1
|
Olszewska-Widdrat A, Xiros C, Wallenius A, Schneider R, Rios da Costa Pereira LP, Venus J. Bioprocess optimization for lactic and succinic acid production from a pulp and paper industry side stream. Front Bioeng Biotechnol 2023; 11:1176043. [PMID: 37274162 PMCID: PMC10232882 DOI: 10.3389/fbioe.2023.1176043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/25/2023] [Indexed: 06/06/2023] Open
Abstract
The effective and cheap production of platform chemicals is a crucial step towards the transition to a bio-based economy. In this work, biotechnological methods using sustainable, cheap, and readily available raw materials bring bio-economy and industrial microbiology together: Microbial production of two platform chemicals is demonstrated [lactic (LA) and succinic acid (SA)] from a non-expensive side stream of pulp and paper industry (fibre sludge) proposing a sustainable way to valorize it towards economically important monomers for bioplastics formation. This work showed a promising new route for their microbial production which can pave the way for new market expectations within the circular economy principles. Fibre sludge was enzymatically hydrolysed for 72 h to generate a glucose rich hydrolysate (100 g·L-1 glucose content) to serve as fermentation medium for Bacillus coagulans A 541, A162 strains and Actinobacillus succinogenis B1, as well as Basfia succiniciproducens B2. All microorganisms were investigated in batch fermentations, showing the ability to produce either lactic or succinic acid, respectively. The highest yield and productivities for lactic production were 0.99 g·g-1 and 3.75 g·L-1·h-1 whereas the succinic acid production stabilized at 0.77 g·g-1 and 1.16 g·L-1·h-1.
Collapse
Affiliation(s)
- Agata Olszewska-Widdrat
- Microbiome Biotechnology Department, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | | | | | - Roland Schneider
- Microbiome Biotechnology Department, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | | | - Joachim Venus
- Microbiome Biotechnology Department, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| |
Collapse
|
2
|
Immobilization of Actinobacillus succinogenes on nano- and micro-fiber membranes for efficient and robust production of succinic acid. Bioprocess Biosyst Eng 2023; 46:611-620. [PMID: 36735093 DOI: 10.1007/s00449-023-02848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023]
Abstract
This work aimed to study the efficiency of nano- and micro- fiber membranes in immobilizing Actinobacillus succinogenes CCTCC M2012036 for succinic acid production. Among the four kinds of electrospun nanofiber membranes of cellulose acetate, chitosan, poly(vinyl alcohol) (PVA) and chitosan-PVA, the cellulose acetate nanofiber membrane-immobilized cells performed the best with a succinic acid concentration and yield to be 27.3 ± 3.5 g/L and 70.9 ± 5.8%. The cell-immobilized viscose microfiber membrane presented good reuse stability, and 17 batches of fermentation without activity loss were realized with the highest succinic acid yield of 83.20%. A microfiber membrane bioreactor was further constructed with the cell-immobilized viscose microfiber membrane to perform fermentation on a larger scale, and the concentration, yield and productivity of succinic acid were 73.20 g/L, 86.50% and 1.49 g/(L⋅h) using a fed-batch strategy, which were 124.30%, 127.60% and 124.2% of those obtained in the traditional fermenter. This study provided an approach for improving the practicality of biological succinic acid production.
Collapse
|
3
|
Development of a Simple and Robust Kinetic Model for the Production of Succinic Acid from Glucose Depending on Different Operating Conditions. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Succinic acid (SA) is one of the main identified biomass-derived chemical building blocks. In this work we approach the study of its production by Actinobacillus succinogenes DSM 22257 from glucose, focusing on the development and application of a simple kinetic model capable of representing the evolution of the process over time for a great diversity of process variables key to the production of this platform bio-based chemical: initial biomass concentration, yeast extract concentration, agitation speed, and carbon dioxide flow rate. All these variables were studied experimentally, determining the values of key fermentation parameters: titer (23.8–39.7 g·L−1), yield (0.59–0.72 gSA·gglu−1), productivity (0.48–0.96 gSA·L−1·h−1), and selectivity (0.61–0.69 gSA·gglu−1). Even with this wide diversity of operational conditions, a non-structured and non-segregated kinetic model was suitable for fitting to experimental data with high accuracy, considering the values of the goodness-of-fit statistical parameters. This model is based on the logistic equation for biomass growth and on potential kinetic equations to describe the evolution of SA and the sum of by-products as production events that are not associated with biomass growth. The application of the kinetic model to diverse operational conditions sheds light on their effect on SA production. It seems that nitrogen stress is a good condition for SA titer and selectivity, there is an optimal inoculum mass for this purpose, and hydrodynamic stress starts at 300 r.p.m. in the experimental set-up employed. Due to its practical importance, and to validate the developed kinetic model, a fed-batch fermentation was also carried out, verifying the goodness of the model proposed via the process simulation (stage or cycle 1) and application to further cycles of the fed-batch operation. The results showed that biomass inactivation started at cycle 3 after a grace period in cycle 2.
