1
|
Ma D, Chen H, Liu D, Feng C, Hua Y, Gu T, Guo X, Zhou Y, Wang H, Tong G, Li H, Zhang K. Soil-derived cellulose-degrading bacteria: screening, identification, the optimization of fermentation conditions, and their whole genome sequencing. Front Microbiol 2024; 15:1409697. [PMID: 39050626 PMCID: PMC11266136 DOI: 10.3389/fmicb.2024.1409697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Straw cellulose is an abundant renewable resource in nature. In recent years, the conversion of cellulose from waste straw into biofuel by specific microorganisms' fragmentation has attracted extensive attention. Although many bacteria with the ability to degrade cellulose have been identified, comprehensive bioinformatics analyses of these bacteria remain limited, and research exploring optimal fragmentation conditions is scarce. Our study involved the isolation and screening of bacteria from various locations in Yangzhou using carboxymethyl cellulose (CMC) media. Then, the cellulose-degrading bacteria were identified using 16S rRNA and seven candidate bacterial strains with cellulose degrading ability were identified in Yangzhou city for the first time. The cellulase activity was determined by the 3,5-dinitrosalicylic acid (DNS) method in different fragmentation conditions, and finally two bacteria strains with the strongest cellulose degradation ability were selected for whole genome sequencing analysis. Sequencing results revealed that the genome sizes of Rhodococcus wratislaviensis YZ02 and Pseudomonas Xanthosomatis YZ03 were 8.51 Mb and 6.66 Mb, containing 8,466 and 5,745 genes, respectively. A large number of cellulose degradation-related genes were identified and annotated using KEGG, GO and COG analyses. In addition, genomic CAZyme analysis indicated that both R. wratislaviensis YZ02 and P. Xanthosomatis YZ03 harbor a series of glycoside hydrolase family (GH) genes and other genes related to cellulose degradation. Our finding provides new options for the development of cellulose-degrading bacteria and a theoretical basis for improving the cellulose utilization of straw.
Collapse
Affiliation(s)
- Degao Ma
- Yangzhou Environmental Monitoring Center of Jiangsu Province, Yangzhou, China
| | - Haoyu Chen
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Duxuan Liu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Chenwei Feng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yanhong Hua
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Tianxiao Gu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiao Guo
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yuchen Zhou
- Department of Pharmacy, Medical School of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Houjun Wang
- Yangzhou Environmental Monitoring Center of Jiangsu Province, Yangzhou, China
| | - Guifeng Tong
- Yangzhou Environmental Monitoring Center of Jiangsu Province, Yangzhou, China
| | - Hua Li
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Kun Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Zhang M, Tong X, Wang W, Wang J, Qu W. Agarose biodegradation by deep-sea bacterium Vibrio natriegens WPAGA4 with the agarases through horizontal gene transfer. J Basic Microbiol 2024; 64:e2300521. [PMID: 37988660 DOI: 10.1002/jobm.202300521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/10/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023]
Abstract
This study aimed to reveal the importance of horizontal gene transfer (HGT) for the agarose-degrading ability and the related degradation pathway of a deep-sea bacterium Vibrio natriegens WPAGA4, which was rarely reported in former works. A total of four agarases belonged to the GH50 family, including Aga3418, Aga3419, Aga3420, and Aga3472, were annotated and expressed in Escherichia coli cells. The agarose degradation products of Aga3418, Aga3420, and Aga3472 were neoagarobiose, while those of Aga3419 were neoagarobiose and neoagarotetraose. The RT-qPCR analysis showed that the expression level ratio of Aga3418, Aga3419, Aga3420, and Aga3472 was stable at about 1:1:1.5:2.5 during the degradation, which indicated the optimal expression level ratio of the agarases for agarose degradation by V. natriegens WPAGA4. Based on the genomic information, three of four agarases and other agarose-degrading related genes were in a genome island with a G + C content that was obviously lower than that of the whole genome of V. natriegens WPAGA4, indicating that these agarose-degrading genes were required through HGT. Our results demonstrated that the expression level ratio instead of the expression level itself of agarase genes was crucial for agarose degradation by V. natriegens WPAGA4, and HGT occurred in the deep-sea environment, thereby promoting the deep-sea carbon cycle and providing a reference for studying the evolution and transfer pathways of agar-related genes.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
