1
|
Latif MJ, Ali S, Jamil S, Bibi S, Jafar T, Rasheed A, Noreen S, Bashir A, Rauf Khan S. Comparative catalytic reduction and degradation with biodegradable sodium alginate based nanocomposite: Zinc oxide/N-doped carbon nitride/sodium alginate. Int J Biol Macromol 2024; 254:127954. [PMID: 37951425 DOI: 10.1016/j.ijbiomac.2023.127954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
Sodium alginate (SA) is a biodegradable macromolecule which is used to synthesize nanocomposites and their further use as catalysis. Zinc oxide (ZnO) and nitrogen doped carbon nitride (ND-C3N4) nanoparticles are prepared using solvothermal and hydrothermal methods, respectively. ZnO/ND-C3N4/SA nanocomposites are successfully synthesized by employing in-situ polymerization. The presence of essential functional groups is confirmed by Fourier transform infrared (FTIR) spectroscopic analysis. Controlled spherical morphology for ZnO nanoparticles, with an average diameter of ∼52 nm, is shown by Scanning electron microscopic (SEM) analysis, while rice-like grain structure with an average grain size ∼62 nm is exhibited by ND-C3N4 nanoparticles. The presence of required elements is confirmed by Energy dispersive X-ray spectroscopic (EDX) analysis. The crystalline nature of nanocomposites is verified by X-ray diffraction spectroscopic (XRD) analysis. The investigation of the catalytic efficiency for degradation and reduction of various organic dyes is carried out on nanoparticles and nanocomposites. Thorough examination and comparison of parameters, such as apparent rate constant (kapp), reduction time, percentage reduction, reduced concentration and half-life, are conducted for all substrates. The nanocomposites show greater efficiency than nanoparticles in both reactions: catalytic reduction and catalytic degradation.
Collapse
Affiliation(s)
| | - Sarmed Ali
- Faculty of Engineering, Østfold University College, Halden, Norway
| | - Saba Jamil
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shamsa Bibi
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Touseef Jafar
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ammara Rasheed
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sadia Noreen
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Arslan Bashir
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shanza Rauf Khan
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
2
|
Rady ASS, Moussa NA, Mohamed LA, Sidhom PA, Sayed SR, Abd El-Rahman MK, Dabbish E, Shoeib T, Ibrahim MA. Elucidating the adsorption of 2-Mercaptopyridine drug on the aluminum phosphide (Al 12P 12) nanocage: A DFT study. Heliyon 2023; 9:e18690. [PMID: 37560653 PMCID: PMC10407676 DOI: 10.1016/j.heliyon.2023.e18690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
Adsorption amplitude of the aluminum phosphide (Al12P12) nanocage toward the 2-Mercaptopyridine (MCP) drug was herein monitored based on density functional theory (DFT) calculations. The adsorption process through MCP⋅⋅⋅Al12P12 complex in various configurations was elucidated by means of adsorption (Eads) energies. According to the energetic affirmations, the Al12P12 nanocage demonstrated potential versatility toward adsorbing the MCP drug within the investigated configurations and exhibited significant negative adsorption energies up to -27.71 kcal/mol. Upon the results of SAPT analysis, the electrostatic forces showed the highest contributions to the overall adsorption process with energetic values up to -74.36 kcal/mol. Concurrently, variations of molecular orbitals distribution along with alterations in the energy gap (Egap) and Fermi level (EFL) of the studied nanocage were denoted after adsorbing the MCP drug. The favorable impact of water solvent within the MCP⋅⋅⋅Al12P12 complexes was unveiled and confirmed by negative solvation energy (ΔEsolv) values up to -17.75 kcal/mol. According to thermodynamic parameters, the spontaneous and exothermic natures of the considered adsorption process were proclaimed by negative values of ΔG and ΔH parameters. Significant changes in the IR and Raman peaks, along with the appearance of new peaks, were noticed, confirming the occurrence of the targeted adsorption process. Furthermore, the adsorption features of the MCP drug on the Al12N12 nanocage were elucidated and compared to the Al12P12 analog. The obtained results demonstrated the higher preferability of Al12P12 nanocage than the Al12N12 candidate towards adsorbing the MCP drug without structural distortion.
Collapse
Affiliation(s)
- Al-shimaa S.M. Rady
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Nayra A.M. Moussa
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Lamiaa A. Mohamed
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Peter A. Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Shaban R.M. Sayed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed K. Abd El-Rahman
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Eslam Dabbish
- Department of Chemistry, The American University in Cairo, New Cairo, 11835, Egypt
| | - Tamer Shoeib
- Department of Chemistry, The American University in Cairo, New Cairo, 11835, Egypt
| | - Mahmoud A.A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
- School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| |
Collapse
|
3
|
Dağlıoğlu Y, Öztürk BY, Khatami M. Apoptotic, cytotoxic, antioxidant, and antibacterial activities of biosynthesized silver nanoparticles from nettle leaf. Microsc Res Tech 2023; 86:669-685. [PMID: 36883432 DOI: 10.1002/jemt.24306] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/23/2022] [Accepted: 02/03/2023] [Indexed: 03/09/2023]
Abstract
Here, we reported the biosynthesis of silver nanoparticles (AgNPs) using Urtica dioica (nettle) leaf extract as green reducing and capping agents and investigate their anticancer and antibacterial, activity. The Nettle-mediated biosynthesized AgNPs was characterized by UV-Vis a spectrophotometer. Their size, shape and elemental analysis were determined with the using of SEM and TEM. The crystal structure was determined by XRD and the biomolecules responsible for the reduction of Ag+ were determined using FTIR analysis. Nettle-mediated biosynthesis AgNPs indicated strong antibacterial activity against pathogenic microorganisms. Again, the antioxidant activity of AgNPs is quite high when compared to ascorbic acid. Anticancer effect of AgNPs, IC50 dose was determined by XTT analysis using MCF-7 cell line and the IC50 value was found to be 0.243 ± 0.014 μg/mL (% w/v).
