1
|
Chen Y, Zhang Z, Xiong R, Luan M, Qian Z, Zhang Q, Wang S. A multi-component paclitaxel -loaded β-elemene nanoemulsion by transferrin modification enhances anti-non-small-cell lung cancer treatment. Int J Pharm 2024; 663:124570. [PMID: 39134291 DOI: 10.1016/j.ijpharm.2024.124570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
A multi-component paclitaxel (PTX) -loaded β-elemene nanoemulsion by transferrin modification (Tf-PE-MEs) was developed to enhance non-small-cell lung cancer (NSCLC) treatment. After transferrin modification, the particle size of Tf-PE-MEs was (14.87 ± 1.84) nm, and the zeta potential was (-10.19 ± 0.870) mV, respectively. In vitro experiments showed that Tf-PE-MEs induced massive apoptosis in A549 cells, indicating that it had significant cytotoxicity to A549 cells. Through transferrin modification, Tf-PE-MEs accumulated at the tumor site efficiently with overexpressed transferrin receptor (TfR) on the surface of A549 cells. This will allow increasing PTX and β-elemene concentration in the target cells, enhancing the therapeutic effect. Compared to PTX alone, Tf-PE-MEs displayed good anti-tumor efficacy and diminished systemic toxicity in vivo studies. With favourable therapeutic potential, this study provides a new strategy for the combined anticancer treatment of non-small cell lung cancer.
Collapse
Affiliation(s)
- Yunyan Chen
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Institute of Synthesis and Application of Medical Materials, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Ziwei Zhang
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Institute of Synthesis and Application of Medical Materials, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Rui Xiong
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Institute of Synthesis and Application of Medical Materials, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Minna Luan
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Institute of Synthesis and Application of Medical Materials, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Zhilei Qian
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qiang Zhang
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Institute of Synthesis and Application of Medical Materials, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Shaozhen Wang
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Institute of Synthesis and Application of Medical Materials, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| |
Collapse
|
2
|
Profitt LA, Baxter RHG, Valentine AM. Superstoichiometric Binding of the Anticancer Agent Titanocene Dichloride by Human Serum Transferrin and the Accompanying Lobe Closure. Biochemistry 2022; 61:795-803. [PMID: 35373558 DOI: 10.1021/acs.biochem.1c00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Titanocene dichloride (TDC) is an anticancer agent that delivers Ti(IV) into each of the two Fe(III) binding sites of bilobal human serum transferrin (Tf). This protein has been implicated in the selective transport of Ti(IV) to cells. How Ti(IV) might be released from the Tf Fe(III) binding site has remained a question, and crystal structures have raised issues about lobe occupancy and lobe closure in Ti(IV)-loaded Tf, compared with the Fe(III)-loaded form. Here, inductively coupled plasma optical emission spectroscopy reveals that Tf can stabilize toward hydrolytic precipitation more than 2 equiv of Ti, implying superstoichiometric binding beyond the two Fe(III) binding sites. Further studies support the inability of TDC to induce a complete lobe closure of Tf. Fluorescence data for TDC binding at low equivalents of TDC support an initial protein conformational change and lobe closure upon Ti binding, whereas data at higher equivalents support an open lobe configuration. Spectroscopic titration reveals less intense protein-metal electronic transitions as TDC equivalents are increased. Denaturing urea-PAGE gels and small angle X-ray scattering studies support an open lobe conformation. The concentrations of bicarbonate used in some earlier studies are demonstrated here to cause a pH change over time, which may contribute to variation in the apparent molar absorptivity associated with Ti(IV) binding in the Fe binding site. Finally, Fe(III)-bound holo-Tf still stabilizes TDC toward hydrolytic precipitation, a finding that underscores the importance of the interactions of Tf and TDC outside the Fe(III) binding site and suggests possible new pathways of Ti introduction to cells.