- Zhejiang Ocean University-University of Pisa Marine Graduate School, Zhoushan, China
| | - Xiufang Tong
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Wenxin Wang
- Zhejiang Ocean University-University of Pisa Marine Graduate School, Zhoushan, China
| | - Jianxin Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Wu Qu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
3
|
Fu Z, Zhong L, Tian Y, Bai X, Liu J. Identification of Cellulose-Degrading Bacteria and Assessment of Their Potential Value for the Production of Bioethanol from Coconut Oil Cake Waste. Microorganisms 2024; 12:240. [PMID: 38399644 PMCID: PMC10891699 DOI: 10.3390/microorganisms12020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Bioconversion of lignocellulosic biomass is a highly promising alternative to rapidly reduce reliance on fossil fuels and greenhouse gas emissions. However, the use of lignocellulosic biomass is limited by the challenges of efficient degradation strategies. Given this need, Bacillus tropicus (B. tropicus) with cellulose degradation ability was isolated and screened from rotten dahlia. The strain efficiently utilized coconut oil cake (COC) to secrete 167.3 U/mL of cellulase activity. Electron microscopy results showed significant changes in the structure and properties of cellulose after treatment with B. tropicus, which increased the surface accessibility and the efficiency of the hydrolysis process. The functional group modification observed by Fourier transform infrared spectroscopy indicated the successful depolymerization of COC. The X-ray diffraction pattern showed that the crystallinity index increased from 44.8% to 48.2% due to the hydrolysis of the amorphous region in COC. The results of colorimetry also reveal an efficient hydrolysis process. A co-culture of B. tropicus and Saccharomyces cerevisiae was used to produce ethanol from COC waste, and the maximum ethanol yield was 4.2 g/L. The results of this work show that B. tropicus can be used to prepare biotechnology value-added products such as biofuels from lignocellulosic biomass, suggesting promising utility in biotechnology applications.
Collapse
Affiliation(s)
- Zihuan Fu
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou 570228, China; (Z.F.); (L.Z.)
| | - Longbin Zhong
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou 570228, China; (Z.F.); (L.Z.)
| | - Yan Tian
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou 570228, China; (Z.F.); (L.Z.)
| | - Xinpeng Bai
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou 570228, China; (Z.F.); (L.Z.)
| | - Jing Liu
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou 570228, China; (Z.F.); (L.Z.)
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
4
|
Ngom SI, Maski S, Rached B, Chouati T, Oliveira Correia L, Juste C, Meylheuc T, Henrissat B, El Fahime E, Amar M, Béra-Maillet C. Exploring the hemicellulolytic properties and safety of Bacillus paralicheniformis as stepping stone in the use of new fibrolytic beneficial microbes. Sci Rep 2023; 13:22785. [PMID: 38129471 PMCID: PMC10740013 DOI: 10.1038/s41598-023-49724-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Bacillus strains from the Moroccan Coordinated Collections of Microorganisms (CCMM) were characterised and tested for fibrolytic function and safety properties that would be beneficial for maintaining intestinal homeostasis, and recommend beneficial microbes in the field of health promotion research. Forty strains were investigated for their fibrolytic activities towards complex purified polysaccharides and natural fibres representative of dietary fibres (DFs) entering the colon for digestion. We demonstrated hemicellulolytic activities for nine strains of Bacillus aerius, re-identified as Bacillus paralicheniformis and Bacillus licheniformis, using xylan, xyloglucan or lichenan as purified polysaccharides, and orange, apple and carrot natural fibres, with strain- and substrate-dependent production of glycoside hydrolases (GHs). Our combined methods, based on enzymatic assays, secretome, and genome analyses, highlighted the hemicellulolytic activities of B. paralicheniformis and the secretion of specific glycoside hydrolases, in particular xylanases, compared to B. licheniformis. Genomic features of these strains revealed a complete set of GH genes dedicated to the degradation of various polysaccharides from DFs, including cellulose, hemicellulose and pectin, which may confer on the strains the ability to digest a variety of DFs. Preliminary experiments on the safety and immunomodulatory properties of B. paralicheniformis fibrolytic strains were evaluated in light of applications as beneficial microbes' candidates for health improvement. B. paralicheniformis CCMM B969 was therefore proposed as a new fibrolytic beneficial microbe candidate.
