1
|
Bleisch R, Freitag L, Ihadjadene Y, Sprenger U, Steingröwer J, Walther T, Krujatz F. Strain Development in Microalgal Biotechnology-Random Mutagenesis Techniques. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070961. [PMID: 35888051 PMCID: PMC9315690 DOI: 10.3390/life12070961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Microalgal biomass and metabolites can be used as a renewable source of nutrition, pharmaceuticals and energy to maintain or improve the quality of human life. Microalgae’s high volumetric productivity and low impact on the environment make them a promising raw material in terms of both ecology and economics. To optimize biotechnological processes with microalgae, improving the productivity and robustness of the cell factories is a major step towards economically viable bioprocesses. This review provides an overview of random mutagenesis techniques that are applied to microalgal cell factories, with a particular focus on physical and chemical mutagens, mutagenesis conditions and mutant characteristics.
Collapse
Affiliation(s)
- Richard Bleisch
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (L.F.); (Y.I.); (U.S.); (J.S.); (T.W.)
| | - Leander Freitag
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (L.F.); (Y.I.); (U.S.); (J.S.); (T.W.)
| | - Yob Ihadjadene
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (L.F.); (Y.I.); (U.S.); (J.S.); (T.W.)
| | - Una Sprenger
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (L.F.); (Y.I.); (U.S.); (J.S.); (T.W.)
| | - Juliane Steingröwer
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (L.F.); (Y.I.); (U.S.); (J.S.); (T.W.)
| | - Thomas Walther
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (L.F.); (Y.I.); (U.S.); (J.S.); (T.W.)
| | - Felix Krujatz
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (L.F.); (Y.I.); (U.S.); (J.S.); (T.W.)
- Biotopa gGmbH—Center for Applied Aquaculture & Bioeconomy, 01454 Radeberg, Germany
- Faculty of Natural and Environmental Sciences, University of Applied Sciences Zittau/Görlitz, 02763 Zittau, Germany
- Correspondence:
| |
Collapse
|
2
|
The Carbon Source Effect on the Production of Ralstonia eutropha H16 and Proteomic Response Underlying Targeting the Bioconversion with Solar Fuels. Appl Biochem Biotechnol 2022; 194:3212-3227. [PMID: 35349090 DOI: 10.1007/s12010-022-03887-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/14/2022] [Indexed: 12/21/2022]
Abstract
Chemoautotrophic bacterium Ralstonia eutropha H16 can fix CO2 to bioplastic and is potentially useful for CO2 neutralization. Targeting the solar fuel-based plastic biomanufactory, the polyhydroxybutyrate (PHB) production between heterotrophy and chemoautotrophy conditions was evaluated and the proteomic responses of the R. eutropha H16 cells to different carbon and energy sources were investigated. The results show that the chemoautotrophic mode hardly affected the cellular PHB accumulation capacity. Benefited from the high coverage proteome data, the global response of R. eutropha H16 to different carbon and energy sources was presented with a 95% KEGG pathway annotation, and the genome-wide location-related protein expression pattern was also identified. PHB depolymerase Q0K9H3 was found as a key protein responding to the low carbon input while CO2 and H2 were used, and will be a new regulation target for further high PHB production based on solar fuels.
Collapse
|
3
|
Carrasco-Reinado R, Bermudez-Sauco M, Escobar-Niño A, Cantoral JM, Fernández-Acero FJ. Development of the "Applied Proteomics" Concept for Biotechnology Applications in Microalgae: Example of the Proteome Data in Nannochloropsis gaditana. Mar Drugs 2021; 20:38. [PMID: 35049892 PMCID: PMC8780095 DOI: 10.3390/md20010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/19/2021] [Accepted: 12/26/2021] [Indexed: 11/23/2022] Open
Abstract
Most of the marine ecosystems on our planet are still unknown. Among these ecosystems, microalgae act as a baseline due to their role as primary producers. The estimated millions of species of these microorganisms represent an almost infinite source of potentially active biocomponents offering unlimited biotechnology applications. This review considers current research in microalgae using the "omics" approach, which today is probably the most important biotechnology tool. These techniques enable us to obtain a large volume of data from a single experiment. The specific focus of this review is proteomics as a technique capable of generating a large volume of interesting information in a single proteomics assay, and particularly the concept of applied proteomics. As an example, this concept has been applied to the study of Nannochloropsis gaditana, in which proteomics data generated are transformed into information of high commercial value by identifying proteins with direct applications in the biomedical and agri-food fields, such as the protein designated UCA01 which presents antitumor activity, obtained from N. gaditana.
