1
|
Rogachuk BE, Okolie JA. Waste tires based biorefinery for biofuels and value-added materials production. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
|
2
|
Zhang M, Zhang D, Du J, Zhou B, Wang D, Liu X, Yan C, Liang J, Zhou L. Enhancing propionic acid production in the acidogenic fermentation of food waste facilitated by a fungal mash under neutral pH. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116901. [PMID: 36481690 DOI: 10.1016/j.jenvman.2022.116901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Fungal mash derived from Aspergillus spp. is a green enzymatic additive for food waste (FW) valorization. In this study, the production of volatile fatty acids (VFAs) and the proportion of propionic acid (PA) in VFAs were increased by utilizing a complex enzyme (CE) obtained from Aspergillus oryzae. Results showed that CE addition significantly promoted SCOD concentration in the hydrolysis at a wide pH range from 4 to 9. In contrast, the production of VFAs was influenced by pH, and the highest yields of VFAs and PA were found at pH 7. At the CE dosage of 0.2 g/g VSS, the concentration of VFAs in the FW fermentation liquid reached 38.1 g COD/L with the PA proportion up to 42.7%, which increased by 107.9% and 63.7%, respectively, relative to that in the zero-dosage group. With CE continuing to be added, the C/N ratio declined, and the primary metabolic pathway was converted from acetic acid-type to PA-type. Further investigation of the dominant microbial communities and their metabolic capacities showed that the acrylate-mediated pathway was the potential metabolic reaction in PA-type fermentation. These results indicated that CE pretreatment was a feasible strategy to enhance the PA-rich fermentation of FW under neutral pH conditions.
Collapse
Affiliation(s)
- Mingjiang Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dejin Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Du
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China; Institute of Livestock Research, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Bo Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dianzhan Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Liu
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cheng Yan
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianru Liang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| |
Collapse
|
3
|
Son J, Baritugo KA, Lim SH, Lim HJ, Jeong S, Lee JY, Choi JI, Joo JC, Na JG, Park SJ. Microbial cell factories for the production of three-carbon backbone organic acids from agro-industrial wastes. BIORESOURCE TECHNOLOGY 2022; 349:126797. [PMID: 35122981 DOI: 10.1016/j.biortech.2022.126797] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
At present, mass production of basic and valuable commodities is dependent on linear petroleum-based industries, which ultimately makes the depletion of finite natural reserves and accumulation of non-biodegradable and hazardous wastes. Therefore, an ecofriendly and sustainable solution should be established for a circular economy where infinite resources, such as agro-industrial wastes, are fully utilized as substrates in the production of target value-added chemicals. Hereby, recent advances in metabolic engineering strategies and techniques used in the development of microbial cell factories for enhanced production of three-carbon platform chemicals such as lactic acid, propionic acid, and 3-hydroxypropionic acid are discussed. Further developments and future perspectives in the production of these organic acids from agro-industrial wastes from the dairy, sugar, and biodiesel industries are also highlighted to demonstrate the importance of waste-based biorefineries for organic acid production.
Collapse
Affiliation(s)
- Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kei-Anne Baritugo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hye Jin Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seona Jeong
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Yeon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
4
|
Chen Y, Zhang X, Chen Y. Propionic acid-rich fermentation (PARF) production from organic wastes: A review. BIORESOURCE TECHNOLOGY 2021; 339:125569. [PMID: 34303105 DOI: 10.1016/j.biortech.2021.125569] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, increasing attention has been drawn to biological valorization of organic wastes. Wherein, propionic acid-rich fermentation (PARF) has become a focal point of research. The objective of this review is to make a thorough investigation on the potential of PARF production and give future outlook. By discussing the key factors affecting PARF including substrate types, pH, temperature, retention time, etc., and various improving methods to enhance PARF including different pretreatments, inoculation optimization and immobilization, a comprehensive summary on how to achieve PARF from organic waste is presented. Then, current application of PARF liquid is concluded, which is found to play an essential role in the efficient denitrification and phosphorus removal of wastewater and preparation of microbial lipids. Finally, the environmental performance of PARF production is reviewed through life cycle assessment studies, and environmentally sensitive sectors are summarized for process optimization, providing a reference for waste management in low carbon scenarios.