Collapse
|
4
|
Gausmann M, Kiefel R, Jupke A. Modeling of electrochemical pH swing extraction reveals economic potential for closed-loop bio-succinic acid production. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Narisetty V, Okibe MC, Amulya K, Jokodola EO, Coulon F, Tyagi VK, Lens PNL, Parameswaran B, Kumar V. Technological advancements in valorization of second generation (2G) feedstocks for bio-based succinic acid production. BIORESOURCE TECHNOLOGY 2022; 360:127513. [PMID: 35772717 DOI: 10.1016/j.biortech.2022.127513] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Succinic acid (SA) is used as a commodity chemical and as a precursor in chemical industry to produce other derivatives such as 1,4-butaneidol, tetrahydrofuran, fumaric acid, and bio-polyesters. The production of bio-based SA from renewable feedstocks has always been in the limelight owing to the advantages of renewability, abundance and reducing climate change by CO2 capture. Considering this, the current review focuses on various 2G feedstocks such as lignocellulosic biomass, crude glycerol, and food waste for cost-effective SA production. It also highlights the importance of producing SA via separate enzymatic hydrolysis and fermentation, simultaneous saccharification and fermentation, and consolidated bioprocessing. Furthermore, recent advances in genetic engineering, and downstream SA processing are thoroughly discussed. It also elaborates on the techno-economic analysis and life cycle assessment (LCA) studies carried out to understand the economics and environmental effects of bio-based SA synthesis.
Collapse
Affiliation(s)
- Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | | | - K Amulya
- National University of Ireland Galway, University Road, H91TK33 Galway, Ireland
| | | | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology (NIH), Roorkee 247667, Uttarakhand, India
| | - Piet N L Lens
- National University of Ireland Galway, University Road, H91TK33 Galway, Ireland
| | - Binod Parameswaran
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695019, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK.
| |
Collapse
|
6
|
Modeling the Succinic Acid Bioprocess: A Review. FERMENTATION 2022. [DOI: 10.3390/fermentation8080368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Succinic acid has attracted much interest as a key platform chemical that can be obtained in high titers from biomass through sustainable fermentation processes, thus boosting the bioeconomy as a critical production strategy for the future. After several years of development of the production of succinic acid, many studies on lab or pilot scale production have been reported. The relevant experimental data reveal underlying physical and chemical dynamic phenomena. To take advantage of this vast, but disperse, kinetic information, a number of mathematical kinetic models of the unstructured non-segregated type have been proposed in the first place. These relatively simple models feature critical aspects of interest for the design, control, optimization and operation of this key bioprocess. This review includes a detailed description of the phenomena involved in the bioprocesses and how they reflect on the most important and recent models based on macroscopic and metabolic chemical kinetics, and in some cases even coupling mass transport.
Collapse
|
7
|
Assessment of vine shoots and surplus grape must for succinic acid bioproduction. Appl Microbiol Biotechnol 2022; 106:4977-4994. [PMID: 35821430 DOI: 10.1007/s00253-022-12063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/02/2022]
Abstract
Vine shoots and surplus grape must were assessed as feedstocks for succinic acid production with Actinobacillus succinogenes and Basfia succiniproducens. After acidic and enzymatic hydrolysis, vine shoots released 35-40 g/L total sugars. Both bacterial species produced 18-21 g/L succinic acid from this hydrolysate in 120 h. Regarding grape must fermentation, A. succinogenes clearly outperformed B. succiniproducens. Yeast extract (a source of organic nitrogen and vitamins) was the only additional nutrient needed by A. succinogenes to grow on grape must. Under mathematically optimized conditions (145.7 g/L initial sugars and 24.9 g/L yeast extract), A. succinogenes generated 88.9 ± 1.4 g/L succinic acid in 96 h, reaching a succinic acid yield of 0.66 ± 0.01 g/g and a sugar consumption of 96.64 ± 0.30%. Substrate inhibition was not observed in grape musts with 125-150 g/L initial sugars, provided that an adequate amount of yeast extract was available for bacteria. Alternative nitrogen sources to yeast extract (red wine lees, white wine lees, urea, NH4Cl, and choline chloride) were not suitable for A. succinogenes in grape must. KEY POINTS: • Vine shoots and surplus grape must were assessed for succinic acid bioproduction. • Succinic acid bioproduction was 21 g/L with vine shoots and 89 g/L with grape must. • Fermentation was efficient at high sugar loads if organic N supply was adequate.
