1
|
Yao X, Wang Z, Qian M, Deng Q, Sun P. Kinetic Aspects of Esterification and Transesterification in Microstructured Reactors. Molecules 2024; 29:3651. [PMID: 39125055 PMCID: PMC11314161 DOI: 10.3390/molecules29153651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Microstructured reactors offer fast chemical engineering transfer and precise microfluidic control, enabling the determination of reactions' kinetic parameters. This review examines recent advancements in measuring microreaction kinetics. It explores kinetic modeling, reaction mechanisms, and intrinsic kinetic equations pertaining to two types of microreaction: esterification and transesterification reactions involving acids, bases, or biocatalysts. The utilization of a micro packed-bed reactor successfully achieves a harmonious combination of the micro-dispersion state and the reaction kinetic characteristics. Additionally, this review presents micro-process simulation software and explores the advanced integration of microreactors with spectroscopic analyses for reaction monitoring and data acquisition. Furthermore, it elaborates on the control principles of the micro platform. The superiority of online measurement, automation, and the digitalization of the microreaction process for kinetic measurements is highlighted, showcasing the vast prospects of artificial intelligence applications.
Collapse
Affiliation(s)
- Xingjun Yao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Zhenxue Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Ming Qian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Qiulin Deng
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Peiyong Sun
- Beijing Institute of Petrochemical Technology, Daxing District, Beijing 102617, China;
| |
Collapse
|
2
|
Ortega-Requena S, Montiel C, Máximo F, Gómez M, Murcia MD, Bastida J. Esters in the Food and Cosmetic Industries: An Overview of the Reactors Used in Their Biocatalytic Synthesis. MATERIALS (BASEL, SWITZERLAND) 2024; 17:268. [PMID: 38204120 PMCID: PMC10779758 DOI: 10.3390/ma17010268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Esters are versatile compounds with a wide range of applications in various industries due to their unique properties and pleasant aromas. Conventionally, the manufacture of these compounds has relied on the chemical route. Nevertheless, this technique employs high temperatures and inorganic catalysts, resulting in undesired additional steps to purify the final product by removing solvent residues, which decreases environmental sustainability and energy efficiency. In accordance with the principles of "Green Chemistry" and the search for more environmentally friendly methods, a new alternative, the enzymatic route, has been introduced. This technique uses low temperatures and does not require the use of solvents, resulting in more environmentally friendly final products. Despite the large number of studies published on the biocatalytic synthesis of esters, little attention has been paid to the reactors used for it. Therefore, it is convenient to gather the scattered information regarding the type of reactor employed in these synthesis reactions, considering the industrial field in which the process is carried out. A comparison between the performance of the different reactor configurations will allow us to draw the appropriate conclusions regarding their suitability for each specific industrial application. This review addresses, for the first time, the above aspects, which will undoubtedly help with the correct industrial implementation of these processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Josefa Bastida
- Department of Chemical Engineering, Faculty of Chemistry, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain; (S.O.-R.); (C.M.); (F.M.); (M.G.); (M.D.M.)
