002/cctc.201901353] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thomas Heine
- Institute of BiosciencesTU Bergakademie Freiberg Freiberg 09599 Germany
| | - Anika Scholtissek
- Institute of BiosciencesTU Bergakademie Freiberg Freiberg 09599 Germany
| | - Sarah Hofmann
- Institute of BiosciencesTU Bergakademie Freiberg Freiberg 09599 Germany
| | - Rainhard Koch
- Engineering & TechnologyBayer AG Leverkusen 51368 Germany
| | - Dirk Tischler
- Institute of BiosciencesTU Bergakademie Freiberg Freiberg 09599 Germany
- Microbial BiotechnologyRuhr University Bochum Bochum 44780 Germany
| |
Collapse
|
14
|
Pongpamorn P, Watthaisong P, Pimviriyakul P, Jaruwat A, Lawan N, Chitnumsub P, Chaiyen P. Identification of a Hotspot Residue for Improving the Thermostability of a Flavin‐Dependent Monooxygenase. Chembiochem 2019; 20:3020-3031. [DOI: 10.1002/cbic.201900413] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Pornkanok Pongpamorn
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong 21210 Thailand
| | - Pratchaya Watthaisong
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong 21210 Thailand
| | - Panu Pimviriyakul
- Department of BiotechnologyFaculty of Engineering and Industrial TechnologySilpakorn University 6 Rajamankha Nai Road Nakornpathom 73000 Thailand
| | - Aritsara Jaruwat
- National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park Paholyothin Road Klong 1 Klong Luang Pathumthani 12120 Thailand
| | - Narin Lawan
- Department of ChemistryFaculty of ScienceChiang Mai University Chiang Mai 50200 Thailand
| | - Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park Paholyothin Road Klong 1 Klong Luang Pathumthani 12120 Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong 21210 Thailand
| |
Collapse
|
15
|
Abstract
Styrene monooxygenases are soluble two-component flavoproteins that catalyze the NADH and FAD-dependent enantioselective epoxidation of styrene to styrene oxide in the aqueous phase. These enzymes present interesting mechanistic features and potential as catalysts in biotechnological applications ranging from green chemical synthesis to bioremediation. This chapter presents approaches for the expression of the reductase (SMOB, StyB) and epoxidase (SMOA, StyA) components of SMO from pET-vectors as native or N-terminally histidine-tagged proteins in commercial strains of E. coli. The two-component structure of SMO and hydrophobic nature of styrene substrate requires some special consideration in evaluating the mechanism of this enzyme. The modular composition of the enzyme allows the flavin-reduction reaction of SMOB and styrene epoxidation reaction of SMOA to be evaluated both independently and as a composite catalytic system. The freedom to independently study the reductase and epoxidase components of SMO significantly simplifies studies of equilibrium-binding and the coupling of the free energy of ligand binding to the electrochemical potential of bound FAD. In this chapter, methods of steady-state and pre-steady-state kinetic assay, experimental approaches to equilibrium-binding reactions of flavin and substrate, and determination of the electrochemical midpoint potential of FAD bound to the reductase and epoxidase components of SMO are presented. This presentation focuses on approaches that have been successfully used in the study of the wild-type styrene monooxygenase system recovered from Pseudomonas putida (S12), but similar approaches may be effective in the characterization of related two-component enzyme systems.
Collapse
Affiliation(s)
- George T Gassner
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, United States.
| |
Collapse
|
16
|
Abstract
One approach to bringing enzymes together for multienzyme biocatalysis is genetic fusion. This enables the production of multifunctional enzymes that can be used for whole-cell biotransformations or for in vitro (cascade) reactions. In some cases and in some aspects, such as expression and conversions, the fused enzymes outperform a combination of the individual enzymes. In contrast, some enzyme fusions are greatly compromised in activity and/or expression. In this Minireview, we give an overview of studies on fusions between two or more enzymes that were used for biocatalytic applications, with a focus on oxidative enzymes. Typically, the enzymes are paired to facilitate cofactor recycling or cosubstrate supply. In addition, different linker designs are briefly discussed. Although enzyme fusion is a promising tool for some biocatalytic applications, future studies could benefit from integrating the findings of previous studies in order to improve reliability and effectiveness.