Collapse
|
8
|
Lee JS, Lin CJ, Lee WC, Teng HY, Chuang MH. Production of succinic acid through the fermentation of Actinobacillus succinogenes on the hydrolysate of Napier grass. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:9. [PMID: 35418147 PMCID: PMC8767706 DOI: 10.1186/s13068-022-02106-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/04/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Napier grass biomass can be hydrolyzed mainly containing glucose and xylose after alkaline pretreatment and enzymatic hydrolysis. This biomass can be fermented using Actinobacillus succinogenes to produce succinic acid. The yield of succinic acid was 0.58 g/g. Because metabolizing xylose could produce more acetic acid, this yield of succinic acid was lower than that achieved using glucose as the sole carbon source. RESULTS The addition of glycerol as a fermentation substrate to Napier grass hydrolysate increased the reducing power of the hydrolysate, which not only increased the production of succinic acid but also reduced the formation of undesirable acetic acid in bacterial cells. At a hydrolysate:glycerol ratio of 10:1, the succinic acid yield reached 0.65 g/g. The succinic acid yield increased to 0.88 g/g when a 1:1 ratio of hydrolysate:glycerol was used. For the recovery of succinic acid from the fermentation broth, an outside-in module of an ultrafiltration membrane was used to remove bacterial cells. Air sparging at the feed side with a flow rate of 3 L/min increased the filtration rate. When the air flow rate was increased from 0 to 3 L/min, the average filtration rate increased from 25.0 to 45.7 mL/min, which corresponds to an increase of 82.8%. The clarified fermentation broth was then electrodialized to separate succinate from other contaminated ions. After electrodialysis, the acid products were concentrated through water removal, decolorized through treatment with activated carbon, and precipitated to obtain a purified product. CONCLUSIONS The yield of succinic acid was increased by adding glycerol to the hydrolysate of Napier grass. The downstream processing consisting of ultrafiltration membrane separation and single-stage electrodialysis was effective for product separation and purification. An overall recovery yield of 74.7% ± 4.5% and a purity of 99.4% ± 0.1% were achieved for succinic acid.
Collapse
Affiliation(s)
- Jhih-Sing Lee
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Chiayi, Taiwan
| | - Cheng-Jia Lin
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Chiayi, Taiwan
| | - Wen-Chien Lee
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Chiayi, Taiwan.
| | - Hsin-Yi Teng
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Chiayi, Taiwan
| | - Meng-Hsin Chuang
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
9
|
Ercole A, Raganati F, Salatino P, Marzocchella A. Continuous succinic acid production by immobilized cells of Actinobacillus succinogenes in a fluidized bed reactor: Entrapment in alginate beads. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Salma A, Djelal H, Abdallah R, Fourcade F, Amrane A. Platform molecule from sustainable raw materials; case study succinic acid. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00103-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Chen J, Yang S, Alam MA, Wang Z, Zhang J, Huang S, Zhuang W, Xu C, Xu J. Novel biorefining method for succinic acid processed from sugarcane bagasse. BIORESOURCE TECHNOLOGY 2021; 324:124615. [PMID: 33454167 DOI: 10.1016/j.biortech.2020.124615] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 05/22/2023]
Abstract
Sugarcane bagasse (SCB) was pretreated with hot water (HLW), ethanol (ETH), and sodium hydroxide (SH). The obtained residuals were hydrolyzed and applied as carbon sources for succinic acid (SA) fermentation, the residue digestibility and SA conversion rate of alkali-pretreated residual were superior to others. Considering the characteristics of alkali pretreatment, enzymatic hydrolysis and succinic acid fermentation, a novel in-situ semi-simultaneous saccharification and co-fermentation (SSSCF) procedure for SA production from SCB was developed. The yield, productivity, and conversion rates of SA from SCB raw material (DRM) processed by SSSCF were 41 g/L, 300 mg/L/h, and 320 mg/g dry, respectively. For every kilogram of SA production, the developed coupling method reduced the SH and water usages, energy consumption, and effluent emission by 0.14 kg, 233.5 L 14,000 kJ and 7 L, respectively, and enhanced the SA productivity by 1.7 times compared with the non-coupling procedure.