| |
Collapse
|
3
|
Zhao Q, Wang L, Chen H, Wu Z, Zhao M, Lai M. Enzyme‐Catalyzed Synthesis, Odor Characteristics and Thermal Analysis of New Pyridine Esters. ChemistrySelect 2023. [DOI: 10.1002/slct.202204356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Qianrui Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University, 95 Wenhua Road Zhengzhou Henan Province 450002 P. R. China
| | - Longxin Wang
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University, 95 Wenhua Road Zhengzhou Henan Province 450002 P. R. China
| | - Haoran Chen
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University, 95 Wenhua Road Zhengzhou Henan Province 450002 P. R. China
| | - Zhiyong Wu
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University, 95 Wenhua Road Zhengzhou Henan Province 450002 P. R. China
| | - Mingqin Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University, 95 Wenhua Road Zhengzhou Henan Province 450002 P. R. China
| | - Miao Lai
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province College of Tobacco Science Henan Agricultural University, 95 Wenhua Road Zhengzhou Henan Province 450002 P. R. China
| |
Collapse
|
4
|
Singh R, Dien BS, Singh V. Solvent‐free enzymatic esterification of free fatty acids with glycerol for biodiesel application: Optimized using the Taguchi experimental method. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ramkrishna Singh
- Center for Advanced Bioenergy and Bioproducts Innovation (CABBI) University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Department of Agricultural and Biological Engineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Bruce S. Dien
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research Bioenergy Research Unit, 1815 N University Peoria Illinois USA
| | - Vijay Singh
- Center for Advanced Bioenergy and Bioproducts Innovation (CABBI) University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Department of Agricultural and Biological Engineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
| |
Collapse
|
5
|
Staudt A, Brack Y, Jr II, Leal ICR. Biocatalytic synthesis of monoterpene esters – A review study on the phylogenetic evolution of biocatalysts. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Kleoff M, Kiler P, Heretsch P. Synthesis of odorants in flow and their applications in perfumery. Beilstein J Org Chem 2022; 18:754-768. [PMID: 35859624 PMCID: PMC9263551 DOI: 10.3762/bjoc.18.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Continuous flow technology is a key technology for sustainable manufacturing with numerous applications for the synthesis of fine chemicals. In recent years, the preparation of odorants utilizing the advantages of flow reactors received growing attention. In this review, we give an overview of selected methods for the synthesis of odorants in flow, including heterogeneously catalyzed reactions, gas reactions, and photochemical C–H functionalization processes. After a brief introduction on types of odorants, the presented odorant syntheses are ordered according to the main odor families “fruity”, “green”, “marine”, “floral”, “spicy”, “woody”, “ambery”, and “musky” and their use and importance for perfumery is briefly discussed.
Collapse
Affiliation(s)
- Merlin Kleoff
- Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstr. 34-36, 14195 Berlin, Germany
| | - Paul Kiler
- PK Perfumes, Menifee, California, United States of America
| | - Philipp Heretsch
- Leibniz Universität Hannover, Institut für Organische Chemie, Schneiderberg 1B, 30167 Hannover, Germany
| |
Collapse
|
7
|
Zhang C, Sharma S, Ma C, Zeng AP. Strain evolution and novel downstream processing with integrated catalysis enable highly efficient co-production of 1,3-Propanediol and organic acid esters from crude glycerol. Biotechnol Bioeng 2022; 119:1450-1466. [PMID: 35234295 DOI: 10.1002/bit.28070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/05/2022] [Accepted: 02/20/2022] [Indexed: 11/09/2022]
Abstract
Bioconversion of natural microorganisms generally results in a mixture of various compounds. Downstream processing (DSP) which only targets a single product often lacks economic competitiveness due to incomplete use of raw material and high cost of waste treatment for by-products. Here, we show with the efficient microbial conversion of crude glycerol by an artificially evolved strain and how a catalytic conversion strategy can improve the total products yield and process economy of the DSP. Specifically, Clostridium pasteurianum was first adapted to increased concentration of crude glycerol in a novel automatic laboratory evolution system. At m3 scale bioreactor the strain achieved a simultaneous production of 1,3-propanediol (PDO), acetic and butyric acids at 81.21, 18.72 and 11.09 g/L within only 19 h, respectively, representing the most efficient fermentation of crude glycerol to targeted products. A heterogeneous catalytic step was developed and integrated into the DSP process to obtain high-value methyl esters from acetic and butyric acids at high yields. The co-production of the esters also greatly simplified the recovery of PDO. For example, a cosmetic grade PDO (96% PDO) was easily obtained by a simple single-stage distillation process (with an overall yield more than 77%). This integrated approach provides an industrially attractive route for the simultaneous production of three appealing products from the crude glycerol fermentation broth, which greatly improve the process economy and ecology. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chijian Zhang
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany.,Hua An Tang Biotech Group Co., Ltd, Guangzhou, China
| | - Shubhang Sharma
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - Chengwei Ma
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
8
|
Enespa, Chandra P, Singh DP. Sources, purification, immobilization and industrial applications of microbial lipases: An overview. Crit Rev Food Sci Nutr 2022; 63:6653-6686. [PMID: 35179093 DOI: 10.1080/10408398.2022.2038076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Microbial lipase is looking for better attention with the fast growth of enzyme proficiency and other benefits like easy, cost-effective, and reliable manufacturing. Immobilized enzymes can be used repetitively and are incapable to catalyze the reactions in the system continuously. Hydrophobic supports are utilized to immobilize enzymes when the ionic strength is low. This approach allows for the immobilization, purification, stability, and hyperactivation of lipases in a single step. The diffusion of the substrate is more advantageous on hydrophobic supports than on hydrophilic supports in the carrier. These approaches are critical to the immobilization performance of the enzyme. For enzyme immobilization, synthesis provides a higher pH value as well as greater heat stability. Using a mixture of immobilization methods, the binding force between enzymes and the support rises, reducing enzyme leakage. Lipase adsorption produces interfacial activation when it is immobilized on hydrophobic support. As a result, in the immobilization process, this procedure is primarily used for a variety of industrial applications. Microbial sources, immobilization techniques, and industrial applications in the fields of food, flavor, detergent, paper and pulp, pharmaceuticals, biodiesel, derivatives of esters and amino groups, agrochemicals, biosensor applications, cosmetics, perfumery, and bioremediation are all discussed in this review.