Collapse
Affiliation(s)
- Lauren A Profitt
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Richard H G Baxter
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Ann M Valentine
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
3
|
Ott DB, Hartwig A, Stillman MJ. Competition between Al 3+ and Fe 3+ binding to human transferrin and toxicological implications: structural investigations using ultra-high resolution ESI MS and CD spectroscopy. Metallomics 2020; 11:968-981. [PMID: 30916671 DOI: 10.1039/c8mt00308d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human serum transferrin (hTF) is an iron binding protein with the primary task of ensuring well-controlled transport of Fe3+-ions in the bloodstream. Furthermore, hTF has been identified as a key component in the trafficking of Al3+-ions from the serum to cells. It is clear that binding alone does not guarantee cellular uptake via the transferrin receptor, since this is determined by the structural properties of the metal-protein complex. The conformation of the metallated hTF is critically important for delivery of Fe3+ or any other metal into the cell. The combination of ultra-high resolution ESI mass spectrometry and CD spectroscopy together provide accurate species distribution of the Fe3+ during stepwise addition to apo-hTF and an indirect indication of the tertiary structure of the metallated protein. These two methods together are extremely fine probes of structural changes as a function of precise metal binding status at micromolar concentrations. Simulation of the precise domain distribution could be determined during the stepwise metallation from 0 to 2 Fe3+ added. Analysis of the ESI-MS data for the stepwise metallation of apo-hTF and Al1 or 2-hTF with Fe3+ was carried out and used to simulate the experimental speciation based on the reported KF values. There are six main conclusions: (1) Fe3+ binds predominantly, initially to the C-lobe. (2) The CD spectral properties indicate that the C-lobe metallation dominates the structural properties of both binding sites; N-lobe metallation modifies the C-lobe structure. (3) Fe3+ metallation of the mixed Al1-2-hTF results in the dominant form of Fe1Al1-hTF. (4) The first Fe3+ bound to Al1-hTF binds predominantly in the C-lobe domain. (5) The CD spectral properties when Fe3+ binds to Al1-2-hTF indicates that Al-N-lobe occupation mirrors the structural effects of N-lobe occupation by Fe3+. (6) With respect to how Al3+ might enter the cell, the formation of a hybrid form Al1Fe1-hTF might enable the Al3+ to enter the cell via receptor-mediated endocytosis due to the binding of Fe3+ in the C-lobe of the protein which is primarily responsible for the structure of the metal-protein complex.
Collapse
Affiliation(s)
- Dorothee B Ott
- Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | | | | |
Collapse
|
4
|
Igbokwe IO, Igwenagu E, Igbokwe NA. Aluminium toxicosis: a review of toxic actions and effects. Interdiscip Toxicol 2019; 12:45-70. [PMID: 32206026 PMCID: PMC7071840 DOI: 10.2478/intox-2019-0007] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 08/29/2019] [Indexed: 12/11/2022] Open
Abstract
Aluminium (Al) is frequently accessible to animal and human populations to the extent that intoxications may occur. Intake of Al is by inhalation of aerosols or particles, ingestion of food, water and medicaments, skin contact, vaccination, dialysis and infusions. Toxic actions of Al induce oxidative stress, immunologic alterations, genotoxicity, pro-inflammatory effect, peptide denaturation or transformation, enzymatic dysfunction, metabolic derangement, amyloidogenesis, membrane perturbation, iron dyshomeostasis, apoptosis, necrosis and dysplasia. The pathological conditions associated with Al toxicosis are desquamative interstitial pneumonia, pulmonary alveolar proteinosis, granulomas, granulomatosis and fibrosis, toxic myocarditis, thrombosis and ischemic stroke, granulomatous enteritis, Crohn's disease, inflammatory bowel diseases, anemia, Alzheimer's disease, dementia, sclerosis, autism, macrophagic myofasciitis, osteomalacia, oligospermia and infertility, hepatorenal disease, breast cancer and cyst, pancreatitis, pancreatic necrosis and diabetes mellitus. The review provides a broad overview of Al toxicosis as a background for sustained investigations of the toxicology of Al compounds of public health importance.