Collapse
Affiliation(s)
- Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Shuai Yang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jun Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shushi Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning 530007, China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chao Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
12
|
Kim SY, Park SO, Yeon JY, Chun GT. Development of a Cell-recycled Continuous Fermentation Process for Enhanced Production of Succinic Acid by High-yielding Mutants of Actinobacillus succinogenes. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0295-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Zhang W, Tao Y, Wu M, Xin F, Dong W, Zhou J, Gu J, Ma J, Jiang M. Adaptive evolution improves acid tolerance and succinic acid production in Actinobacillus succinogenes. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Ferone M, Ercole A, Raganati F, Olivieri G, Salatino P, Marzocchella A. Efficient succinic acid production from high-sugar-content beverages by Actinobacillus succinogenes. Biotechnol Prog 2019; 35:e2863. [PMID: 31173476 DOI: 10.1002/btpr.2863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 11/06/2022]
Abstract
This study presents the production of succinic acid (SA) by Actinobacillus succinogenes using high-sugar-content beverages (HSCBs) as feedstock. The aim of this study was the valorization of a by-product stream from the beverage industry for the production of an important building block chemical, such as SA. Three types of commercial beverages were investigated: fruit juices (pineapple and ace), syrups (almond), and soft drinks (cola and lemon). They contained mainly glucose, fructose, and sucrose at high concentration-between 50 and 1,000 g/L. The batch fermentation tests highlighted that A. succinogenes was able to grow on HSCBs supplemented with yeast extract, but also on the unsupplemented fruit juices. Indeed, the bacteria did not grow on the unsupplemented syrup and soft drinks because of the lack of indispensable nutrients. About 30-40 g/L of SA were obtained, depending on the type of HSCB, with yield ranging between 0.75 and 1.00 gSA /gS . The prehydrolysis step improved the fermentation performance: SA production was improved by 6-24%, depending on the HSCB, and sugar conversion was improved of about 30-50%.
Collapse
Affiliation(s)
- Mariateresa Ferone
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Alessia Ercole
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Francesca Raganati
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Giuseppe Olivieri
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Piero Salatino
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Antonio Marzocchella
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Naples, Italy
| |
Collapse
|
15
|
Ferone M, Raganati F, Olivieri G, Marzocchella A. Bioreactors for succinic acid production processes. Crit Rev Biotechnol 2019; 39:571-586. [DOI: 10.1080/07388551.2019.1592105] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mariateresa Ferone
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- UCD School of Agriculture & Food Science, University College Dublin, Dublin, Ireland
| | - Francesca Raganati
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Giuseppe Olivieri
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- Department of Agrotechnology and Food Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Antonio Marzocchella
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| |
Collapse
|
16
|
Opportunities, challenges, and future perspectives of succinic acid production by Actinobacillus succinogenes. Appl Microbiol Biotechnol 2018; 102:9893-9910. [PMID: 30259101 DOI: 10.1007/s00253-018-9379-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022]
Abstract
Due to environmental issues and the depletion of fossil-based resources, ecofriendly sustainable biomass-based chemical production has been given more attention recently. Succinic acid (SA) is one of the top value added bio-based chemicals. It can be synthesized through microbial fermentation using various waste steam bioresources. Production of chemicals from waste streams has dual function as it alleviates environmental concerns; they could have caused because of their improper disposal and transform them into valuable products. To date, Actinobacillus succinogenes is termed as the best natural SA producer. However, few reviews regarding SA production by A. succinogenes were reported. Herewith, pathways and metabolic engineering strategies, biomass pretreatment and utilization, and process optimization related with SA fermentation by A. succinogenes were discussed in detail. In general, this review covered vital information including merits, achievements, progresses, challenges, and future perspectives in SA production using A. succinogenes. Therefore, it is believed that this review will provide platform to understand the potential of the strain and tackle existing hurdles so as to develop superior strain for industrial applications. It will also be used as a baseline for identification, isolation, and improvement of other SA-producing microbes.