Collapse
Affiliation(s)
- Enespa
- School for Agriculture, Sri Mahesh Prasad Post Graduate College, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Prem Chandra
- Food Microbiology & Toxicology Laboratory, Department of Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| | - Devendra Pratap Singh
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
9
|
Nagy F, Sánta-Bell E, Jipa M, Hornyánszky G, Szilágyi A, László K, Katona G, Paizs C, Poppe L, Balogh-Weiser D. Cross-Linked Enzyme-Adhered Nanoparticles (CLEANs) for Continuous-Flow Bioproduction. CHEMSUSCHEM 2022; 15:e202102284. [PMID: 34913608 DOI: 10.1002/cssc.202102284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Nanostructured but micro-sized biocatalysts were created by bottom-up technology using multi-functionalized silica nanoparticles (NPs) as nano-sized building blocks to form cross-linked enzyme-adhered nanoparticles (CLEANs) as robust micro-sized particles with beneficial internal structure and good mechanical properties. Systematic surface modification of NPs with a grafting mixture consisting of organosilanes with reactive (aminopropyl) and inert (e. g., vinyl, propyl, phenyl, or octyl) functions resulted in functional NPs enabling cross-linking agents, such as glutardialdehyde or bisepoxides (glycerol diglycidyl ether, neopentylglycol diglycidyl ether, and poly(propylene glycol) diglycidyl ether), to bind and cross-link enzymes covalently and to form macroporous microparticles. These CLEANs were able to diminish several weaknesses of traditional cross-linked enzyme aggregates as biocatalysts, such as poor mechanical resistance, difficult recovery, and storage, strengthening their use for packed-bed enzyme reactors. Lipase B from Candida antarctica (CaLB) was selected as model enzyme for development of robust CLEANs, which were successfully tested for various industrially relevant applications including a kinetic resolution of a racemic alcohol and the production of various natural fragrance compounds under continuous-flow conditions.
Collapse
Affiliation(s)
- Flóra Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Evelin Sánta-Bell
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Monica Jipa
- Biocatalysis and Biotransformation Research Center, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, 400028, Cluj-Napoca, Romania
| | - Gábor Hornyánszky
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - András Szilágyi
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Krisztina László
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Gabriel Katona
- Biocatalysis and Biotransformation Research Center, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, 400028, Cluj-Napoca, Romania
| | - Csaba Paizs
- Biocatalysis and Biotransformation Research Center, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, 400028, Cluj-Napoca, Romania
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
- Biocatalysis and Biotransformation Research Center, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, 400028, Cluj-Napoca, Romania
- SynBiocat LLC, Szilasliget u 3, 1072, Budapest, Hungary
| | - Diána Balogh-Weiser
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
- SynBiocat LLC, Szilasliget u 3, 1072, Budapest, Hungary
| |
Collapse
|
10
|
Jawale PV, Bhanage BM. Kinetic and docking study of synthesis of glyceryl monostearate by immobilized lipase in non-aqueous media. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.2003343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Priyanka V. Jawale
- Department of Chemistry, Institute of Chemical Technology, Mumbai, India
| | | |
Collapse
|
11
|
Jaiswal KS, Rathod VK. Process Intensification of Enzymatic Synthesis of Flavor Esters: A Review. CHEM REC 2021; 22:e202100213. [PMID: 34859555 DOI: 10.1002/tcr.202100213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022]
Abstract
The conventional flavor synthesis method suffers from low yields, time inefficiency, and extreme reaction conditions. Therefore, there is a necessity for the green and novel synthesis approach to overcome these limitations. The current review presents a holistic insight into different aspects associated with the synthesis of flavor esters using the immobilized enzyme. The application of process intensification tools such as ultrasound and microwave irradiation can enhance the reaction efficiency because of higher product recovery, less formation of by-products, and decreased energy consumption. This review presents the process intensification of value-added flavor esters synthesis and the mechanism of ultrasound and microwave action on the enzyme to enhance the enzyme activity and increase the reaction rate. It also summarizes the role of process intensification in enzymatic flavor ester synthesis, followed by specific examples as reported in the literature.