Collapse
Affiliation(s)
- Friso S. Aalbers
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
17
|
van Schie MMCH, Paul CE, Arends IWCE, Hollmann F. Photoenzymatic epoxidation of styrenes. Chem Commun (Camb) 2019; 55:1790-1792. [DOI: 10.1039/c8cc08149b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photochemical reduction of flavin adenine dinucleotide (FAD) enables the direct, non-enzymatic regeneration of styrene monooxygenase for enantiospecific epoxidation reactions.
Collapse
Affiliation(s)
| | - Caroline E. Paul
- Laboratory of Organic Chemistry, Wageningen University & Research
- 6708WE Wageningen
- The Netherlands
| | | | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology
- 2629 HZ Delft
- The Netherlands
| |
Collapse
|
18
|
Heine T, van Berkel WJH, Gassner G, van Pée KH, Tischler D. Two-Component FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities. BIOLOGY 2018; 7:biology7030042. [PMID: 30072664 PMCID: PMC6165268 DOI: 10.3390/biology7030042] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022]
Abstract
Flavoprotein monooxygenases create valuable compounds that are of high interest for the chemical, pharmaceutical, and agrochemical industries, among others. Monooxygenases that use flavin as cofactor are either single- or two-component systems. Here we summarize the current knowledge about two-component flavin adenine dinucleotide (FAD)-dependent monooxygenases and describe their biotechnological relevance. Two-component FAD-dependent monooxygenases catalyze hydroxylation, epoxidation, and halogenation reactions and are physiologically involved in amino acid metabolism, mineralization of aromatic compounds, and biosynthesis of secondary metabolites. The monooxygenase component of these enzymes is strictly dependent on reduced FAD, which is supplied by the reductase component. More and more representatives of two-component FAD-dependent monooxygenases have been discovered and characterized in recent years, which has resulted in the identification of novel physiological roles, functional properties, and a variety of biocatalytic opportunities.
Collapse
Affiliation(s)
- Thomas Heine
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - George Gassner
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA.
| | - Karl-Heinz van Pée
- Allgemeine Biochemie, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Dirk Tischler
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| |
Collapse
|
19
|
|
20
|
Corrado ML, Knaus T, Mutti FG. A Chimeric Styrene Monooxygenase with Increased Efficiency in Asymmetric Biocatalytic Epoxidation. Chembiochem 2018; 19:679-686. [PMID: 29378090 PMCID: PMC5900736 DOI: 10.1002/cbic.201700653] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 11/23/2022]
Abstract
The styrene monooxygenase (SMO) system from Pseudomonas sp. consists of two enzymes (StyA and StyB). StyB catalyses the reduction of FAD at the expense of NADH. After the transfer of FADH2 from StyB to StyA, reaction with O2 generates FAD-OOH, which is the epoxidising agent. The wastage of redox equivalents due to partial diffusive transfer of FADH2 , the insolubility of recombinant StyB and the impossibility of expressing StyA and StyB in a 1:1 molar ratio reduce the catalytic efficiency of the natural system. Herein we present a chimeric SMO (Fus-SMO) that was obtained by genetic fusion of StyA and StyB through a flexible linker. Thanks to a combination of: 1) balanced and improved expression levels of reductase and epoxidase units, and 2) intrinsically higher specific epoxidation activity of Fus-SMO in some cases, Escherichia coli cells expressing Fus-SMO possess about 50 % higher activity for the epoxidation of styrene derivatives than E. coli cells coexpressing StyA and StyB as discrete enzymes. The epoxidation activity of purified Fus-SMO was up to three times higher than that of the two-component StyA/StyB (1:1, molar ratio) system and up to 110 times higher than that of the natural fused SMO. Determination of coupling efficiency and study of the influence of O2 pressure were also performed. Finally, Fus-SMO and formate dehydrogenase were coexpressed in E. coli and applied as a self-sufficient biocatalytic system for epoxidation on greater than 500 mg scale.