Collapse
Affiliation(s)
- Serigne Inssa Ngom
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Soufiane Maski
- Laboratoire de Microbiologie et Biologie Moléculaire, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
- Département de Biologie, Faculté des Sciences, Université Mohammed V, Rabat, Morocco
| | - Bahia Rached
- Collections Coordonnées Marocaines de Microorganismes, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
- Plateforme Génomique Fonctionnelle, Unité d'Appui Technique à la Recherche Scientifique, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
- Laboratoire de Chimie-Physique et Biotechnologies des Biomolécules et Matériaux/Equipe Microbiologie Biomolécules et Biotechnologies, Faculté des Sciences et Techniques, Mohammedia, Morocco
| | - Taha Chouati
- Collections Coordonnées Marocaines de Microorganismes, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
- Plateforme Génomique Fonctionnelle, Unité d'Appui Technique à la Recherche Scientifique, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
- Biologie médicale, Pathologie humaine et Expérimentale et Environnement, Faculté de Médecine et de pharmacie de Rabat, Rabat, Morocco
| | - Lydie Oliveira Correia
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, PAPPSO, 78350, Jouy-en-Josas, France
| | - Catherine Juste
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Thierry Meylheuc
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, MIMA2, 78350, Jouy en Josas, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université, 13288, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Elmostafa El Fahime
- Plateforme Génomique Fonctionnelle, Unité d'Appui Technique à la Recherche Scientifique, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
- Biologie médicale, Pathologie humaine et Expérimentale et Environnement, Faculté de Médecine et de pharmacie de Rabat, Rabat, Morocco
| | - Mohamed Amar
- Laboratoire de Microbiologie et Biologie Moléculaire, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
- Collections Coordonnées Marocaines de Microorganismes, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
| | - Christel Béra-Maillet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.
- Laboratoire de Microbiologie et Biologie Moléculaire, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco.
| |
Collapse
|
5
|
Mattam AJ, Chaudhari YB, Velankar HR. Factors regulating cellulolytic gene expression in filamentous fungi: an overview. Microb Cell Fact 2022; 21:44. [PMID: 35317826 PMCID: PMC8939176 DOI: 10.1186/s12934-022-01764-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/27/2022] [Indexed: 12/19/2022] Open
Abstract
The growing demand for biofuels such as bioethanol has led to the need for identifying alternative feedstock instead of conventional substrates like molasses, etc. Lignocellulosic biomass is a relatively inexpensive feedstock that is available in abundance, however, its conversion to bioethanol involves a multistep process with different unit operations such as size reduction, pretreatment, saccharification, fermentation, distillation, etc. The saccharification or enzymatic hydrolysis of cellulose to glucose involves a complex family of enzymes called cellulases that are usually fungal in origin. Cellulose hydrolysis requires the synergistic action of several classes of enzymes, and achieving the optimum secretion of these simultaneously remains a challenge. The expression of fungal cellulases is controlled by an intricate network of transcription factors and sugar transporters. Several genetic engineering efforts have been undertaken to modulate the expression of cellulolytic genes, as well as their regulators. This review, therefore, focuses on the molecular mechanism of action of these transcription factors and their effect on the expression of cellulases and hemicellulases.
Collapse
Affiliation(s)
- Anu Jose Mattam
- Hindustan Petroleum Green R and D Centre (HPGRDC), KIADB Industrial Area, Tarabanahalli, Devanagundi, Hoskote, Bangalore, 560067, India
| | - Yogesh Babasaheb Chaudhari
- Hindustan Petroleum Green R and D Centre (HPGRDC), KIADB Industrial Area, Tarabanahalli, Devanagundi, Hoskote, Bangalore, 560067, India
| | - Harshad Ravindra Velankar
- Hindustan Petroleum Green R and D Centre (HPGRDC), KIADB Industrial Area, Tarabanahalli, Devanagundi, Hoskote, Bangalore, 560067, India.
