1
|
Gao B, Liu X, Wu Y, Cheng H, Zhou H, Wang Y, Chen Z. Integration of lactic acid biorefinery with treatment of red mud from alumina refinery: win-win paradigm for waste valorization. BIORESOURCE TECHNOLOGY 2024; 401:130743. [PMID: 38677388 DOI: 10.1016/j.biortech.2024.130743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
The cost of detoxification and neutralization poses certain challenges to the development of an economically viable lactic acid biorefinery with lignocellulosic biomass as feedstock. Herein, red mud, an alkaline waste, was explored as both a detoxifying agent and a neutralizer. Red mud treatment of lignocellulosic hydrolysate effectively removed the inhibitors generated in dilute acid pretreatment, improving the lactic acid productivity from 1.0 g/L·h-1 to 1.9 g/L·h-1 in later fermentation. In addition, red mud could replace CaCO3 as a neutralizer in lactic acid fermentation, which in turn enabled simultaneous bioleaching of valuable metals (Sc, Y, Nd, and Al) from red mud. The neutralization of alkali in red mud by acids retained in lignocellulosic hydrolysate and lactic acid produced from fermentation led to effective dealkalization, rendering a maximum alkali removal efficiency of 92.2 %. Overall, this study offered a win-win strategy for the valorization of both lignocellulosic biomass and red mud.
Collapse
Affiliation(s)
- Binyuan Gao
- School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan, PR China
| | - Xi Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan, PR China
| | - Yudie Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan, PR China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha Hunan, PR China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha Hunan, PR China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha Hunan, PR China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha Hunan, PR China.
| |
Collapse
|
2
|
Sha Y, Zhou L, Wang Z, Ding Y, Lu M, Xu Z, Zhai R, Jin M. Adaptive laboratory evolution boost Yarrowia lipolytica tolerance to vanillic acid. J Biotechnol 2023; 367:42-52. [PMID: 36965629 DOI: 10.1016/j.jbiotec.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
Microbial tolerance to lignocellulose-derived inhibitors, such as aromatic acids, is critical for the economical production of biofuels and biochemicals. Here, adaptive laboratory evolution was applied to improve the tolerance of Yarrowia lipolytica to a representative aromatic acid inhibitor vanillic acid. The transcriptome profiling of evolved strain suggested that the tolerance could be related to the up-regulation of RNA processing and multidrug transporting pathways. Further analysis by reverse engineering confirmed that the amplification of YALI0_F13475g coding for transcriptional coactivator and YALI0_E25201g coding for multidrug transporter conferred tolerance not only to vanillic acid but also towards ferulic acid, p-coumaric acid, p-hydroxybenzoic acid and syringic acid. These findings suggested that regulation of RNA processing and multidrug transporting pathways may be important for enhanced aromatic acid tolerance in Y. lipolytica. This study provides valuable genetic information for robust strain construction for lignocellulosic biorefinery.
Collapse
Affiliation(s)
- Yuanyuan Sha
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Linlin Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zedi Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ying Ding
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
3
|
Yankov D. Fermentative Lactic Acid Production From Lignocellulosic Feedstocks: From Source to Purified Product. Front Chem 2022; 10:823005. [PMID: 35308791 PMCID: PMC8931288 DOI: 10.3389/fchem.2022.823005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/21/2022] [Indexed: 01/10/2023] Open
Abstract
The second (lignocellulosic biomass and industrial wastes) and third (algal biomass) generation feedstocks gained substantial interest as a source of various value-added chemicals, produced by fermentation. Lactic acid is a valuable platform chemical with both traditional and newer applications in many industries. The successful fractionation, separation, and hydrolysis of lignocellulosic biomass result in sugars' rich raw material for lactic acid fermentation. This review paper aims to summarize the investigations and progress in the last 5 years in lactic acid production from inexpensive and renewable resources. Different aspects are discussed-the type of raw materials, pretreatment and detoxification methods, lactic acid-producers (bacteria, fungi, and yeasts), use of genetically manipulated microorganisms, separation techniques, different approaches of process organization, as well as main challenges, and possible solutions for process optimization.
Collapse
Affiliation(s)
- Dragomir Yankov
- Chemical and Biochemical Reactors Laboratory, Institute of Chemical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
4
|
Ouyang S, Zou L, Qiao H, Shi J, Zheng Z, Ouyang J. One-pot process for lactic acid production from wheat straw by an adapted Bacillus coagulans and identification of genes related to hydrolysate-tolerance. BIORESOURCE TECHNOLOGY 2020; 315:123855. [PMID: 32707506 DOI: 10.1016/j.biortech.2020.123855] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 05/26/2023]
Abstract
In this study, Bacillus coagulans CC17A with highly tolerant to hydrolysate was obtained through adaptive evolution. After 63 generations, the strain CC17A was stably in 45% (v/v) hydrolysate media and could digest multiple inhibitors in the hydrolysate. Based on its promising features, a one-pot process was developed to produce lactic acid (LA) from wheat straw. After dilute acid pretreatment of wheat straw, simultaneous saccharification and co-fermentation was conducted using CC17A without any solid-liquid separation and pre-detoxification. Total 35.50 g LA was produced from 80 g raw substrate and the production yield was as high as 70.9% of theoretical. To elucidate the tolerance mechanism, transcriptomic profiling of CC17A was studied. The highly up-regulated oxidoreductases and phenolic acid decarboxylase are considered to be involved with the inhibitors-tolerance of B. coagulans CC17A.
Collapse
Affiliation(s)
- Shuiping Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Lihua Zou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Hui Qiao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jinjie Shi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhaojuan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
5
|
Shahi A, Rai BN, Singh RS. Biodegradation of Reactive Orange 16 Dye in Microbial Fuel Cell: An Innovative Way to Minimize Waste Along with Electricity Production. Appl Biochem Biotechnol 2020; 192:196-210. [DOI: 10.1007/s12010-020-03306-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/12/2020] [Indexed: 12/14/2022]
|
6
|
Unlocking the Secret of Bio-additive Components in Rubber Compounding in Processing Quality Nitrile Glove. Appl Biochem Biotechnol 2020; 191:1-28. [DOI: 10.1007/s12010-019-03207-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/05/2019] [Indexed: 12/25/2022]
|