Collapse
Affiliation(s)
- Maria L. Corrado
- Van't Hoff Institute for Molecular SciencesHIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Tanja Knaus
- Van't Hoff Institute for Molecular SciencesHIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Francesco G. Mutti
- Van't Hoff Institute for Molecular SciencesHIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
21
|
Tischler D, Schwabe R, Siegel L, Joffroy K, Kaschabek SR, Scholtissek A, Heine T. VpStyA1/VpStyA2B of Variovorax paradoxus EPS: An Aryl Alkyl Sulfoxidase Rather than a Styrene Epoxidizing Monooxygenase. Molecules 2018; 23:E809. [PMID: 29614810 PMCID: PMC6017014 DOI: 10.3390/molecules23040809] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/27/2018] [Accepted: 04/01/2018] [Indexed: 02/08/2023] Open
Abstract
Herein we describe the first representative of an E2-type two-component styrene monooxygenase of proteobacteria. It comprises a single epoxidase protein (VpStyA1) and a two domain protein (VpStyA2B) harboring an epoxidase (A2) and a FAD-reductase (B) domain. It was annotated as VpStyA1/VpStyA2B of Variovorax paradoxus EPS. VpStyA2B serves mainly as NADH:FAD-oxidoreductase. A Km of 33.6 ± 4.0 µM for FAD and a kcat of 22.3 ± 1.1 s-1 were determined and resulted in a catalytic efficiency (kcatKm-1) of 0.64 s-1 μM-1. To investigate its NADH:FAD-oxidoreductase function the linker between A2- and B-domain (AREAV) was mutated. One mutant (AAAAA) showed 18.7-fold higher affinity for FAD (kcatKm-1 of 5.21 s-1 μM-1) while keeping wildtype NADH-affinity and -oxidation activity. Both components, VpStyA2B and VpStyA1, showed monooxygenase activity on styrene of 0.14 U mg-1 and 0.46 U mg-1, as well as on benzyl methyl sulfide of 1.62 U mg-1 and 3.11 U mg-1, respectively. The high sulfoxidase activity was the reason to test several thioanisole-like substrates in biotransformations. VpStyA1 showed high substrate conversions (up to 95% in 2 h) and produced dominantly (S)-enantiomeric sulfoxides of all tested substrates. The AAAAA-mutant showed a 1.6-fold increased monooxygenase activity. In comparison, the GQWCSQY-mutant did neither show monooxygenase nor efficient FAD-reductase activity. Hence, the linker between the two domains of VpStyA2B has effects on the reductase as well as on the monooxygenase performance. Overall, this monooxygenase represents a promising candidate for biocatalyst development and studying natural fusion proteins.
Collapse
Affiliation(s)
- Dirk Tischler
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Ringo Schwabe
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Lucas Siegel
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Kristin Joffroy
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Stefan R Kaschabek
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Anika Scholtissek
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Thomas Heine
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| |
Collapse
|
22
|
Oelschlägel M, Zimmerling J, Tischler D. A Review: The Styrene Metabolizing Cascade of Side-Chain Oxygenation as Biotechnological Basis to Gain Various Valuable Compounds. Front Microbiol 2018; 9:490. [PMID: 29623070 PMCID: PMC5874493 DOI: 10.3389/fmicb.2018.00490] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/02/2018] [Indexed: 11/16/2022] Open
Abstract
Styrene is one of the most produced and processed chemicals worldwide and is released into the environment during widespread processing. But, it is also produced from plants and microorganisms. The natural occurrence of styrene led to several microbiological strategies to form and also to degrade styrene. One pathway designated as side-chain oxygenation has been reported as a specific route for the styrene degradation among microorganisms. It comprises the following enzymes: styrene monooxygenase (SMO; NADH-consuming and FAD-dependent, two-component system), styrene oxide isomerase (SOI; cofactor independent, membrane-bound protein) and phenylacetaldehyde dehydrogenase (PAD; NAD+-consuming) and allows an intrinsic cofactor regeneration. This specific way harbors a high potential for biotechnological use. Based on the enzymatic steps involved in this degradation route, important reactions can be realized from a large number of substrates which gain access to different interesting precursors for further applications. Furthermore, stereochemical transformations are possible, offering chiral products at high enantiomeric excess. This review provides an actual view on the microbiological styrene degradation followed by a detailed discussion on the enzymes of the side-chain oxygenation. Furthermore, the potential of the single enzyme reactions as well as the respective multi-step syntheses using the complete enzyme cascade are discussed in order to gain styrene oxides, phenylacetaldehydes, or phenylacetic acids (e.g., ibuprofen). Altered routes combining these putative biocatalysts with other enzymes are additionally described. Thus, the substrates spectrum can be enhanced and additional products as phenylethanols or phenylethylamines are reachable. Finally, additional enzymes with similar activities toward styrene and its metabolic intermediates are shown in order to modify the cascade described above or to use these enzyme independently for biotechnological application.