| |
Collapse
|
6
|
Goswami K, Deka Boruah HP, Saikia R. Purification and characterization of cellulase produced by
Novosphingobium
sp. Cm1 and its waste hydrolysis efficiency and bio‐stoning potential. J Appl Microbiol 2022; 132:3618-3628. [DOI: 10.1111/jam.15475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Kongkana Goswami
- CSIR‐North East Institute of Science and Technology Jorhat‐785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad‐201002 India
| | | | - Ratul Saikia
- CSIR‐North East Institute of Science and Technology Jorhat‐785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad‐201002 India
| |
Collapse
|
7
|
Goswami K, DekaBoruah HP, Saikia R. Production of cellulase by Novosphingobium sp. Cm1 and its potential application in lignocellulosic waste hydrolysis. Prep Biochem Biotechnol 2021; 52:724-735. [PMID: 34730478 DOI: 10.1080/10826068.2021.1989698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Management of lignocellulosic wastes in and around the municipality area requires special consideration. Continuous deposition of these wastes to the nearby areas led to gradual deterioration of the environment. The objective of this study was to produce cellulase from the bacteria isolated from the unexplored rainforest of NE-India for lignocellulosic waste hydrolysis. Based on carboxymethyl cellulose utilization and the congo red test, Novosphingobium sp. Cm1 was found to be the most promising strain out of 114 bacterial isolates and the strain was selected for further study. The optimization of the fermentative conditions for maximum enzyme activity was carried out using one factor-at-a-time strategy and the optimum pH, temperature and incubation time was recorded as pH 5, 37 °C and 96 h respectively. The maximum β-1,4-endoglucanase activity was observed with 1.5% CMC (5.1 ± 0.05 U/mL) and 0.25% yeast extract (7.6 ± 0.72 U/mL). The bacterial waste hydrolysis ability was investigated using three wastes where vegetable waste showed maximum activity of 3.4 ± 0.48 U/mL. Bacterial interaction and waste utilization were verified using Scanning Electron Microscope and Fourier-Transform infrared spectroscopy analysis. The present study confirmed the promising ability of Novosphingobium sp. to waste hydrolysis. Further investigations may lead to new possibilities for low-cost enzyme production that will help to meet the rising cellulase demand.
Collapse
Affiliation(s)
- Kongkana Goswami
- Biological Science & Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Hari Prasanna DekaBoruah
- Biological Science & Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India.,Govt. Model College, Kaziranga, Golaghat, Assam, India
| | - Ratul Saikia
- Biological Science & Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
8
|
Hemicellulosic biomass conversion by Moroccan hot spring Bacillus paralicheniformis CCMM B940 evidenced by glycoside hydrolase activities and whole genome sequencing. 3 Biotech 2021; 11:379. [PMID: 34447652 PMCID: PMC8298745 DOI: 10.1007/s13205-021-02919-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/08/2021] [Indexed: 11/05/2022] Open
Abstract
Thermophilic bacteria, especially from the genus Bacillus, constitute a huge potential source of novel enzymes that could be relevant for biotechnological applications. In this work, we described the cellulose and hemicellulose-related enzymatic activities of the hot spring Bacillus aerius CCMM B940 from the Moroccan Coordinated Collections of Microorganisms (CCMM), and revealed its potential for hemicellulosic biomass utilization. Indeed, B940 was able to degrade complex polysaccharides such as xylan and lichenan and exhibited activity towards carboxymethylcellulose. The strain was also able to grow on agriculture waste such as orange and apple peels as the sole carbon source. Whole-genome sequencing allowed the reclassification of CCMM B940 previously known as B. aerius into Bacillus paralicheniformis since the former species name has been rejected. The draft genome reported here is composed of 38 contigs resulting in a genome of 4,315,004 bp and an average G + C content of 45.87%, and is an important resource for illuminating the molecular mechanisms of carbohydrate metabolism. The annotated genomic sequences evidenced more than 52 genes encoding glycoside hydrolases and pectate lyases belonging to 27 different families of CAZymes that are involved in the degradation of plant cell wall carbohydrates. Genomic predictions in addition to in vitro experiments have revealed broad hydrolytic capabilities of the strain, thus reinforcing its relevance for biotechnology applications.
