1
|
Wang J, Lai X, Sun Z, Feng S, Li B, Zhao H. KIF14 plays a role in the regulation of the cell cycle and has implications for prognosis in clear cell renal cell carcinoma. BMC Urol 2025; 25:74. [PMID: 40186141 PMCID: PMC11969952 DOI: 10.1186/s12894-025-01732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/03/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Kinesin family member 14 (KIF14) is a significant multifunctional protein that has been linked to several malignancies. However, the varied expression profiles of KIF14 and its prognostic relevance in Clear cell renal cell carcinoma (ccRCC) have yet to be elucidated. METHODS Patients with ccRCC were obtained from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and ArrayExpress databases. A comparison of KIF14 expression levels between ccRCC and normal tissues was conducted using the Wilcoxon rank sum test. Logistic regression analysis was subsequently employed to evaluate the relationship between KIF14 expression and clinicopathological features. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) term analysis, gene set enrichment analysis (GSEA) and single sample gene set enrichment analysis (ssGSEA), as well as CIBERSORT, were utilized to elucidate the enriched pathways and functions linked to KIF14 and to quantify the level of immune cell infiltration. Kaplan-Meier analysis was conducted to assess the correlation between KIF14 expression and survival. Additionally, KIF14 expression was downregulated in A498 ccRCC cells, and their proliferation, expansion capacity, cell cycle, and apoptosis were assessed through CCK-8 assays, colony formation assays, 7-AAD staining, and Annexin V/PI staining, respectively. RESULTS The findings of this study demonstrate that KIF14 mRNA levels are notably increased in ccRCC. Furthermore, a positive association was observed between KIF14 expression and cancer stage, nodal metastasis, and the infiltration of various immune cells in ccRCC. High levels of KIF14 were also found to be indicative of poor survival outcomes among ccRCC patients. Knockdown of KIF14 in A498 cells resulted in reduced proliferation, diminished colony formation capacity, cell cycle arrest, increased apoptosis, and downregulation of CyclinD1 and CDK4. CONCLUSIONS KIF14 down-regulates cell cycle proteins CyclinD1 and CDK4 to facilitate the proliferation of ccRCC cells, suggesting its potential as a therapeutic target and prognostic biomarker in ccRCC.
Collapse
Affiliation(s)
- Jie Wang
- Department of Urology, Ningbo Ninth Hospital, No.68, Xiangbei Road, Ningbo, Zhejiang, 315000, PR China.
| | - Xuejia Lai
- Department of Urology, Ningbo Ninth Hospital, No.68, Xiangbei Road, Ningbo, Zhejiang, 315000, PR China
| | - Zhijun Sun
- Department of Urology, Ningbo Ninth Hospital, No.68, Xiangbei Road, Ningbo, Zhejiang, 315000, PR China
| | - Sike Feng
- Department of Urology, Ningbo Ninth Hospital, No.68, Xiangbei Road, Ningbo, Zhejiang, 315000, PR China
| | - Bi Li
- Department of Urology, Ningbo Ninth Hospital, No.68, Xiangbei Road, Ningbo, Zhejiang, 315000, PR China
| | - Hu Zhao
- Department of General Surgery, 900 Hospital of the Joint Logistics Support Force, 156 Xierhuan Road, Fuzhou, Fujian, 350025, PR China.
| |
Collapse
|
2
|
Yu R, Wu X, Qian F, Yang Q. RFC3 drives the proliferation, migration, invasion and angiogenesis of colorectal cancer cells by binding KIF14. Exp Ther Med 2024; 27:222. [PMID: 38590579 PMCID: PMC11000453 DOI: 10.3892/etm.2024.12510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/26/2024] [Indexed: 04/10/2024] Open
Abstract
Colorectal cancer (CRC) is a deadly and aggressive type of cancer that has a high fatality rate. The expression levels of replication factor C subunit 3 (RFC3) and kinesin family member 14 (KIF14) have been reported to be increased in CRC. The current study aimed to explore the effects of RFC3 on the malignant behaviors of CRC cells and its possible underlying mechanism involving KIF14. RFC3 and KIF14 expression levels in CRC tissues were analyzed using TNMplot database and Gene Expression Profiling Interactive Analysis database bioinformatics tools. RFC3 and KIF14 levels in CRC cells were examined using reverse transcription-quantitative PCR and western blotting. Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays were performed to assess cell proliferation. Cell apoptosis was determined using flow cytometric analysis. Wound healing and Transwell assays were adopted for the evaluation of cell migration and invasion. Tube formation assay in human umbilical vein endothelial cells was used to measure angiogenesis. Western blotting analysis was performed to determine the expression of apoptosis-, migration- and angiogenesis-associated proteins. Additionally, bioinformatics tools predicted the co-expression and interaction of RFC3 and KIF14, which was verified by a co-immunoprecipitation assay. RFC3 displayed elevated expression in CRC tissues and cells, and depletion of RFC3 halted the proliferation, migration, invasion and angiogenesis, while increasing the apoptosis of CRC cells; this was accompanied by changes in the expression levels of related proteins. In addition, RFC3 bound to KIF14 and interference with RFC3 reduced KIF14 expression. Moreover, KIF14 upregulation reversed the effects of RFC3 depletion on the aggressive cellular behaviors in CRC. In conclusion, RFC3 might interact with KIF14 to function as a contributor to the malignant development of CRC.