Collapse
Affiliation(s)
- Rafael Carrasco-Reinado
- Microbiology Laboratory, Institute of Viticulture and Agri-Food Research (IVAGRO), Marine and Environmental Sciences Faculty, University of Cadiz (UCA), 11500 Puerto Real, Spain; (R.C.-R.); (M.B.-S.); (A.E.-N.); (J.M.C.)
| | - María Bermudez-Sauco
- Microbiology Laboratory, Institute of Viticulture and Agri-Food Research (IVAGRO), Marine and Environmental Sciences Faculty, University of Cadiz (UCA), 11500 Puerto Real, Spain; (R.C.-R.); (M.B.-S.); (A.E.-N.); (J.M.C.)
| | - Almudena Escobar-Niño
- Microbiology Laboratory, Institute of Viticulture and Agri-Food Research (IVAGRO), Marine and Environmental Sciences Faculty, University of Cadiz (UCA), 11500 Puerto Real, Spain; (R.C.-R.); (M.B.-S.); (A.E.-N.); (J.M.C.)
| | - Jesús M. Cantoral
- Microbiology Laboratory, Institute of Viticulture and Agri-Food Research (IVAGRO), Marine and Environmental Sciences Faculty, University of Cadiz (UCA), 11500 Puerto Real, Spain; (R.C.-R.); (M.B.-S.); (A.E.-N.); (J.M.C.)
| | - Francisco Javier Fernández-Acero
- Microbiology Laboratory, Institute of Viticulture and Agri-Food Research (IVAGRO), Marine and Environmental Sciences Faculty, University of Cadiz (UCA), 11500 Puerto Real, Spain; (R.C.-R.); (M.B.-S.); (A.E.-N.); (J.M.C.)
| |
Collapse
|
4
|
Evaluation of Filter, Paramagnetic, and STAGETips Aided Workflows for Proteome Profiling of Symbiodiniaceae Dinoflagellate. Processes (Basel) 2021. [DOI: 10.3390/pr9060983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The integrity of coral reef ecosystems worldwide rests on a fine-tuned symbiotic interaction between an invertebrate and a dinoflagellate microalga from the family Symbiodiniaceae. Recent advances in bottom-up shotgun proteomic approaches and the availability of vast amounts of genetic information about Symbiodiniaceae have provided a unique opportunity to better understand the molecular mechanisms underpinning the interactions of coral-Symbiodiniaceae. However, the resilience of this dinoflagellate cell wall, as well as the presence of polyanionic and phenolics cell wall components, requires the optimization of sample preparation techniques for successful implementation of bottom-up proteomics. Therefore, in this study we compare three different workflows—filter-aided sample preparation (FASP), single-pot solid-phase-enhanced sample preparation (SP3), and stop-and-go-extraction tips (STAGETips, ST)—to develop a high-throughput proteotyping protocol for Symbiodiniaceae algal research. We used the model isolate Symbiodinium tridacnidorum. We show that SP3 outperformed ST and FASP with regard to robustness, digestion efficiency, and contaminant removal, which led to the highest number of total (3799) and unique proteins detected from 23,593 peptides. Most of these proteins were detected with ≥2 unique peptides (73%), zero missed tryptic peptide cleavages (91%), and hydrophilic peptides (>70%). To demonstrate the functionality of this optimized SP3 sample preparation workflow, we examined the proteome of S. tridacnidorum to better understand the molecular mechanism of peridinin-chlorophyll-protein complex (PCP, light harvesting protein) accumulation under low light (LL, 30 μmol photon m−2 s−1). Cells exposed to LL for 7 days upregulated various light harvesting complex (LHCs) proteins through the mevalonate-independent pathway; proteins of this pathway were at 2- to 6-fold higher levels than the control of 120 μmol photon m−2 s−1. Potentially, LHCs which were maintained in an active phosphorylated state by serine/threonine-protein kinase were also upregulated to 10-fold over control. Collectively, our results show that the SP3 method is an efficient high-throughput proteotyping tool for Symbiodiniaceae algal research.