Collapse
|
9
|
Thermotolerance and Cellulolytic Activity of Fungi Isolated from Soils/Waste Materials in the Industrial Region of Nigeria. Curr Microbiol 2021; 78:2660-2671. [PMID: 34002268 DOI: 10.1007/s00284-021-02528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
The current study aimed on isolating thermotolerant, cellulolytic fungi from different tropical soil/waste materials samples such as wood waste, sawmill, decomposing straw and compost pit sites in Abraka, Southern Nigeria and assessing their applications in diverse cellulolytic processes. Fungal isolates were identified based on cultural, morphological, ITS-5.8S barcoding, reproductive structures and thereafter screened for thermotolerance and cellulolytic activities [carboxy methyl cellulase (CMC-ase) and filter paperase (FP-ase)] by cultivating at 45, 50, 60, 70, 80° and 45 °C, respectively. The highest fungal abundance (44.4%) was observed in the compost pit while the lowest (11.1%) was recorded for sawmill. Nine thermotolerant fungal isolates were identified: Aspergillus flavus (4), Blakeslea sp. (3), and Trichoderma asperellum (2). Among them only five, including three A. flavus, one Blakeslea sp. and one T. asperellum, exhibited cellulolytic activity ranging from 12.11 ± 0.01 to 18.42 ± 5.39 µg/mL and 0.36 ± 0.01-9.21 ± 2.52 µg/mL for CMC-ase and filter paperase FP-ase assay, respectively. The low Michaelis-Menten constants of 1.137 for CMC-ase and 1.195 for FP-ase were obtained, indicated a strong affinity for the substrate. The thermotolerance coupled with cellulolytic activity of these isolates make them attractive for potential application in industries where they can be of economic and environmental benefits as against the use of chemicals.
Collapse
|
10
|
Brito TBN, Ferreira MSL, Fai AEC. Utilization of Agricultural By-products: Bioactive Properties and Technological Applications. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1804930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- T. B. N. Brito
- Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro/RJ, Brazil
| | - M. S. L Ferreira
- Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro/RJ, Brazil
- Department of Food Science, School of Nutrition, UNIRIO, Rio de Janeiro/RJ, Brazil
| | - Ana E. C. Fai
- Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro/RJ, Brazil
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro, UERJ, Rio de Janeiro/RJ, Brazil
| |
Collapse
|
11
|
Roslan MAM, Zulkifli NN, Sobri ZM, Zuan ATK, Cheak SC, Abdul Rahman NA. Seed biopriming with P- and K-solubilizing Enterobacter hormaechei sp. improves the early vegetative growth and the P and K uptake of okra (Abelmoschus esculentus) seedling. PLoS One 2020; 15:e0232860. [PMID: 32645001 PMCID: PMC7347142 DOI: 10.1371/journal.pone.0232860] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/10/2020] [Indexed: 11/18/2022] Open
Abstract
Limited information is available that seed biopriming with plant growth-promoting Enterobacter spp. play a prominent role to enhance vegetative growth of plants. Contrary to Enterobacter cloacae, Enterobacter hormaechei is a less-studied counterpart despite its vast potential in plant growth-promotion mainly through the inorganic phosphorus (P) and potassium (K) solubilization abilities. To this end, 18 locally isolated bacterial pure cultures were screened and three strains showed high P- and K-solubilizing capabilities. Light microscopy, biochemical tests and 16S rRNA gene sequencing revealed that strains 15a1 and 40a were closely related to Enterobacter hormaechei while strain 38 was closely related to Enterobacter cloacae (Accession number: MN294583; MN294585; MN294584). All Enterobacter spp. shared common plant growth-promoting traits, namely nitrogen (N2) fixation, indole-3-acetic acid production and siderophore production. The strains 38 and 40a were able to produce gibberellic acid, while only strain 38 was able to secrete exopolysaccharide on agar. Under in vitro germination assay of okra (Abelmoschus esculentus) seeds, Enterobacter spp. significantly improved overall germination parameters and vigor index (19.6%) of seedlings. The efficacy of root colonization of Enterobacter spp. on the pre-treated seedling root tips was confirmed using Scanning Electron Microscopy (SEM). The pot experiment of bioprimed seeds of okra seedling showed significant improvement of the plant growth (> 28%) which corresponded to the increase of P and K uptakes (> 89%) as compared to the uninoculated control plants. The leaf surface area and the SPAD chlorophyll index of bioprimed plants were increased by up to 29% and 9% respectively. This report revealed that the under-explored species of P- and K-solubilizing Enterobacter hormaechei sp. with multiple plant beneficial traits presents a great potential sustainable approach for enhancement of soil fertility and P and K uptakes of plants.