Collapse
Affiliation(s)
- Kajal S Jaiswal
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai, 400019, India
| | - Virendra K Rathod
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai, 400019, India
| |
Collapse
|
12
|
Continuous production of isoamyl acetate from fusel oil under supercritical CO2: A mass transfer approach. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Flow Biocatalysis: A Challenging Alternative for the Synthesis of APIs and Natural Compounds. Int J Mol Sci 2021; 22:ijms22030990. [PMID: 33498198 PMCID: PMC7863935 DOI: 10.3390/ijms22030990] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/01/2023] Open
Abstract
Biocatalysts represent an efficient, highly selective and greener alternative to metal catalysts in both industry and academia. In the last two decades, the interest in biocatalytic transformations has increased due to an urgent need for more sustainable industrial processes that comply with the principles of green chemistry. Thanks to the recent advances in biotechnologies, protein engineering and the Nobel prize awarded concept of direct enzymatic evolution, the synthetic enzymatic toolbox has expanded significantly. In particular, the implementation of biocatalysts in continuous flow systems has attracted much attention, especially from industry. The advantages of flow chemistry enable biosynthesis to overcome well-known limitations of “classic” enzymatic catalysis, such as time-consuming work-ups and enzyme inhibition, as well as difficult scale-up and process intensifications. Moreover, continuous flow biocatalysis provides access to practical, economical and more sustainable synthetic pathways, an important aspect for the future of pharmaceutical companies if they want to compete in the market while complying with European Medicines Agency (EMA), Food and Drug Administration (FDA) and green chemistry requirements. This review focuses on the most recent advances in the use of flow biocatalysis for the synthesis of active pharmaceutical ingredients (APIs), pharmaceuticals and natural products, and the advantages and limitations are discussed.
Collapse
|
14
|
Salvi HM, Yadav GD. Process intensification using immobilized enzymes for the development of white biotechnology. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00020a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Process intensification of biocatalysed reactions using different techniques such as microwaves, ultrasound, hydrodynamic cavitation, ionic liquids, microreactors and flow chemistry in various industries is critically analysed and future directions provided.
Collapse
Affiliation(s)
- Harshada M. Salvi
- Department of Chemical Engineering
- Institute of Chemical Technology
- Mumbai-400019
- India
| | - Ganapati D. Yadav
- Department of Chemical Engineering
- Institute of Chemical Technology
- Mumbai-400019
- India
| |
Collapse
|
15
|
Cozentino IDSC, Rodrigues MDF, Mazziero VT, Cerri MO, Cavallini DCU, de Paula AV. Enzymatic synthesis of structured lipids from grape seed (Vitis vinifera L.) oil in associated packed bed reactors. Biotechnol Appl Biochem 2020; 69:101-109. [PMID: 33617040 DOI: 10.1002/bab.2085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/25/2020] [Indexed: 11/06/2022]
Abstract
Triacylglycerols (TAGs) can be modified to increase the absorption of fatty acids, prevent obesity, and treat fat malabsorption disorders and metabolic diseases. Medium-long-medium (MLM)-type TAGs, which contain medium-chain fatty acids in the sn-1 and sn-3 positions of the glycerol backbone and a long-chain fatty acid in the sn-2 position, show particularly interesting nutritional characteristics. This study aimed to synthesize MLM-type TAGs by enzymatic acidolysis of grape seed oil with medium-chain capric acid (C10:0) in associated packed bed reactors. The reaction was carried out during 120 H, at 45 °C, using lipase from Rhizomucor miehei (Lipozyme® RM IM). The residence time distribution of reagents in the reactor was quantified to evaluate the reactor behavior and to diagnose the existence of preferential paths. The reaction progress was monitored by analyzing TAG composition and, at the steady state (after 48 H of reaction), the incorporation degree achieved a value of 39.91 ± 2.77%. To enhance the capric acid incorporation, an acidolysis reaction in associated packed bed reactors was performed. The results showed a good operational stability of the biocatalyst, revealing values of half-life 209.64 H, 235.63 H of packed bed and associated packed bed reactor, respectively, and a deactivation coefficient 0.0061 H-1.