Collapse
|
5
|
Mikulášek K, Konečná H, Potěšil D, Holánková R, Havliš J, Zdráhal Z. SP3 Protocol for Proteomic Plant Sample Preparation Prior LC-MS/MS. FRONTIERS IN PLANT SCIENCE 2021; 12:635550. [PMID: 33777071 PMCID: PMC7988192 DOI: 10.3389/fpls.2021.635550] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/17/2021] [Indexed: 05/25/2023]
Abstract
Quantitative protein extraction from biological samples, as well as contaminants removal before LC-MS/MS, is fundamental for the successful bottom-up proteomic analysis. Four sample preparation methods, including the filter-aided sample preparation (FASP), two single-pot solid-phase-enhanced sample preparations (SP3) on carboxylated or HILIC paramagnetic beads, and protein suspension trapping method (S-Trap) were evaluated for SDS removal and protein digestion from Arabidopsis thaliana (AT) lysate. Finally, the optimized carboxylated SP3 workflow was benchmarked closely against the routine FASP. Ultimately, LC-MS/MS analyses revealed that regarding the number of identifications, number of missed cleavages, proteome coverage, repeatability, reduction of handling time, and cost per assay, the SP3 on carboxylated magnetic particles proved to be the best alternative for SDS and other contaminants removal from plant sample lysate. A robust and efficient 2-h SP3 protocol for a wide range of protein input is presented, benefiting from no need to adjust the amount of beads, binding and rinsing conditions, or digestion parameters.
Collapse
Affiliation(s)
- Kamil Mikulášek
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Hana Konečná
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Renata Holánková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Jan Havliš
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
6
|
Grossmann L, Hinrichs J, Weiss J. Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Crit Rev Food Sci Nutr 2019; 60:2961-2989. [DOI: 10.1080/10408398.2019.1672137] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Lutz Grossmann
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Jörg Hinrichs
- Department of Soft Matter Science and Dairy Technology, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Jochen Weiss
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
7
|
Fajardo C, Amil-Ruiz F, Fuentes-Almagro C, De Donato M, Martinez-Rodriguez G, Escobar-Niño A, Carrasco R, Mancera JM, Fernandez-Acero FJ. An “omic” approach to Pyrocystis lunula: New insights related with this bioluminescent dinoflagellate. J Proteomics 2019; 209:103502. [DOI: 10.1016/j.jprot.2019.103502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 01/10/2023]
|
8
|
Feng Y, Zhang Y, Ding W, Wu P, Cao X, Xue S. Expanding of Phospholipid:Diacylglycerol AcylTransferase (PDAT) from Saccharomyces cerevisiae as Multifunctional Biocatalyst with Broad Acyl Donor/Acceptor Selectivity. Appl Biochem Biotechnol 2019; 188:824-835. [PMID: 30706417 DOI: 10.1007/s12010-019-02954-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/11/2019] [Indexed: 12/27/2022]
Abstract
Triacylglycerols are considered one of the most promising feedstocks for biofuels. Phospholipid:diacylglycerol acyltransferase (PDAT), responsible for the last step of triacylglycerol synthesis in the acyl-CoA-independent pathway, has attracted much attention by catalyzing membrane lipid transformation. However, due to lack of biochemical and enzymatic studies, PDAT has not carried forward in biocatalyst application. Here, the PDAT from Saccharomyces cerevisiae was expressed in Pichia pastoris. The purified enzymes were studied using different acyl donors and acceptors by thin layer chromatography and gas chromatography. In addition of the preferred acyl donor of PE and PC, the results identified that ScPDAT was capable of using broad acyl donors such as PA, PS, PG, MGDG, DGDG, and acyl-CoA, and ScPDAT was more likely to use unsaturated acyl donors comparing 18:0/18:1 to 18:0/18:0 phospholipids. With regard to acyl acceptors, ScPDAT preferred 1,2 to 1,3-diacylglycerol (DAG), while 12:0/12:0 DAG was identified as the optimal acyl acceptor, followed by 18:1/18:1 and 18:1/16:0 DAG. Additionally, ScPDAT reveals esterification activity that can utilize methanol as acyl acceptor to generate fatty acid methyl esters. The results fully expand the enzymatic selectivity of ScPDAT and provide fundamental knowledge for synthesis of triacylglycerol-derived biofuels.