Collapse
Affiliation(s)
- Ikechukwu Onyebuchi Igbokwe
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| | - Ephraim Igwenagu
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| | - Nanacha Afifi Igbokwe
- Department Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| |
Collapse
|
5
|
Exley C, Mold MJ. The binding, transport and fate of aluminium in biological cells. J Trace Elem Med Biol 2015; 30:90-5. [PMID: 25498314 DOI: 10.1016/j.jtemb.2014.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 11/13/2014] [Indexed: 11/17/2022]
Abstract
Aluminium is the most abundant metal in the Earth's crust and yet, paradoxically, it has no known biological function. Aluminium is biochemically reactive, it is simply that it is not required for any essential process in extant biota. There is evidence neither of element-specific nor evolutionarily conserved aluminium biochemistry. This means that there are no ligands or chaperones which are specific to its transport, there are no transporters or channels to selectively facilitate its passage across membranes, there are no intracellular storage proteins to aid its cellular homeostasis and there are no pathways which evolved to enable the metabolism and excretion of aluminium. Of course, aluminium is found in every compartment of every cell of every organism, from virus through to Man. Herein we have investigated each of the 'silent' pathways and metabolic events which together constitute a form of aluminium homeostasis in biota, identifying and evaluating as far as is possible what is known and, equally importantly, what is unknown about its uptake, transport, storage and excretion.
Collapse
Affiliation(s)
- Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG, UK.
| | - Matthew J Mold
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG, UK
| |
Collapse
|
6
|
Mujika JI, Rezabal E, Mercero JM, Ruipérez F, Costa D, Ugalde JM, Lopez X. Aluminium in biological environments: a computational approach. Comput Struct Biotechnol J 2014; 9:e201403002. [PMID: 24757505 PMCID: PMC3995234 DOI: 10.5936/csbj.201403002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 03/07/2014] [Accepted: 03/23/2014] [Indexed: 12/02/2022] Open
Abstract
The increased availability of aluminium in biological environments, due to human intervention in the last century, raises concerns on the effects that this so far “excluded from biology” metal might have on living organisms. Consequently, the bioinorganic chemistry of aluminium has emerged as a very active field of research. This review will focus on our contributions to this field, based on computational studies that can yield an understanding of the aluminum biochemistry at a molecular level. Aluminium can interact and be stabilized in biological environments by complexing with both low molecular mass chelants and high molecular mass peptides. The speciation of the metal is, nonetheless, dictated by the hydrolytic species dominant in each case and which vary according to the pH condition of the medium. In blood, citrate and serum transferrin are identified as the main low molecular mass and high molecular mass molecules interacting with aluminium. The complexation of aluminium to citrate and the subsequent changes exerted on the deprotonation pathways of its tritable groups will be discussed along with the mechanisms for the intake and release of aluminium in serum transferrin at two pH conditions, physiological neutral and endosomatic acidic. Aluminium can substitute other metals, in particular magnesium, in protein buried sites and trigger conformational disorder and alteration of the protonation states of the protein's sidechains. A detailed account of the interaction of aluminium with proteic sidechains will be given. Finally, it will be described how alumnium can exert oxidative stress by stabilizing superoxide radicals either as mononuclear aluminium or clustered in boehmite. The possibility of promotion of Fenton reaction, and production of hydroxyl radicals will also be discussed.
Collapse
Affiliation(s)
- Jon I Mujika
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain
| | - Elixabete Rezabal
- Laboratoire de Chimie Moleculaire, Department of Chemistry, Ecole Polytechnique and CNRS, 91128 Palaiseau Cedex, France
| | - Jose M Mercero
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain
| | - Fernando Ruipérez
- POLYMAT, Euskal Herriko Unibertsitatea UPV/EHU. Joxe Mari Korta zentroa, Tolosa Etorbidea 72, 20018 Donostia-San Sebastián, Euskadi, Spain
| | - Dominique Costa
- Laboratoire de Physico-Chimie des Surfaces (UMR 7045), ENSCP Chimie-Paristech, 11 rue P. et M. Curie, 75005 Paris, France
| | - Jesus M Ugalde
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain
| | - Xabier Lopez
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain
| |
Collapse
|
7
|
Abstract
Human activities have circumvented the efficient geochemical cycling of aluminium within the lithosphere and therewith opened a door, which was previously only ajar, onto the biotic cycle to instigate and promote the accumulation of aluminium in biota and especially humans. Neither these relatively recent activities nor the entry of aluminium into the living cycle are showing any signs of abating and it is thus now imperative that we understand as fully as possible how humans are exposed to aluminium and the future consequences of a burgeoning exposure and body burden. The aluminium age is upon us and there is now an urgent need to understand how to live safely and effectively with aluminium.