Collapse
Affiliation(s)
- Yeşim Dağlıoğlu
- Molecular Biology and Genetics, Department, Ordu University, Ordu, Turkey
| | - Betül Yılmaz Öztürk
- Central Research Laboratory Application and Research Center, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Mehrdad Khatami
- Department of Environment of Kerman, The Environmental Researches Center, Kerman, Iran
| |
Collapse
|
4
|
Al-Enazi NM, Alsamhary K, Kha M, Ameen F. In vitro anticancer and antibacterial performance of biosynthesized Ag and Ce co-doped ZnO NPs. Bioprocess Biosyst Eng 2023; 46:89-103. [PMID: 36536225 PMCID: PMC9763817 DOI: 10.1007/s00449-022-02815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022]
Abstract
The great potential of zinc oxide nanoparticles (ZnO NPs) for biomedical applications is attributed to their physicochemical properties. In this work, pure and Ag and Ce dual-doped ZnO NPs were synthesized through a facile and green route to examine their cytotoxicity in breast cancer and normal cells. The initial preparation of dual-doped nanoparticles was completed by the usage of taranjabin. The synthesis of Ag and Ce dual-doped ZnO NPs was started with preparing the Ce:Ag ratios of 1:1, 1:2, and 1:4. The cytotoxicity effects of synthesized nanoparticles against breast normal cells (MCF-10A) and breast cancer cells (MDA-MB-231) were examined. The hexagonal structure of synthesized nanoparticles was observed through the results of X-ray diffraction (XRD). Scanning electron microscopy (SEM) images exhibited the spherical shape and smooth surfaces of prepared particles along with the homogeneous distribution of Ag and Ce in ZnO with high-quality lattice fringes without any distortions. According to the cytotoxic results, the effects of Ag/Ce dual-doped ZnO NPs on breast cancer (MDA-MB-231) cells were significantly more than of pure ZnO NPs, while dual-doped and pure nanoparticles remained indifferent towards breast normal (MCF-10A) cells. In addition, we investigated the antimicrobial activity against harmful bacteria.
Collapse
Affiliation(s)
- Nouf M. Al-Enazi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942 Saudi Arabia
| | - Khawla Alsamhary
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942 Saudi Arabia
| | - Mansour Kha
- Antibacterial Materials R&D Centre, China Metal New Materials (Huzhou) Institute, Huzhou, Zhejiang China
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| |
Collapse
|
5
|
Alhomaidi E, Faris P, Saja H, Jalil AT, Saleh MM, Khatami M. Soil-bacteria-mediated eco-friendly synthesis of ceramic nanostructure. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2022. [DOI: 10.1007/s12210-022-01117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Jalil AT, Khan MUF, Muhammed HA, Kawen AA, Saeed BQ, Karevskiy A. Detection of HPV16 viral load in L2 gene as a related predictor of cervical cancer among women in Dhi-Qar province by qRT-PCR. Mol Biol Rep 2022; 49:11847-11853. [PMID: 36214947 DOI: 10.1007/s11033-022-07955-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/16/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND The most common infection among young women that increases the risk of developing cervical cancer (CC) is human papillomavirus (HPV). In this study, we are going to assess whether HPV16 DNA concentration helps indicate cervical cancer progression ,As well as for age groups and their relationship to cervical cancer. METHODS Present study included 93 adult females suffering from cervical cancer during the period from 2017 to 2020. Molecular detection of HPV was done using amplification of the L2 gene (minor capsid protein). RESULTS Present results showed that 60 (65%) of the patients from 93 cervical cancer cases were infected by HPV16 while only 5 (8%) of healthy patients from the control group were positive for HPV16. So, the current study revealed high HPV16 load in cervical cancer ranged from 1.09 × 102 IU/ml to 5.07 × 103 IU/ml with a mean ± SD of viral load was 1043.25 ± 8.50 IU/ml while in healthy individuals very low viral load ranging from 88 IU/ml to 101 IU/ml and mean ± SD of viral load was 91.25 ± 2.90 IU/ml was reported. CONCLUSION HPV16 viral load is significantly associated with cervical carcinoma among women in Dhi-Qar Province.