Collapse
|
17
|
Continuous Succinic Acid Fermentation by Actinobacillus Succinogenes: Assessment of Growth and Succinic Acid Production Kinetics. Appl Biochem Biotechnol 2018; 187:782-799. [DOI: 10.1007/s12010-018-2846-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/16/2018] [Indexed: 11/30/2022]
|
18
|
Zhang H, Shen N, Qin Y, Zhu J, Li Y, Wu J, Jiang MG. Complete Genome Sequence of Actinobacillus succinogenes GXAS137, a Highly Efficient Producer of Succinic Acid. GENOME ANNOUNCEMENTS 2018; 6:e01562-17. [PMID: 29472344 PMCID: PMC5824005 DOI: 10.1128/genomea.01562-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 01/29/2018] [Indexed: 01/05/2023]
Abstract
The bacterium Actinobacillus succinogenes GXAS137, an efficient producer of succinic acid, was isolated from bovine rumen in Nanning, Guangxi Province, China. Here, we present the 2.3-Mb genome assembly of this strain, which consists of 2,314,479 bp (G+C content of 44.89%) with a circular chromosome, 2,235 DNA coding sequences, 57 tRNAs, and 15 rRNAs.
Collapse
Affiliation(s)
- Hongyan Zhang
- Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi Key Laboratory Cultivation Base for Polysaccharide Materials and Their Modification, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, China
- Biology Institute, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Naikun Shen
- Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi Key Laboratory Cultivation Base for Polysaccharide Materials and Their Modification, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, China
- National Non-Grain Bioenergy Engineering Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Yan Qin
- National Non-Grain Bioenergy Engineering Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Jing Zhu
- National Non-Grain Bioenergy Engineering Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Yi Li
- National Non-Grain Bioenergy Engineering Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Jiafa Wu
- Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi Key Laboratory Cultivation Base for Polysaccharide Materials and Their Modification, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, China
| | - Ming-Guo Jiang
- Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi Key Laboratory Cultivation Base for Polysaccharide Materials and Their Modification, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, China
| |
Collapse
|
19
|
Ferone M, Raganati F, Ercole A, Olivieri G, Salatino P, Marzocchella A. Continuous succinic acid fermentation by Actinobacillus succinogenes in a packed-bed biofilm reactor. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:138. [PMID: 29785205 PMCID: PMC5950251 DOI: 10.1186/s13068-018-1143-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/03/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Succinic acid is one of the most interesting platform chemicals that can be produced in a biorefinery approach. In this study, continuous succinic acid production by Actinobacillus succinogenes fermentation in a packed-bed biofilm reactor (PBBR) was investigated. RESULTS The effects of the operating conditions tested, dilution rate (D), and medium composition (mixture of glucose, xylose, and arabinose-that simulate the composition of a lignocellulosic hydrolysate)-on the PBBR performances were investigated. The maximum succinic acid productivity of 35.0 g L-1 h-1 and the maximum SA concentration were achieved at a D = 1.9 h-1. The effect of HMF and furfural on succinic acid production was also investigated. HMF resulted to reduce succinic acid production by 22.6%, while furfural caused a reduction of 16% in SA production at the same dilution rate. CONCLUSION Succinic acid production by A. succinogenes fermentation in a packed-bed reactor (PBBR) was successfully carried out for more than 5 months. The optimal results were obtained at the dilution rate 0.5 h-1: 43.0 g L-1 of succinic acid were produced, glucose conversion was 88%; and the volumetric productivity was 22 g L-1 h-1.
Collapse
Affiliation(s)
- Mariateresa Ferone
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Naples, Italy
| | - Francesca Raganati
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Naples, Italy
| | - Alessia Ercole
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Naples, Italy
| | - Giuseppe Olivieri
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Naples, Italy
- Wageningen University and Research Centre, Droevendaalsesteeg 1, P.O. Box 8129, 6708 PB Wageningen, The Netherlands
| | - Piero Salatino
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Naples, Italy
| | - Antonio Marzocchella
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Naples, Italy
| |
Collapse
|