Collapse
Affiliation(s)
- Muhamad Aidilfitri Mohamad Roslan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nurzulaikha Nadiah Zulkifli
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zulfazli M. Sobri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ali Tan Kee Zuan
- Department of Land Management, Faculty of Agriculture, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sim Choon Cheak
- Research and Development Center, Sime Darby Plantation Research Sdn. Bhd., Carey Island, Selangor, Malaysia
| | - Nor Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- * E-mail: ,
| |
Collapse
|
12
|
Roslan MAM, Zulkifli NN, Sobri ZM, Zuan ATK, Cheak SC, Abdul Rahman NA. Seed biopriming with P- and K-solubilizing Enterobacter hormaechei sp. improves the early vegetative growth and the P and K uptake of okra (Abelmoschus esculentus) seedling. PLoS One 2020; 15:e0232860. [PMID: 32645001 PMCID: PMC7347142 DOI: 10.1371/journal.pone.0232860,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/10/2020] [Indexed: 05/28/2023] Open
Abstract
Limited information is available that seed biopriming with plant growth-promoting Enterobacter spp. play a prominent role to enhance vegetative growth of plants. Contrary to Enterobacter cloacae, Enterobacter hormaechei is a less-studied counterpart despite its vast potential in plant growth-promotion mainly through the inorganic phosphorus (P) and potassium (K) solubilization abilities. To this end, 18 locally isolated bacterial pure cultures were screened and three strains showed high P- and K-solubilizing capabilities. Light microscopy, biochemical tests and 16S rRNA gene sequencing revealed that strains 15a1 and 40a were closely related to Enterobacter hormaechei while strain 38 was closely related to Enterobacter cloacae (Accession number: MN294583; MN294585; MN294584). All Enterobacter spp. shared common plant growth-promoting traits, namely nitrogen (N2) fixation, indole-3-acetic acid production and siderophore production. The strains 38 and 40a were able to produce gibberellic acid, while only strain 38 was able to secrete exopolysaccharide on agar. Under in vitro germination assay of okra (Abelmoschus esculentus) seeds, Enterobacter spp. significantly improved overall germination parameters and vigor index (19.6%) of seedlings. The efficacy of root colonization of Enterobacter spp. on the pre-treated seedling root tips was confirmed using Scanning Electron Microscopy (SEM). The pot experiment of bioprimed seeds of okra seedling showed significant improvement of the plant growth (> 28%) which corresponded to the increase of P and K uptakes (> 89%) as compared to the uninoculated control plants. The leaf surface area and the SPAD chlorophyll index of bioprimed plants were increased by up to 29% and 9% respectively. This report revealed that the under-explored species of P- and K-solubilizing Enterobacter hormaechei sp. with multiple plant beneficial traits presents a great potential sustainable approach for enhancement of soil fertility and P and K uptakes of plants.
Collapse
Affiliation(s)
- Muhamad Aidilfitri Mohamad Roslan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nurzulaikha Nadiah Zulkifli
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zulfazli M. Sobri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ali Tan Kee Zuan
- Department of Land Management, Faculty of Agriculture, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sim Choon Cheak
- Research and Development Center, Sime Darby Plantation Research Sdn. Bhd., Carey Island, Selangor, Malaysia
| | - Nor Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
13
|
Oni OD, Oke MA, Sani A. Mixing of Prosopis africana pods and corn cob exerts contrasting effects on the production and quality of Bacillus thuringiensis crude endoglucanase. Prep Biochem Biotechnol 2020; 50:735-744. [PMID: 32129150 DOI: 10.1080/10826068.2020.1734939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Recently, attention has shifted to the use of mixed lignocellulosic substrates for the production of cellulolytic enzymes. However, researchers have focused mainly on achieving increased enzyme yields while neglecting other properties of the enzymes when using such mixtures. In this first-ever report of the application of Prosopis africana pod (PAP) in cellulase production, we investigated the effect of its combination with corn cob (CC), as an inducing carbon source, on the amounts and quality of crude endoglucanase produced by Bacillus thuringiensis SS12. The organism was grown on PAP, CC or their 1:1% w/w mixture (MS) and the crude endoglucanases produced were tested for activity, hydrolytic efficiency, and thermostability. PAP supported the highest enzyme activity (0.138 U/mL) and its endoglucanase was the most effective in hydrolyzing CMC and filter paper while CC-derived endoglucanase was the best for hydrolysis of alkali-pretreated CC. Enzyme activity of MS-derived endoglucanase (0.110 U/mL) was intermediate to that of PAP and CC (0.091 U/mL) and was the most stable at elevated temperatures (70 and 80 °C). It also liberated the least amount of reducing sugars from all tested substrates. Combination of both the substrates, thus, favored enzyme production and thermostability but was detrimental to hydrolytic efficiency.