Collapse
Affiliation(s)
- Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire, UK.
| |
Collapse
|
8
|
Mujika JI, Escribano B, Akhmatskaya E, Ugalde JM, Lopez X. Molecular Dynamics Simulations of Iron- and Aluminum-Loaded Serum Transferrin: Protonation of Tyr188 Is Necessary To Prompt Metal Release. Biochemistry 2012; 51:7017-27. [DOI: 10.1021/bi300584p] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. I. Mujika
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center, PK 1072, 20080 Donostia, Euskadi, Spain
| | - B. Escribano
- Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo 14, E-48009
Bilbao, Spain
| | - E. Akhmatskaya
- Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo 14, E-48009
Bilbao, Spain
| | - J. M. Ugalde
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center, PK 1072, 20080 Donostia, Euskadi, Spain
| | - X. Lopez
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center, PK 1072, 20080 Donostia, Euskadi, Spain
| |
Collapse
|
9
|
Sakajiri T, Yajima H, Yamamura T. Density Functional Theory Study on Metal-Binding Energies for Human Serum Transferrin-Metal Complexes. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/124803] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The absolute values of the metal-binding energies of human serum transferrin (Tf) N-lobe, |ΔE|, were calculated using the density functional theory and were found to increase in magnitude in the following order: Fe(III)>Ga(III)>Al(III)>Cu(II)>Zn(II)>Ni(II). The calculated energies were well correlated with the logarithmic values of the reported metal-binding constants of Tf, which had been experimentally determined, with a correlation coefficient of 0.96. In the estimation of the binding energies, the solvation energies (solvent effect) of free metal ions were a very important factor. The results provide a theoretical explanation for the binding of Fe(III) to Tf, which produces sufficient energy to induce a conformational transition of the Tf molecule, making it possible to interact with Tf receptor 1.
Collapse
Affiliation(s)
- Tetsuya Sakajiri
- Faculty of Nutritional Sciences, The University of Morioka, Takizawa, Iwate 020-0183, Japan
| | - Hirofumi Yajima
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1–3 Kagurazaka, Shinjyuku-ku, Tokyo 162-8601, Japan
| | - Takaki Yamamura
- Faculty of Nutritional Sciences, The University of Morioka, Takizawa, Iwate 020-0183, Japan
| |
Collapse
|
10
|
The binding and transport of alternative metals by transferrin. Biochim Biophys Acta Gen Subj 2012; 1820:362-78. [DOI: 10.1016/j.bbagen.2011.07.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/28/2011] [Accepted: 07/06/2011] [Indexed: 11/24/2022]
|
11
|
Kubáň P, Timerbaev AR. CE of inorganic species - A review of methodological advancements over 2009-2010. Electrophoresis 2011; 33:196-210. [DOI: 10.1002/elps.201100357] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 07/30/2011] [Accepted: 07/30/2011] [Indexed: 01/13/2023]
|
12
|
A QM/MM study of the complexes formed by aluminum and iron with serum transferrin at neutral and acidic pH. J Inorg Biochem 2011; 105:1446-56. [DOI: 10.1016/j.jinorgbio.2011.07.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/13/2011] [Accepted: 07/26/2011] [Indexed: 11/18/2022]
|
13
|
El Hage Chahine JM, Hémadi M, Ha-Duong NT. Uptake and release of metal ions by transferrin and interaction with receptor 1. Biochim Biophys Acta Gen Subj 2011; 1820:334-47. [PMID: 21872645 DOI: 10.1016/j.bbagen.2011.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND For a metal to follow the iron acquisition pathway, four conditions are required: 1-complex formation with transferrin; 2-interaction with receptor 1; 3-metal release in the endosome; and 4-metal transport to cytosol. SCOPE OF THE REVIEW This review deals with the mechanisms of aluminum(III), cobalt(III), uranium(VI), gallium(III) and bismuth(III) uptake by transferrin and interaction with receptor 1. MAJOR CONCLUSIONS The interaction of the metal-loaded transferrin with receptor 1 takes place in one or two steps: a very fast first step (μs to ms) between the C-lobe and the helical domain of the receptor, and a second slow step (2-6h) between the N-lobe and the protease-like domain. In transferrin loaded with metals other than iron, the dissociation constants for the interaction of the C-lobe with TFR are in a comparable range of magnitudes 10 to 0.5μM, whereas those of the interaction of the N-lobe are several orders of magnitudes lower or not detected. Endocytosis occurs in minutes, which implies a possible internalization of the metal-loaded transferrin with only the C-lobe interacting with the receptor. GENERAL SIGNIFICANCE A competition with iron is possible and implies that metal internalization is more related to kinetics than thermodynamics. As for metal release in the endosome, it is faster than the recycling time of transferrin, which implies its possible liberation in the cell. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
Affiliation(s)
- Jean-Michel El Hage Chahine
- Université Paris Diderot Sorbonne Paris Cité–CNRS, Interfaces, Traitements, Organisation Dynamique des Systèmes–UMR 7086, Bâtiment Lavoisier, 15 rue Jean-Antoine de Baïf,75205 Paris Cedex 13, France.