Collapse
Affiliation(s)
- Abduladheem Turki Jalil
- Faculty of Biology and Ecology, Yanka Kupala State University of Grodno, Ozhesko str., 22, Grodno, Belarus. .,Department, Medical Laboratories Techniques, Al-Mustaqbal University College, Babylon, 51001, Hilla, Iraq.
| | | | | | | | - Balsam Qubais Saeed
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, UAE
| | - Aleksandr Karevskiy
- Dean Faculty of Biology and Ecology, Yanka Kupala State University of Grodno, Ozhesko str., 22, Grodno, Belarus
| |
Collapse
|
7
|
Daneshnazar M, Jaleh B, Eslamipanah M, Varma RS. Optical and gas sensing properties of TiO2/RGO for methanol, ethanol and acetone vapors. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Feng M, Yao W, An J, Yao Y. Synthesis, characterization and catalytic activity of copper (II) complex immobilized on magnetic nanoparticles (Fe 3O 4@SiO 2-(Imine-Thiazole)-Cu(OAc) 2 nanomaterial) for synthesis of diaryl sulfides and benzothiophenes. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2127365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Meili Feng
- College of Environmental Engineering, Naning Polytechnic Institute, Nanjing, Jiangsu, China
| | - Wenjun Yao
- College of Environmental Engineering, Naning Polytechnic Institute, Nanjing, Jiangsu, China
| | - Jingjing An
- College of Environmental Engineering, Naning Polytechnic Institute, Nanjing, Jiangsu, China
| | - Yuze Yao
- College of Environmental Engineering, Naning Polytechnic Institute, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Synergistic effect of Si-doping and Fe2O3-encapsulation on drug delivery and sensor applications of γ-graphyne nanotube toward favipiravir as an antiviral for COVID-19: A DFT study. J INDIAN CHEM SOC 2022. [PMCID: PMC9356577 DOI: 10.1016/j.jics.2022.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this work, the behavior of favipiravir (FAV) adsorption on the pristine (2,2) graphyne-based γ-nanotube (GYNT) was theoretically studied. Also, the Si-doped form (Si-GYNT) and its composite with encapsulated Fe2O3 (Fe2O3@Si-GYNT) were investigated within density functional theory (DFT) calculations, using M05 functionals and B3LYP. It was found that FAV is weakly to moderately adsorb on the bare GYNT and Si-GYNT tube, releasing the energy of 2.2 to 19.8 kcal/mol. After FAV adsorption, the bare tube's electronic properties are changed. Localized impurity is induced at the valence and conduction levels by encapsulating a tiny Fe2O3 cluster. As such, the target composite becomes a magnetic material. The binding energy between the Fe2O3@Si-GYNT and the FAV molecule becomes substantially stronger (Ead = -25.2 kcal/mol). We developed a drug release system in target parts of body, during protonation in the low pH of injured cells, detaching the FAV from the tube surface. The drug's reaction mechanism with Fe2O3@Si-GYNT shifts from covalence in the normal environment to hydrogen bonding in an acidic matrix. The optimized structure's natural bond orbital, quantum molecular descriptors, LUMO, HOMO and energy gap were also investigated. The recovery time can be reduced to less than 10 s by increasing the working temperature properly during the experimental test.
Collapse
|
10
|
The Recent Advances of Metal–Organic Frameworks in Electric Vehicle Batteries. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Mortezagholi B, Movahed E, Fathi A, Soleimani M, Forutan Mirhosseini A, Zeini N, Khatami M, Naderifar M, Abedi Kiasari B, Zareanshahraki M. Plant-mediated synthesis of silver-doped zinc oxide nanoparticles and evaluation of their antimicrobial activity against bacteria cause tooth decay. Microsc Res Tech 2022; 85:3553-3564. [PMID: 35983930 DOI: 10.1002/jemt.24207] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/12/2022] [Accepted: 07/07/2022] [Indexed: 12/22/2022]
Abstract
In this research, silver-doped zinc oxide (SdZnO) nanoparticles (NPs) were synthesized in an environmental-friendly manner. The synthesized NPs were identified by UV-vis spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Finally, the antimicrobial activity of synthesized ZnO and SdZnO NPs was performed. It was observed that by doping silver, the size of ZnO NPs was changed. By adding silver to ZnO NPs, the antimicrobial effect of ZnO NPs was improved. Antibacterial test against gram-positive bacterium Streptococcus mutants showed that SdZnO NPs with a low density of silver had higher antibacterial activity than ZnO NPs; Therefore, SdZnO NPs can be used as a new antibacterial agent in medical applications.
Collapse
Affiliation(s)
- Bardia Mortezagholi
- Dental Materials Research Center, Dental School, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Emad Movahed
- Dental Materials Research Center, Dental School, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Amirhossein Fathi
- Department of Prosthodontics, Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Soleimani
- Department of Orthodontics, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Negar Zeini
- Department of Oral and Maxillofacial Radiology, School Dentistry Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary Medicine, The University of Tehran, Tehran, Iran
| | - Mehran Zareanshahraki
- School of Dentistry, Islamic Azad Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
The Drug Delivery of Hydrea Anticancer by a Nanocone-Oxide: Computational Assessments. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|