Collapse
Affiliation(s)
- Oyewole Daniel Oni
- Faculty of Life Sciences, Department of Microbiology, University of Ilorin, Ilorin, Nigeria
| | - Mushafau Adebayo Oke
- Department of Biological Sciences Technology, Laboratory Research and Biotechnology, School of Applied Sciences and Technology, Northern Alberta Institute of Technology, Edmonton, Canada
| | - Alhassan Sani
- Faculty of Life Sciences, Department of Microbiology, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
14
|
Ma L, Lu Y, Yan H, Wang X, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Screening of cellulolytic bacteria from rotten wood of Qinling (China) for biomass degradation and cloning of cellulases from Bacillus methylotrophicus. BMC Biotechnol 2020; 20:2. [PMID: 31910834 PMCID: PMC6947901 DOI: 10.1186/s12896-019-0593-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cellulosic biomass degradation still needs to be paid more attentions as bioenergy is the most likely to replace fossil energy in the future, and more evaluable cellulolytic bacteria isolation will lay a foundation for this filed. Qinling Mountains have unique biodiversity, acting as promising source of cellulose-degrading bacteria exhibiting noteworthy properties. Therefore, the aim of this work was to find potential cellulolytic bacteria and verify the possibility of the cloning of cellulases from the selected powerful bacteria. RESULTS In present study, 55 potential cellulolytic bacteria were screened and identified from the rotten wood of Qinling Mountains. Based on the investigation of cellulase activities and degradation effect on different cellulose substrates, Bacillus methylotrophicus 1EJ7, Bacillus subtilis 1AJ3 and Bacillus subtilis 3BJ4 were further applied to hydrolyze wheat straw, corn stover and switchgrass, and the results suggested that B. methylotrophicus 1EJ7 was the most preponderant bacterium, and which also indicated that Bacillus was the main cellulolytic bacteria in rotten wood. Furthermore, scanning electron microscopy (SEM) and X-ray diffraction analysis of micromorphology and crystallinity of wheat straw also verified the significant hydrolyzation. With ascertaining the target sequence of cellulase β-glucosidase (243 aa) and endoglucanase (499 aa) were successfully heterogeneously cloned and expressed from B. methylotrophicus 1EJ7, and which performed a good effect on cellulose degradation with enzyme activity of 1670.15 ± 18.94 U/mL and 0.130 ± 0.002 U/mL, respectively. In addition, based on analysis of amino acid sequence, it found that β-glucosidase were belonged to GH16 family, and endoglucanase was composed of GH5 family catalytic domain and a carbohydrate-binding module of CBM3 family. CONCLUSIONS Based on the screening, identification and cellulose degradation effect evaluation of cellulolytic bacteria from rotten wood of Qinling Mountains, it found that Bacillus were the predominant species among the isolated strains, and B. methylotrophicus 1EJ7 performed best on cellulose degradation. Meanwhile, the β-glucosidase and endoglucanase were successfully cloned and expressed from B. methylotrophicus for the first time, which provided new materials of both strain and the recombinant enzymes for the study of cellulose degradation and its application in industry.