Collapse
Affiliation(s)
- Rong Yu
- Department of General Surgery, Quzhou Kecheng People's Hospital, Quzhou, Zhejiang 324000, P.R. China
| | - Xinxin Wu
- Department of General Surgery, Yancheng Dafeng Hospital of Traditional Chinese Medicine, Yancheng, Jiangsu 224110, P.R. China
| | - Fang Qian
- Department of Radiology, Wuxi Xinwu Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu 214000, P.R. China
| | - Qian Yang
- Department of Radiology, Maternal and Child Health Hospital of Huaiyin District, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
3
|
Mohajeri Khorasani A, Mohammadi S, Raghibi A, Haj Mohammad Hassani B, Bazghandi B, Mousavi P. miR-17-92a-1 cluster host gene: a key regulator in colorectal cancer development and progression. Clin Exp Med 2024; 24:85. [PMID: 38662056 PMCID: PMC11045601 DOI: 10.1007/s10238-024-01331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
Colorectal cancer (CRC), recognized among the five most prevalent malignancies and most deadly cancers, manifests multifactorial influences stemming from environmental exposures, dietary patterns, age, and genetic predisposition. Although substantial progress has been made in comprehending the etiology of CRC, the precise genetic components driving its pathogenesis remain incompletely elucidated. Within the expansive repertoire of non-coding RNAs, particular focus has centered on the miR-17-92a-1 cluster host gene (MIR17HG) and its associated miRNAs, which actively participate in diverse cellular processes and frequently exhibit heightened expression in various solid tumors, notably CRC. Therefore, the primary objective of this research is to undertake an extensive inquiry into the regulatory mechanisms, structural features, functional attributes, and potential diagnostic and therapeutic implications associated with this cluster in CRC. Furthermore, the intricate interplay between this cluster and the development and progression of CRC will be explored. Our findings underscore the upregulation of the miR-17-92a-1 cluster host gene (MIR17HG) and its associated miRNAs in CRC compared to normal tissues, thus implying their profound involvement in the progression of CRC. Collectively, these molecules are implicated in critical oncogenic processes, encompassing metastatic activity, regulation of apoptotic pathways, cellular proliferation, and drug resistance. Consequently, these findings shed illuminating insights into the potential of MIR17HG and its associated miRNAs as promising targets for therapeutic interventions in the management of CRC.
