Anti-bacterial Effect and Characteristics of Gold Nanoparticles (AuNps) Formed with Vitex negundo Plant Extract.
Appl Biochem Biotechnol 2023;
195:1630-1643. [PMID:
36355335 DOI:
10.1007/s12010-022-04217-8]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
Our current study reports the anti-bacterial activity of the gold nanoparticles (AuNps) synthesized by the green synthesis method using Vitex negundo plant leaves. The aqueous extract of Vitex negundo plant leaves are acting as the capping and stabilizing agent in the synthesis of AuNps. It is already evident from earlier studies that Vitex negundo is an abundant source of polyphenols, flavonoids, terpenoids, and many other biologically active compounds. The present study reveals the potential of biologically active compounds from the plant in the reduction reaction of chloroauric acid (HAuCl4) into gold nanoparticles. The green synthesis method is adapted instead of the chemical method, which is toxic and more expensive. The gold nanoparticles subjected to characterization with the help of UV-visible spectroscopy, FTIR to determine functional groups, light scattering to estimate size and uniformity, scanning emission microscopy with EDX for accurate size and shape of AuNps, and X-ray diffraction to reveal the crystalline structure. The characteristics of AuNps formed are UV reading at 520 nm, FTIR showing the presence of phenols and alkenes, DLS, SEM, and XRD confirming the spherical shape with the size around 70-90 nm. The anti-bacterial activity of the gold nanoparticles is evaluated against four different species of bacteria, each two gram-positive and gram-negative. The gold nanoparticles formed by Vitex negundo show good anti-bacterial activity against Salmonella typhi and M. luteus bacteria with a zone of inhibition of 6 mm and 2 mm respectively. Furthermore, the cytotoxic activities of the gold nanoparticles are yet to be known to their full extent.
Collapse