1
|
Ahmad V, Khan MI, Jamal QMS, Alzahrani FA, Albiheyri R. Computational Molecular Docking and Simulation-Based Assessment of Anti-Inflammatory Properties of Nyctanthes arbor-tristis Linn Phytochemicals. Pharmaceuticals (Basel) 2023; 17:18. [PMID: 38256852 PMCID: PMC10820488 DOI: 10.3390/ph17010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The leaves, flowers, seeds, and bark of the Nyctanthes arbor-tristis Linn plant have been pharmacologically evaluated to signify the medicinal importance traditionally described for various ailments. We evaluated the anti-inflammatory potentials of 26 natural compounds using AutoDock 4.2 and Molecular Dynamics (MDS) performed with the GROMACS tool. SwissADME evaluated ADME (adsorption, distribution, metabolism, and excretion) parameters. Arb_E and Beta-sito, natural compounds of the plant, showed significant levels of binding affinity against COX-1, COX-2, PDE4, PDE7, IL-17A, IL-17D, TNF-α, IL-1β, prostaglandin E2, and prostaglandin F synthase. The control drug celecoxib exhibited a binding energy of -9.29 kcal/mol, and among the tested compounds, Arb_E was the most significant (docking energy: -10.26 kcal/mol). Beta_sito was also observed with high and considerable docking energy of -8.86 kcal/mol with the COX-2 receptor. COX-2 simulation in the presence of Arb_E and control drug celecoxib, RMSD ranged from 0.15 to 0.25 nm, showing stability until the end of the simulation. Also, MM-PBSA analysis showed that Arb_E bound to COX-2 exhibited the lowest binding energy of -277.602 kJ/mol. Arb_E and Beta_sito showed interesting ADME physico-chemical and drug-like characteristics with significant drug-like effects. Therefore, the studied natural compounds could be potential anti-inflammatory molecules and need further in vitro/in vivo experimentation to develop novel anti-inflammatory drugs.
Collapse
Affiliation(s)
- Varish Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Imran Khan
- Research Centre, King Faisal Specialist Hospital and Research Centre, P.O. Box 40047, Jeddah 21499, Saudi Arabia
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Faisal A. Alzahrani
- Embryonic Stem Cell Unit, Department of Biochemistry, Faculty of Science, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Raed Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
Faris A, Ibrahim IM, Al kamaly O, Saleh A, Elhallaoui M. Computer-Aided Drug Design of Novel Derivatives of 2-Amino-7,9-dihydro-8H-purin-8-one as Potent Pan-Janus JAK3 Inhibitors. Molecules 2023; 28:5914. [PMID: 37570884 PMCID: PMC10473238 DOI: 10.3390/molecules28155914] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Rheumatoid arthritis (RA) remains one of the most prevalent autoimmune diseases worldwide. Janus kinase 3 (JAK3) is an essential enzyme for treating autoimmune diseases, including RA. Molecular modeling techniques play a crucial role in the search for new drugs by reducing time delays. In this study, the 3D-QSAR approach is employed to predict new JAK3 inhibitors. Two robust models, both field-based with R2 = 0.93, R = 0.96, and Q2 = 87, and atom-based with R2 = 0.94, R = 0.97, and Q2 = 86, yielded good results by identifying groups that may readily direct their interaction. A reliable pharmacophore model, DHRRR1, was provided in this work to enable the clear characterization of chemical features, leading to the design of 13 inhibitors with their pIC50 values. The DHRRR1 model yielded a validation result with a ROC value of 0.87. Five promising inhibitors were selected for further study based on an ADMET analysis of their pharmacokinetic properties and covalent docking (CovDock). Compared to the FDA-approved drug tofacitinib, the pharmaceutical features, binding affinity and stability of the inhibitors were analyzed through CovDock, 300 ns molecular dynamics simulations, free energy binding calculations and ADMET predictions. The results show that the inhibitors have strong binding affinity, stability and favorable pharmaceutical properties. The newly predicted molecules, as JAK3 inhibitors for the treatment of RA, are promising candidates for use as drugs.
Collapse
Affiliation(s)
- Abdelmoujoud Faris
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco;
| | - Ibrahim M. Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo 12613, Egypt;
| | - Omkulthom Al kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (O.A.k.); (A.S.)
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (O.A.k.); (A.S.)
| | - Menana Elhallaoui
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco;
| |
Collapse
|
3
|
Singh AK, Kumar P, Rajput VD, Mishra SK, Tiwari KN, Singh AK, Minkina T, Pandey AK. Phytochemicals, Antioxidant, Anti-inflammatory Studies, and Identification of Bioactive Compounds Using GC-MS of Ethanolic Novel Polyherbal Extract. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04363-7. [PMID: 36701094 DOI: 10.1007/s12010-023-04363-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/27/2023]
Abstract
Hyperglycemia is the hallmark of diabetes, which is a collection of related metabolic disorders. Over time, diabetes can cause a variety of problems, including cardiovascular disease, nephropathy, neuropathy, and retinopathy. Ethanolic novel polyherbal extract (PHE) was prepared by mixing equal amounts of the following ingredients: Terminalia chebula Retz. (TC), Terminalia bellerica Roxb. (TB), Berberis aristata DC. (BA), Nyctanthes arbostratis L. (NA), Premna integrifolia L. (PI), and Andrographis paniculata Nees. (AP). Analysis of PHE results revealed phytochemicals like glycosides, flavonoids, alkaloids, tannins, phytosterols, and saponins. The aim of the study was to prepare an ethanolic extract of PHE using the cold maceration technique, and identify bioactive molecules from gas chromatography-mass spectrometry (GC-MS) analysis, and evaluate biological responses by using in vitro studies like antioxidant and anti-inflammatory activity. PHE was found to contain a total of 35 phytochemicals in GC-MS of which 22 bioactive compounds were obtained in good proportion. There are a few new ones, including 2-buten-1-ol, 2-ethyl-4-(2, 2, 3-trimethyl-3-cyclopenten-1-yl (17.22%), 1, 2, 5, 6-tetrahydrobenzonitrile (4.26%), 4-piperidinamine, 2, 2, 6, 6-tetramethyl-(0.07%), undecanoic acid, 5-chloro-, chloromethyl ester (0.41%), are identified. Antioxidant activity was estimated using EC50 values of 392.143 µg/ml, which were comparable to the standard value of EC50 310.513 µg/ml obtained using DPPH. Antioxidant activity was estimated with EC50 392.143 µg/ml, comparable to standard EC50 310.513 µg/ml using DPPH. In vitro anti-inflammatory potential was found with IC50 of 91.449 µg/ml, comparable to standard IC50 89.451 µg/ml for membrane stabilization and IC50 of 36.940 µg/ml, comparable to standard IC50 35.723 µg/ml for protein denaturation assays. As a result, the findings of this study show an enrichment of bioactive phytochemicals that can be used to investigate biological activity. To better understand how diabetes receptors work, in silico studies like docking could be carried out.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov On Don, Russia
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Kavindra Nath Tiwari
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Anand Kumar Singh
- Department of Chemistry, PG College, Mariahu, VBS Purvanchal University, Jaunpur, Uttar Pradesh, 222161, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov On Don, Russia
| | - Ajay Kumar Pandey
- Department of Kaychikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|