Collapse
Affiliation(s)
- Lingling Ma
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yingying Lu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Hong Yan
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Xin Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yanglei Yi
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yuanyuan Shan
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Bianfang Liu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yuan Zhou
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Xin Lü
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| |
Collapse
|
15
|
Liu J, Yang C, Chi Y, Wu D, Dai X, Zhang X, Igarashi Y, Luo F. Algicidal characterization and mechanism of Bacillus licheniformis
Sp34 against Microcystis aeruginosa
in Dianchi Lake. J Basic Microbiol 2019; 59:1112-1124. [DOI: 10.1002/jobm.201900112] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/26/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Jinyu Liu
- Chongqing Key Laboratory, Research Center of Bioenergy and Bioremediation, College of Resources and Environment; Southwest University; Chongqing China
| | - Caiyun Yang
- Chongqing Key Laboratory, Research Center of Bioenergy and Bioremediation, College of Resources and Environment; Southwest University; Chongqing China
| | - Yuxin Chi
- Chongqing Key Laboratory, Research Center of Bioenergy and Bioremediation, College of Resources and Environment; Southwest University; Chongqing China
| | - Donghao Wu
- Chongqing Key Laboratory, Research Center of Bioenergy and Bioremediation, College of Resources and Environment; Southwest University; Chongqing China
| | - Xianzhu Dai
- Chongqing Key Laboratory, Research Center of Bioenergy and Bioremediation, College of Resources and Environment; Southwest University; Chongqing China
| | - Xiaohui Zhang
- Chongqing Key Laboratory, Research Center of Bioenergy and Bioremediation, College of Resources and Environment; Southwest University; Chongqing China
| | - Yasuo Igarashi
- Chongqing Key Laboratory, Research Center of Bioenergy and Bioremediation, College of Resources and Environment; Southwest University; Chongqing China
| | - Feng Luo
- Chongqing Key Laboratory, Research Center of Bioenergy and Bioremediation, College of Resources and Environment; Southwest University; Chongqing China
| |
Collapse
|
16
|
Expression and characterisation of a thermophilic endo-1,4-β-glucanase from Sulfolobus shibatae of potential industrial application. Mol Biol Rep 2018; 45:2201-2211. [DOI: 10.1007/s11033-018-4381-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/12/2018] [Indexed: 12/17/2022]
|
17
|
Boyce A, Walsh G. Purification and Characterisation of a Thermostable β-Xylosidase from Aspergillus niger van Tieghem of Potential Application in Lignocellulosic Bioethanol Production. Appl Biochem Biotechnol 2018; 186:712-730. [DOI: 10.1007/s12010-018-2761-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/11/2018] [Indexed: 12/30/2022]
|
18
|
Chen L, Gu W, Xu HY, Yang GL, Shan XF, Chen G, Wang CF, Qian AD. Complete genome sequence of Bacillus velezensis 157 isolated from Eucommia ulmoides with pathogenic bacteria inhibiting and lignocellulolytic enzymes production by SSF. 3 Biotech 2018; 8:114. [PMID: 29430375 PMCID: PMC5801104 DOI: 10.1007/s13205-018-1125-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022] Open
Abstract
Bacillus velezensis 157 was isolated from the bark of Eucommia ulmoides, and exhibited antagonistic activity against a broad spectrum of pathogenic bacteria and fungi. Moreover, B. velezensis 157 also showed various lignocellulolytic activities including cellulase, xylanase, α-amylase, and pectinase, which had the ability of using the agro-industrial waste (soybean meal, wheat bran, sugarcane bagasse, wheat straw, rice husk, maize flour and maize straw) under solid-state fermentation and obtained several industrially valuable enzymes. Soybean meal appeared to be the most efficient substrate for the single fermentation of B. velezensis 157. Highest yield of pectinase (19.15 ± 2.66 U g-1), cellulase (46.69 ± 1.19 U g-1) and amylase (2097.18 ± 15.28 U g-1) was achieved on untreated soybean meal. Highest yield of xylanase (22.35 ± 2.24 U g-1) was obtained on untreated wheat bran. Here, we report the complete genome sequence of the B. velezensis 157, composed of a circular 4,013,317 bp chromosome with 3789 coding genes and a G + C content of 46.41%, one circular 8439 bp plasmid and a G + C content of 40.32%. The genome contained a total of 8 candidate gene clusters (bacillaene, difficidin, macrolactin, butirosin, bacillibactin, bacilysin, fengycin and surfactin), and dedicates over 15.8% of the whole genome to synthesize secondary metabolite biosynthesis. In addition, the genes encoding enzymes involved in degradation of cellulose, xylan, lignin, starch, mannan, galactoside and arabinan were found in the B. velezensis 157 genome. Thus, the study of B. velezensis 157 broadened that B. velezensis can not only be used as biocontrol agents, but also has potentially a wide range of applications in lignocellulosic biomass conversion.
Collapse
Affiliation(s)
- Long Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 People’s Republic of China
| | - Wei Gu
- Shandong BaoLai-LeeLai Bioengineering Co. Ltd., Tai’an, 271000 Shandong People’s Republic of China
| | - Hai-yan Xu
- Shandong BaoLai-LeeLai Bioengineering Co. Ltd., Tai’an, 271000 Shandong People’s Republic of China
| | - Gui-Lian Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118 People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118 People’s Republic of China
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 People’s Republic of China
| | - Guang Chen
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118 People’s Republic of China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118 People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118 People’s Republic of China
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118 People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118 People’s Republic of China
| |
Collapse
|