Collapse
Affiliation(s)
| | - Marina de Freitas Rodrigues
- Department of Engineering Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | - Vitor Teixeira Mazziero
- Department of Engineering Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | - Marcel Otávio Cerri
- Department of Engineering Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | | | - Ariela Veloso de Paula
- Department of Engineering Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| |
Collapse
|
16
|
Salvi H, Yadav GD. Chemoenzymatic Epoxidation of Limonene Using a Novel Surface-Functionalized Silica Catalyst Derived from Agricultural Waste. ACS OMEGA 2020; 5:22940-22950. [PMID: 32954143 PMCID: PMC7495740 DOI: 10.1021/acsomega.0c02462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/12/2020] [Indexed: 05/13/2023]
Abstract
Limonene is one of the most important terpenes having wide applications in food and fragrance industries. The epoxide of limonene, limonene oxide, finds important applications as a versatile synthetic intermediate in the chemical industry. Therefore, attempts have been made to synthesize limonene oxide using eco-friendly processes because of stringent regulations on its production. In this regard, we have attempted to synthesize it using a cost-effective and eco-friendly process. Chemoenzymatic epoxidation of limonene to limonene oxide was carried out using in situ generation of peroxy octanoic acid from octanoic acid and H2O2. In this study, agricultural-waste rice husk ash (RHA)-derived silica was surface-functionalized using (3-aminopropyl) triethoxysilane (APTS), which was cross-linked using glutaraldehyde for immobilization of Candida antarctica lipase B. Furthermore, the immobilized enzyme was entrapped in calcium alginate beads to avoid enzyme leaching. Thus, limonene oxide was prepared using this catalyst under conventional and microwave heating. The microwave irradiation intensifies the process, reducing the reaction time under the same conditions. Maximum conversion of limonene to limonene oxide of 75.35 ± 0.98% was obtained in 2 h at 50 °C using a microwave power of 50 W. In the absence of microwave irradiation, the conventional heating gave 44.6 ± 1.14% conversion in 12 h. The reaction mechanism was studied using the Lineweaver-Burk plot, which follows a ternary complex mechanism with inhibition due to peroxyoctanoic acid (in other words H2O2). The prepared catalyst shows high reusability and operational stability up to four cycles.
Collapse
|
17
|
Continuous Production of 2-Phenylethyl Acetate in a Solvent-Free System Using a Packed-Bed Reactor with Novozym® 435. Catalysts 2020. [DOI: 10.3390/catal10060714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
2-Phenylethyl acetate (2-PEAc), a highly valued natural volatile ester, with a rose-like odor, is widely added in cosmetics, soaps, foods, and drinks to strengthen scent or flavour. Nowadays, 2-PEAc are commonly produced by chemical synthesis or extraction. Alternatively, biocatalysis is a potential method to replace chemical synthesis or extraction for the production of natural flavour. Continuous synthesis of 2-PEAc in a solvent-free system using a packed bed bioreactor through immobilized lipase-catalyzed transesterification of ethyl acetate (EA) with 2-phenethyl alcohol was studied. A Box–Behnken experimental design with three-level-three-factor, including 2-phenethyl alcohol (2-PE) concentration (100–500 mM), flow rate (1–5 mL min−1) and reaction temperature (45–65 °C), was selected to investigate their influence on the molar conversion of 2-PEAc. Then, response surface methodology and ridge max analysis were used to discuss in detail the optimal reaction conditions for the synthesis of 2-PEAc. The results indicated both 2-PE concentration and flow rate are significant factors in the molar conversion of 2-PEAc. Based on the ridge max analysis, the maximum molar conversion was 99.01 ± 0.09% under optimal conditions at a 2-PE concentration of 62.07 mM, a flow rate of 2.75 mL min−1, and a temperature of 54.03 °C, respectively. The continuous packed bed bioreactor showed good stability for 2-PEAc production, enabling operation for at least 72 h without a significant decrease of conversion.