Collapse
Affiliation(s)
- Amirhossein Mohajeri Khorasani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Samane Mohammadi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Alireza Raghibi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Haj Mohammad Hassani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behina Bazghandi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
4
|
Hu X, Sun Y, Wang S, Zhao H, Wei Y, Fu J, Huang Y, Wu W, Li J, Liu J, Gong S, Zhao Q, Wang L, Jiang R, Song X, Yuan P. CircALMS1 Alleviates Pulmonary Microvascular Endothelial Cell Dysfunction in Pulmonary Hypertension. J Am Heart Assoc 2024; 13:e031867. [PMID: 38497483 PMCID: PMC11009991 DOI: 10.1161/jaha.123.031867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/21/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Circular RNAs can serve as regulators influencing the development of pulmonary hypertension (PH). However, their function in pulmonary vascular intimal injury remains undefined. Thus, we aimed to identify specifically expressed circular RNAs in pulmonary microvascular endothelial cells (PMECs) under hypoxia and PH. METHODS AND RESULTS Deep RNA sequencing and quantitative real-time polymerase chain reaction revealed that circALMS1 (circular RNA Alstrom syndrome protein 1) was reduced in human PMECs under hypoxia (P<0.0001). Molecular biology and histopathology experiments were used to elucidate the roles of circALMS1 in regulating PMEC dysfunction among patients with PH. The circALMS1 expression was decreased in the plasma of patients with PH (P=0.0315). Patients with lower circALMS1 levels had higher risk of death (P=0.0006). Moreover, the circALMS1 overexpression of adeno-associated viruses improved right ventricular function and reduced pulmonary vascular remodeling in monocrotaline-PH and sugen/hypoxia-PH rats (P<0.05). Furthermore, circALMS1 overexpression promoted apoptosis and inhibited PMEC proliferation and migration under hypoxia by directly downregulating miR-17-3p (P<0.05). Dual luciferase assay confirmed the direct binding of circALMS1 to miR-17-3p and miR-17-3p binding to its target gene YT521-B homology domain-containing family protein 2 (YTHDF2) (P<0.05). The YTHDF2 levels were also downregulated in hypoxic PMECs (P<0.01). The small interfering RNA YTHDF2 reversed the effects of miR-17-3p inhibitors on PMEC proliferation, migration, and apoptosis. Finally, the results indicated that, although YTHDF2, as an N(6)-methyladenosine reader protein, contributes to the degradation of many circular RNAs, it could not regulate the circALMS1 levels in PMECs (P=0.9721). CONCLUSIONS Our study sheds new light on circALMS1-regulated dysfunction of PMECs by the miR-17-3p/YTHDF2 pathway under hypoxia and provides insights into the underlying pathogenesis of PH.
Collapse
Affiliation(s)
- Xiaoyi Hu
- Department of Cardio‐Pulmonary Circulation, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yuanyuan Sun
- Department of Respiratory and Critical Care MedicineShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Shang Wang
- Department of Cardio‐Pulmonary Circulation, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Hui Zhao
- Department of Cardio‐Pulmonary Circulation, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
- Institute of Bismuth Science, University of Shanghai for Science and TechnologyShanghaiChina
| | - Yaqin Wei
- Department of Cardio‐Pulmonary Circulation, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of GeriatricsShanghai Institute of Geriatrics, Huadong Hospital, Fudan UniversityShanghaiChina
| | - Jiaqi Fu
- Department of Cardio‐Pulmonary Circulation, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
- Institute of Health Science and EngineeringUniversity of Shanghai Science and TechnologyShanghaiChina
| | - Yuxia Huang
- Department of Cardio‐Pulmonary Circulation, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Wenhui Wu
- Department of Cardio‐Pulmonary Circulation, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jinling Li
- Department of Cardio‐Pulmonary Circulation, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jinming Liu
- Department of Cardio‐Pulmonary Circulation, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Sugang Gong
- Department of Cardio‐Pulmonary Circulation, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Qinhua Zhao
- Department of Cardio‐Pulmonary Circulation, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Lan Wang
- Department of Cardio‐Pulmonary Circulation, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Rong Jiang
- Department of Cardio‐Pulmonary Circulation, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiao Song
- Department of Thoracic SurgeryShanghai Pulmonary Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Ping Yuan
- Department of Cardio‐Pulmonary Circulation, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
5
|
Martinez de Estibariz I, Jakjimovska A, Illarregi U, Martin-Guerrero I, Gutiérrez-Camino A, Lopez-Lopez E, Bilbao-Aldaiturriaga N. The Role of the Dysregulation of Long Non-Coding and Circular RNA Expression in Medulloblastoma: A Systematic Review. Cancers (Basel) 2023; 15:4686. [PMID: 37835380 PMCID: PMC10571996 DOI: 10.3390/cancers15194686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in childhood. Although recent multi-omic studies have led to advances in MB classification, there is still room for improvement with regard to treatment response and survival. Therefore, identification of new and less invasive biomarkers is needed to refine the diagnostic process and to develop more personalized treatment strategies. In this context, non-coding RNAs (ncRNAs) could be useful biomarkers for MB. In this article, we reviewed the role of two types of ncRNAs, long non-coding (lncRNAs) and circular RNAs (circRNAs), as biomarkers for the diagnosis, subgroup classification, and prognosis of MB. We also reviewed potential candidates with specific functions and mechanisms of action in the disease. We performed a search in PubMed and Scopus using the terms ("long non coding RNAs" OR "lncRNAs") and ("circular RNAs" OR "circRNAs") AND "medulloblastoma" to identify biomarker discovery or functional studies evaluating the effects of these ncRNAs in MB. A total of 26 articles met the inclusion criteria. Among the lncRNAs, the tumorigenic effects of the upregulated lnc-IRX3-80 and lnc-LRRC47-78 were the most studied in MB. Among the circRNAs, the upregulation of circSKA3 and its functional impact in MB cell lines were the most consistent results, so this circRNA could be considered a potential biomarker in MB. Additional validation is required for many deregulated lncRNAs and circRNAs; therefore, further studies are warranted.