Collapse
Affiliation(s)
- Yanbin Feng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yunxiu Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wei Ding
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Peichun Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xupeng Cao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Song Xue
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
9
|
Zhu Z, Yuan G, Fan X, Fan Y, Yang M, Yin Y, Liu J, Liu Y, Cao X, Tian J, Xue S. The synchronous TAG production with the growth by the expression of chloroplast transit peptide-fused ScPDAT in Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:156. [PMID: 29928307 PMCID: PMC5989348 DOI: 10.1186/s13068-018-1160-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 05/31/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND The synchronous triacylglycerol (TAG) production with the growth is a key step to lower the cost of the microalgae-based biofuel production. Phospholipid: diacylglycerol acyltransferase (PDAT) has been identified recently and catalyzes the phospholipid contributing acyl group to diacylglycerol to synthesize TAG, and is considered as the important source of TAG in Chlamydomonas reinhardtii. RESULTS Using a chimeric Hsp70A-RbcS2 promoter, exogenous PDAT form Saccharomyces cerevisiae fused with a chloroplast transit peptide was expressed in C. reinhardtii CC-137. Proved by western blot, the expression of ScPDAT showed a synchronous trend to the growth in the exponential phase. Compared to the wild type, the strain of Scpdat achieved 22% increase in the content of total fatty acids and 32% increase in TAG content. In addition, the fluctuation of C16 series fatty acid in monogalactosyldiacylglycerol, diacylglyceryltrimethylhomoserine and TAG indicated an enhancement in the TAG accumulation pathway. CONCLUSION The TAG production was enhanced in the regular cultivation without the nutrient stress by strengthening the conversion of polar lipid to TAG in C. reinhardtii and the findings provide a candidate strategy for rational engineered strain to overcome the decline in the growth during the TAG accumulation triggered by nitrogen starvation.
Collapse
Affiliation(s)
- Zhen Zhu
- School of Bioengineering, Dalian Polytechnic University, Dalian, 116034 China
| | - Guangze Yuan
- School of Bioengineering, Dalian Polytechnic University, Dalian, 116034 China
| | - Xuran Fan
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Yan Fan
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Miao Yang
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yalei Yin
- Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Jiao Liu
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Yang Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Xupeng Cao
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Jing Tian
- School of Bioengineering, Dalian Polytechnic University, Dalian, 116034 China
| | - Song Xue
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| |
Collapse
|
10
|
Sielaff M, Kuharev J, Bohn T, Hahlbrock J, Bopp T, Tenzer S, Distler U. Evaluation of FASP, SP3, and iST Protocols for Proteomic Sample Preparation in the Low Microgram Range. J Proteome Res 2017; 16:4060-4072. [DOI: 10.1021/acs.jproteome.7b00433] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Malte Sielaff
- Institute
for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Jörg Kuharev
- Institute
for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Toszka Bohn
- Institute
for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Jennifer Hahlbrock
- Institute
for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Tobias Bopp
- Institute
for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Stefan Tenzer
- Institute
for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Ute Distler
- Institute
for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|