Collapse
Affiliation(s)
- Yuexi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
5
|
da Costa TB, Simões AN, de Menezes CA, Silva EL. Anaerobic Biodegradation of Biodiesel Industry Wastewater in Mesophilic and Thermophilic Fluidized Bed Reactors: Enhancing Treatment and Methane Recovery. Appl Biochem Biotechnol 2021; 193:3336-3350. [PMID: 34185261 DOI: 10.1007/s12010-021-03606-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
In the past few years, the extraction of value-added compounds from the anaerobic digestion of glycerol has been an option to add value to this waste because biodiesel production is increasing worldwide. The evolution of research on glycerol valorization by anaerobic digestion has reached the use of high-rate reactors. However, no study has evaluated glycerol digestion in an anaerobic fluidized bed reactor (AFBR), a configuration with potential advantages in methane production. Still, the best operating temperature for high-rate glycerol digestion remains unclear. To clarify these gaps, the present study aimed to compare glycerol digestion in mesophilic AFBR (30 °C) and thermophilic AFBR (55 °C). In both reactors, glycerol concentration was increased from 1.0 to 7.0 g L-1 at a fixed hydraulic retention time of 24 h, resulting in an increase at the organic loading rate from 1.2 to 7.6 kg COD m-3 day-1. Thermophilic digestion of glycerol achieved superior removals of organic matter (67.7-94.2%) and methane yield (330.8 mL CH4 g-1 COD) than the mesophilic digestion (48.6-93.0% and 266.6 mL CH4 g-1 COD). Additionally, the application of the kinetic model of substrate utilization (modified Stover-Kincannon model) indicated a higher substrate utilization coefficient in the thermophilic AFBR (23.09 g L-1 day-1) than the mesophilic AFBR (7.14 g L-1 day-1). Therefore, the application of glycerol concentrations higher than 7.0 g L-1 in thermophilic AFBR should be further investigated. Also, given only operational results, the application of the AFBR in the two-stage anaerobic digestion of glycerol is recommended.
Collapse
Affiliation(s)
- Talles Barcelos da Costa
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luis, km 235, CEP, São Carlos, SP, 13565-905, Brazil
| | - Andreza Nataline Simões
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, CEP, São Carlos, SP, 13563-120, Brazil
| | - Camila Aparecida de Menezes
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, CEP, São Carlos, SP, 13563-120, Brazil
| | - Edson Luiz Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luis, km 235, CEP, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
6
|
One waste and two products: choosing the best operational temperature and hydraulic retention time to recover hydrogen or 1,3-propanediol from glycerol fermentation. Bioprocess Biosyst Eng 2021; 44:2491-2502. [PMID: 34387720 DOI: 10.1007/s00449-021-02620-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
This study aimed to compare the production of hydrogen and 1,3-propanediol from crude glycerol (10 g/L) in mesophilic (30 °C) and thermophilic (55 °C) anaerobic fluidized bed reactors, namely AFBR30 °C and AFBR55 °C, respectively, at hydraulic retention times (HRT) reduced from 8 to 1 h. In AFBR30 °C, the absence or low hydrogen yields can be attributed to the production of 1,3-propanediol (maximum of 651 mmol/mol glycerol), and the formation of caproic acid (maximum of 1097 mg/L) at HRTs between 8 and 2 h. In AFBR55 °C, the hydrogen yield of 1.20 mol H2/mol glycerol consumed was observed at the HRT of 1 h. The maximum yield of 1,3-propanediol in AFBR55 °C was equal to 804 mmol/mol glycerol at the HRT of 6 h and was concomitant with the production of hydrogen (0.87 mol H2/mol glycerol consumed) and butyric acid (1447 mg/L).
Collapse
|
7
|
Chilakamarry CR, Sakinah AMM, Zularisam AW, Pandey A. Glycerol waste to value added products and its potential applications. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2021; 1:378-396. [PMID: 38624889 PMCID: PMC8182736 DOI: 10.1007/s43393-021-00036-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
The rapid industrial and economic development runs on fossil fuel and other energy sources. Limited oil reserves, environmental issues, and high transportation costs lead towards carbon unbiased renewable and sustainable fuel. Compared to other carbon-based fuels, biodiesel is attracted worldwide as a biofuel for the reduction of global dependence on fossil fuels and the greenhouse effect. During biodiesel production, approximately 10% of glycerol is formed in the transesterification process in a biodiesel plant. The ditching of crude glycerol is important as it contains salt, free fatty acids, and methanol that cause contamination of soil and creates environmental challenges for researchers. However, the excessive cost of crude glycerol refining and market capacity encourage the biodiesel industries for developing a new idea for utilising and produced extra sources of income and treat biodiesel waste. This review focuses on the significance of crude glycerol in the value-added utilisation and conversion to bioethanol by a fermentation process and describes the opportunities of glycerol in various applications. Graphic abstract
Collapse
Affiliation(s)
- Chaitanya Reddy Chilakamarry
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang, Kuantan , Malaysia 26300
| | - A. M. Mimi Sakinah
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang, Kuantan , Malaysia 26300
| | - A. W. Zularisam
- Faculty of Civil Engineering Technology , Universiti Malaysia Pahang, Gambang, Kuantan , Malaysia 26300
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001 India
| |
Collapse
|
8
|
Ranaei V, Pilevar Z, Khaneghah AM, Hosseini H. Propionic Acid: Method of Production, Current State and Perspectives. Food Technol Biotechnol 2020; 58:115-127. [PMID: 32831564 PMCID: PMC7416123 DOI: 10.17113/ftb.58.02.20.6356] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/20/2020] [Indexed: 01/21/2023] Open
Abstract
During the past years, there has been a growing interest in the bioproduction of propionic acid by Propionibacterium. One of the major limitations of the existing models lies in their low productivity yield. Hence, many strategies have been proposed in order to circumvent this obstacle. This article provides a comprehensive synthesis and review of important biotechnological aspects of propionic acid production as a common ingredient in food and biotechnology industries. We first discuss some of the most important production processes, mainly focusing on biological production. Then, we provide a summary of important propionic acid producers, including Propionibacterium freudenreichii and Propionibacterium acidipropionici, as well as a wide range of reported growth/production media. Furthermore, we describe bioprocess variables that can have impact on the production yield. Finally, we propose methods for the extraction and analysis of propionic acid and put forward strategies for overcoming the limitations of competitive microbial production from the economical point of view. Several factors influence the propionic acid concentration and productivity such as culture conditions, type and bioreactor scale; however, the pH value and temperature are the most important ones. Given that there are many reports about propionic acid production from glucose, whey permeate, glycerol, lactic acid, hemicelluloses, hydrolyzed corn meal, lactose, sugarcane molasses and enzymatically hydrolyzed whole wheat flour, only few review articles evaluate biotechnological aspects, i.e. bioprocess variables.