Collapse
Affiliation(s)
- Ivan Martinez de Estibariz
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (I.M.d.E.); (U.I.); (I.M.-G.)
| | - Anastasija Jakjimovska
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Unai Illarregi
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (I.M.d.E.); (U.I.); (I.M.-G.)
| | - Idoia Martin-Guerrero
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (I.M.d.E.); (U.I.); (I.M.-G.)
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Angela Gutiérrez-Camino
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Elixabet Lopez-Lopez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Nerea Bilbao-Aldaiturriaga
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
| |
Collapse
|
6
|
Yao Y, Shi L, Zhu X. Four differentially expressed exosomal miRNAs as prognostic biomarkers and therapy targets in endometrial cancer: Bioinformatic analysis. Medicine (Baltimore) 2023; 102:e34998. [PMID: 37653757 PMCID: PMC10470766 DOI: 10.1097/md.0000000000034998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
Endometrial cancer (EC) is one of the most common gynecological malignancies worldwide. Accumulated evidence has demonstrated exosomes of cancer cells carry microRNAs (miRNAs) to nonmalignant cells to induce metastasis. Our study aimed to find possible biomarkers of EC. Data for miRNA expression related with exosome from EC patients were downloaded from The Cancer Genome Atlas database, and the miRNA expression profiles associated with exosomes of EC were downloaded from the National Center for Biotechnology Information. We used different algorithms to analyze the differential miRNA expression, infer the relative proportion of immune infiltrating cells, predict chemotherapy sensitivity, and comprehensively score each gene set to evaluate the potential biological function changes of different samples. The gene ontology analysis and Kyoto encyclopedia of genome genomics pathway analysis were performed for specific genes. A total of 13 differential miRNAs were identified, of which 4 were up-regulated. The 4 miRNAs, that is hsa-miR-17-3p, hsa-miR-99b-3p, hsa-miR-193a-5p, and hsa-miR-320d, were the hub exosomal miRNAs that were all closely related to the clinic phenotypes and prognosis of patients. This study preliminarily indicates that the 4 hub exosomal miRNAs (hsa-miR-17-3p, hsa-miR-99b-3p, hsa-miR-193a-5p, and hsa-miR-320d) could be used as prognostic biomarkers or therapy targets in EC. Further studies are required to make sure of their real feasibility and values in the EC clinic and the relative research.
Collapse
Affiliation(s)
- Yingsha Yao
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Liujing Shi
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xiaoming Zhu
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Women’s Reproductive Health of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
7
|
Salucci S, Aramini B, Bartoletti-Stella A, Versari I, Martinelli G, Blalock W, Stella F, Faenza I. Phospholipase Family Enzymes in Lung Cancer: Looking for Novel Therapeutic Approaches. Cancers (Basel) 2023; 15:3245. [PMID: 37370855 DOI: 10.3390/cancers15123245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Lung cancer (LC) is the second most common neoplasm in men and the third most common in women. In the last decade, LC therapies have undergone significant improvements with the advent of immunotherapy. However, the effectiveness of the available treatments remains insufficient due to the presence of therapy-resistant cancer cells. For decades, chemotherapy and radiotherapy have dominated the treatment strategy for LC; however, relapses occur rapidly and result in poor survival. Malignant lung tumors are classified as either small- or non-small-cell lung carcinoma (SCLC and NSCLC). Despite improvements in the treatment of LC in recent decades, the benefits of surgery, radiotherapy, and chemotherapy are limited, although they have improved the prognosis of LC despite the persistent low survival rate due to distant metastasis in the late stage. The identification of novel prognostic molecular markers is crucial to understand the underlying mechanisms of LC initiation and progression. The potential role of phosphatidylinositol in tumor growth and the metastatic process has recently been suggested by some researchers. Phosphatidylinositols are lipid molecules and key players in the inositol signaling pathway that have a pivotal role in cell cycle regulation, proliferation, differentiation, membrane trafficking, and gene expression. In this review, we discuss the current understanding of phosphoinositide-specific phospholipase enzymes and their emerging roles in LC.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Beatrice Aramini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Anna Bartoletti-Stella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Ilaria Versari
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - William Blalock
- "Luigi Luca Cavalli-Sforza'' Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Franco Stella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Irene Faenza
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|