Collapse
Affiliation(s)
- Michel Oelschlägel
- Environmental Microbiology Group, Institute of Biosciences, Technische Universität Bergakademie Freiberg, Freiberg, Germany
| | - Juliane Zimmerling
- Environmental Microbiology Group, Institute of Biosciences, Technische Universität Bergakademie Freiberg, Freiberg, Germany
| | - Dirk Tischler
- Environmental Microbiology Group, Institute of Biosciences, Technische Universität Bergakademie Freiberg, Freiberg, Germany
- Microbial Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
23
|
Pu W, Cui C, Guo C, Wu ZL. Characterization of two styrene monooxygenases from marine microbes. Enzyme Microb Technol 2018; 112:29-34. [PMID: 29499777 DOI: 10.1016/j.enzmictec.2018.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 12/16/2022]
Abstract
Styrene monooxygenases (SMOs) are highly stereoselective enzymes that catalyze the formation of chiral epoxides as versatile building blocks. To expand the enzyme toolbox, two bacterial SMOs were identified from the genome of marine microbes Paraglaciecola agarilytica NO2 and Marinobacterium litorale DSM 23545, and heterologously expressed in Escherichia coli in soluble form. Both of the resulting whole-cell biocatalysts exhibited maximal activity at 30 °C and pH 8.0. They catalyzed the sulfoxidation reactions, and the epoxidation of both conjugated and unconjugated styrene derivatives with up to >99%ee. MlSMO displayed higher activity toward most substrates tested. Compared to an established SMO from Pseudomonas species (PsSMO), MlSMO achieved 3.0-, 3.4- and 2.6-fold conversions for substrates styrene, cinnamyl alcohol and 4-vinyl-2, 3-dihydrobenzofuran, respectively.
Collapse
Affiliation(s)
- Wei Pu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Can Cui
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Guo
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Zhong-Liu Wu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China.
| |
Collapse
|
24
|
de Souza ROMA, Miranda LSM, Bornscheuer UT. A Retrosynthesis Approach for Biocatalysis in Organic Synthesis. Chemistry 2017; 23:12040-12063. [DOI: 10.1002/chem.201702235] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis Group; Federal University of Rio de Janeiro, Chemistry Institute; 21941909 Rio de Janeiro Brazil
| | - Leandro S. M. Miranda
- Biocatalysis and Organic Synthesis Group; Federal University of Rio de Janeiro, Chemistry Institute; 21941909 Rio de Janeiro Brazil
| | - Uwe T. Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
25
|
Zhu Y, Hassan YI, Lepp D, Shao S, Zhou T. Strategies and Methodologies for Developing Microbial Detoxification Systems to Mitigate Mycotoxins. Toxins (Basel) 2017; 9:E130. [PMID: 28387743 PMCID: PMC5408204 DOI: 10.3390/toxins9040130] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 02/01/2023] Open
Abstract
Mycotoxins, the secondary metabolites of mycotoxigenic fungi, have been found in almost all agricultural commodities worldwide, causing enormous economic losses in livestock production and severe human health problems. Compared to traditional physical adsorption and chemical reactions, interest in biological detoxification methods that are environmentally sound, safe and highly efficient has seen a significant increase in recent years. However, researchers in this field have been facing tremendous unexpected challenges and are eager to find solutions. This review summarizes and assesses the research strategies and methodologies in each phase of the development of microbiological solutions for mycotoxin mitigation. These include screening of functional microbial consortia from natural samples, isolation and identification of single colonies with biotransformation activity, investigation of the physiological characteristics of isolated strains, identification and assessment of the toxicities of biotransformation products, purification of functional enzymes and the application of mycotoxin decontamination to feed/food production. A full understanding and appropriate application of this tool box should be helpful towards the development of novel microbiological solutions on mycotoxin detoxification.
Collapse
Affiliation(s)
- Yan Zhu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Yousef I Hassan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Suqin Shao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| |
Collapse
|