Collapse
Affiliation(s)
- Vahid Ranaei
- Department of Public Health, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Pilevar
- Student Research Committee, Department of Food Sciences and Technology Department, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Hedayat Hosseini
- Department of Food Sciences and Technology Department, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Chen H, Yue X, Yang J, Lv C, Dong S, Luo X, Sun Z, Zhang Y, Li B, Zhang F, Gu H, Yang Y, Zhang Q, Ge S, Bi H, Zheng D, Zhao Y, Li C, Peng W. Pyrolysis molecule of Torreya grandis bark for potential biomedicine. Saudi J Biol Sci 2019; 26:808-815. [PMID: 31049007 PMCID: PMC6486518 DOI: 10.1016/j.sjbs.2019.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 11/27/2022] Open
Abstract
Torreya grandis is a unique tree species in China. Although full use has been made of the timber, the processing and utilization of the bark has not been effective. In order to explore a new way to utilize the bark of Torreya grandis, a powder of T. grandis bark was prepared and analyzed qualitatively and quantitatively. Differential scanning calorimetry (TG) and pyrolysis gas chromatography-mass spectrometry (PY-GC/MS) revealed many bioactive components in the bark of T. grandis, such as acetic acid, 2-methoxy-4-vinyl phenol, D-mannose, and furfural. These substances have potential broad applications in the chemical industry, biomedicine, and food additives. The chemical constituents of the bark of T. grandis suggest a theoretical basis for the future development and utilization of the bark of T. grandis.
Collapse
Affiliation(s)
- Huiling Chen
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaochen Yue
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Jun Yang
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Chunxia Lv
- The Scientific Research Institution, Henan Xiaoqinling National Nature Reserve Administration Bureau, Sanmenxia 472500, China
| | - Shuaiwei Dong
- The Scientific Research Institution, Henan Xiaoqinling National Nature Reserve Administration Bureau, Sanmenxia 472500, China
| | - Xuefeng Luo
- The Scientific Research Institution, Henan Xiaoqinling National Nature Reserve Administration Bureau, Sanmenxia 472500, China
| | - Zhiyong Sun
- The Scientific Research Institution, Henan Xiaoqinling National Nature Reserve Administration Bureau, Sanmenxia 472500, China
| | - Ying Zhang
- The Scientific Research Institution, Henan Xiaoqinling National Nature Reserve Administration Bureau, Sanmenxia 472500, China
| | - Baoxiang Li
- The Scientific Research Institution, Henan Xiaoqinling National Nature Reserve Administration Bureau, Sanmenxia 472500, China
| | - Faping Zhang
- The Scientific Research Institution, Henan Xiaoqinling National Nature Reserve Administration Bureau, Sanmenxia 472500, China
| | - Haiping Gu
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yafeng Yang
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Qiuling Zhang
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Shengbo Ge
- Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX 76203, USA
| | - Huitao Bi
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Dongfang Zheng
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yong Zhao
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Cheng Li
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Wanxi Peng
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
10
|
Optimized 1,3-propanediol production from crude glycerol using mixed cultures in batch and continuous reactors. Bioprocess Biosyst Eng 2018; 41:1807-1816. [PMID: 30167787 DOI: 10.1007/s00449-018-2003-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/25/2018] [Indexed: 02/05/2023]
Abstract
The production of 1,3-propanediol from crude glycerol and mixed anaerobic sludge was investigated in batch experiments and continuous reactors. Using a 23 complete factorial design, the effects of the concentration of glycerol (22-30 g L-1), KH2PO4 (1.50-2.00 g L-1), and vitamin B12 (7-8 mg L-1) were examined in batch reactors. As an evaluated response, the highest 1,3-PD yields occurred for high concentrations of vitamin B12 and low levels of KH2PO4, reaching 0.57 g g-1 glycerol consumed. The variable glycerol concentration was not significant in the studied range. In addition, the condition that provided the best 1,3-PD yield was applied to an anaerobic fluidized bed reactor fed with crude glycerol (26.0 g L-1), which was monitored as the hydraulic retention time (HRT) decreased from 36 to 12 h. The greatest 1,3-PD yield, of 0.31 g g-1 glycerol, was obtained with an HRT of 28 h.
Collapse
|