| | | | | |
Collapse
|
14
|
Statement of EFSA on the Evaluation of a new study related to the bioavailability of aluminium in food. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2157] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
15
|
Albro MB, Banerjee RE, Li R, Oungoulian SR, Chen B, del Palomar AP, Hung CT, Ateshian GA. Dynamic loading of immature epiphyseal cartilage pumps nutrients out of vascular canals. J Biomech 2011; 44:1654-9. [PMID: 21481875 DOI: 10.1016/j.jbiomech.2011.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 11/30/2022]
Abstract
The potential influence of mechanical loading on transvascular transport in vascularized soft tissues has not been explored extensively. This experimental investigation introduced and explored the hypothesis that dynamic mechanical loading can pump solutes out of blood vessels and into the surrounding tissue, leading to faster uptake and higher solute concentrations than could otherwise be achieved under unloaded conditions. Immature epiphyseal cartilage was used as a model tissue system, with fluorescein (332 Da), dextran (3, 10, and 70 kDa) and transferrin (80 kDa) as model solutes. Cartilage disks were either dynamically loaded (± 10% compression over a 10% static offset strain, at 0.2 Hz) or maintained unloaded in solution for up to 20 h. Results demonstrated statistically significant solute uptake in dynamically loaded (DL) explants relative to passive diffusion (PD) controls for all solutes except unbound fluorescein, as evidenced by the DL:PD concentration ratios after 20 h (1.0 ± 0.2, 2.4 ± 1.1, 6.1 ± 3.3, 9.0 ± 4.0, and 5.5 ± 1.6 for fluorescein, 3, 10, and 70 kDa dextran, and transferrin). Significant uptake enhancements were also observed within the first 30s of loading. Termination of dynamic loading produced dissipation of enhanced solute uptake back to PD control values. Confocal images confirmed that solute uptake occurred from cartilage canals into their surrounding extracellular matrix. The incidence of this loading-induced transvascular solute pumping mechanism may significantly alter our understanding of the interaction of mechanical loading and tissue metabolism.
Collapse
Affiliation(s)
- Michael B Albro
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, 220 SW Mudd Mail Code 4703, New York, NY 10027, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hémadi M, Ha-Duong NT, El Hage Chahine JM. Can Uranium Be Transported by the Iron-Acquisition Pathway? Ur Uptake by Transferrin. J Phys Chem B 2011; 115:4206-15. [DOI: 10.1021/jp111950c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miryana Hémadi
- ITODYS, Interactions, Traitements et Organisation et Dynamique des Systèmes, Université Paris-Diderot, CNRS UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Nguyêt-Thanh Ha-Duong
- ITODYS, Interactions, Traitements et Organisation et Dynamique des Systèmes, Université Paris-Diderot, CNRS UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Jean-Michel El Hage Chahine
- ITODYS, Interactions, Traitements et Organisation et Dynamique des Systèmes, Université Paris-Diderot, CNRS UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| |
Collapse
|