Collapse
|
18
|
Bhavsar KV, Yadav GD. Synthesis of geranyl acetate by transesterification of geraniol with ethyl acetate over
Candida antarctica
lipase as catalyst in solvent‐free system. FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kalpesh V. Bhavsar
- Department of Chemical Engineering Institute of Chemical Technology Nathalal Parekh Marg Matunga, Mumbai India
| | - Ganapati D. Yadav
- Department of Chemical Engineering Institute of Chemical Technology Nathalal Parekh Marg Matunga, Mumbai India
| |
Collapse
|
19
|
Foley AM, Maguire AR. The Impact of Recent Developments in Technologies which Enable the Increased Use of Biocatalysts. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900208] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Aoife M. Foley
- School of Chemistry; Analytical & Biological Chemistry Research Facility; Synthesis & Solid State Pharmaceutical Centre; University College Cork; Cork Ireland
| | - Anita R. Maguire
- School of Chemistry & School of Pharmacy; Analytical & Biological Chemistry Research Facility; Synthesis & Solid State Pharmaceutical Centre; University College Cork; Cork Ireland
| |
Collapse
|
20
|
Salvi HM, Yadav GD. Surface functionalization of SBA-15 for immobilization of lipase and its application in synthesis of alkyl levulinates: Optimization and kinetics. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Ortiz C, Ferreira ML, Barbosa O, dos Santos JCS, Rodrigues RC, Berenguer-Murcia Á, Briand LE, Fernandez-Lafuente R. Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal Sci Technol 2019. [DOI: 10.1039/c9cy00415g] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novozym 435 (N435) is a commercially available immobilized lipase produced by Novozymes with its advantages and drawbacks.
Collapse
Affiliation(s)
- Claudia Ortiz
- Escuela de Microbiología
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - María Luján Ferreira
- Planta Piloto de Ingeniería Química – PLAPIQUI
- CONICET
- Universidad Nacional del Sur
- 8000 Bahía Blanca
- Argentina
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Redenção
- Brazil
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Alicante
- Spain
| | - Laura E. Briand
- Centro de Investigación y Desarrollo en Ciencias Aplicadas-Dr. Jorge J. Ronco
- Universidad Nacional de La Plata
- CONICET
- Buenos Aires
- Argentina
| | | |
Collapse
|
22
|
Yadav GD, Kamble MP. A Green Process for Synthesis of Geraniol Esters by Immobilized Lipase from Candida Antarctica B Fraction in Non-Aqueous Reaction Media: Optimization and Kinetic Modeling. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2018. [DOI: 10.1515/ijcre-2017-0179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Enzymatic synthesis of molecules such as flavors, perfumes and fragrances has a great commercial advantage of being marketed as “natural” and also it offers exquisite selectivity of enzymes that can be superior over chemical catalysis. The current work focuses on the enzymatic synthesis of geranyl acetate as model compound, including optimization of reaction conditions such as nature of catalyst, reaction media, speed of agitation, mole ratio and temperature. A variety of esters were also synthesized. Geraniol was esterified with various acids, aromatic esters and vinyl esters in 1:4 molar ratio. Among all vinyl ester was the best giving in good yield (77–100 %) as compared to aromatic esters (5–82 %) and acids (7–31 %). Novozym 435 was found to be most active catalyst with ~96 % conversion and 100 % selectivity in 60 min at 55 °C in n-heptane as solvent for geranyl acetate. The maximum reaction rate was estimated (Vmax = 0.2712 mol L−1 min-1) by using the double reciprocal plot. It is a ternary complex (ordered bi-bi) mechanism with inhibition by geraniol.
Collapse
|
23
|
Kamble MP, Yadav GD. Kinetic resolution of ( R,S ) phenyl glycidyl ether by red mung beans ( Vigna angularis ) epoxide hydrolases. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|