1
|
Liu L, Yang C, Zhu L, Wang Y, Zheng F, Liang L, Cao P, Liu J, Han X, Zhang J. RSL3 enhances ROS-mediated cell apoptosis of myelodysplastic syndrome cells through MYB/Bcl-2 signaling pathway. Cell Death Dis 2024; 15:465. [PMID: 38956026 PMCID: PMC11219730 DOI: 10.1038/s41419-024-06866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Myelodysplastic syndromes (MDS) are clonal hematopoietic malignancies and seriously threaten people's health. Current therapies include bone marrow transplantation and several hypomethylating agents. However, many elderly patients cannot benefit from bone marrow transplantation and many patients develop drug resistance to hypomethylating agents, making it urgent to explore novel therapy. RSL3 can effectively induce ferroptosis in various tumors and combination of RSL3 and hypomethylating agents is promising to treat many tumors. However, its effect in MDS was unknown. In this study, we found that RSL3 inhibited MDS cell proliferation through inducing ROS-dependent apoptosis. RSL3 inhibited Bcl-2 expression and increased caspase 3 and PARP cleavage. RNA-seq analysis revealed that MYB may be a potential target of RSL3. Rescue experiments showed that overexpression of MYB can rescue MDS cell proliferation inhibition caused by RSL3. Cellular thermal shift assay showed that RSL3 binds to MYB to exert its function. Furthermore, RSL3 inhibited tumor growth and decreased MYB and Bcl-2 expression in vivo. More importantly, RSL3 decreased the viability of bone marrow mononuclear cells (BMMCs) isolated from MDS patients, and RSL3 had a synergistic effect with DAC in MDS cells. Our studies have uncovered RSL3 as a promising compound and MYB/Bcl-2 signaling pathway as a potential target for MDS treatment.
Collapse
Affiliation(s)
- Li Liu
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, Hunan, China
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Chaoying Yang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Lin Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Yanyan Wang
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Fuxiang Zheng
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China
| | - Long Liang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Pengfei Cao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xu Han
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Ji Zhang
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, Hunan, China.
- MOE Key Laboratory of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Kreindl C, Soto-Alarcón SA, Hidalgo M, Riveros AL, Añazco C, Pulgar R, Porras O. Selenium Compounds Affect Differently the Cytoplasmic Thiol/Disulfide State in Dermic Fibroblasts and Improve Cell Migration by Interacting with the Extracellular Matrix. Antioxidants (Basel) 2024; 13:159. [PMID: 38397757 PMCID: PMC10886037 DOI: 10.3390/antiox13020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Deficient wound healing is frequently observed in patients diagnosed with diabetes, a clinical complication that compromises mobility and leads to limb amputation, decreasing patient autonomy and family lifestyle. Fibroblasts are crucial for secreting the extracellular matrix (ECM) to pave the wound site for endothelial and keratinocyte regeneration. The biosynthetic pathways involved in collagen production and crosslinking are intimately related to fibroblast redox homeostasis. In this study, two sets of human dermic fibroblasts were cultured in normal (5 mM) and high (25 mM)-glucose conditions in the presence of 1 µM selenium, as sodium selenite (inorganic) and the two selenium amino acids (organic), Se-cysteine and Se-methionine, for ten days. We investigated the ultrastructural changes in the secreted ECM induced by these conditions using scanning electron microscopy (SEM). In addition, we evaluated the redox impact of these three compounds by measuring the basal state and real-time responses of the thiol-based HyPer biosensor expressed in the cytoplasm of these fibroblasts. Our results indicate that selenium compound supplementation pushed the redox equilibrium towards a more oxidative tone in both sets of fibroblasts, and this effect was independent of the type of selenium. The kinetic analysis of biosensor responses allowed us to identify Se-cysteine as the only compound that simultaneously improved the sensitivity to oxidative stimuli and augmented the disulfide bond reduction rate in high-glucose-cultured fibroblasts. The redox response profiles showed no clear association with the ultrastructural changes observed in matrix fibers secreted by selenium-treated fibroblasts. However, we found that selenium supplementation improved the ECM secreted by high-glucose-cultured fibroblasts according to endothelial migration assessed with a wound healing assay. Direct application of sodium selenite and Se-cysteine on purified collagen fibers subjected to glycation also improved cellular migration, suggesting that these selenium compounds avoid the undesired effect of glycation.
Collapse
Affiliation(s)
- Christine Kreindl
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago 7830490, Chile; (C.K.); (M.H.)
| | - Sandra A. Soto-Alarcón
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 7500912, Chile;
| | - Miltha Hidalgo
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago 7830490, Chile; (C.K.); (M.H.)
| | - Ana L. Riveros
- Laboratorio de Nanobiotecnología y Nanotoxicología, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingston 1007, Santiago 8380492, Chile;
| | - Carolina Añazco
- Laboratorio de Bioquímica Nutricional, Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, General Lagos #1190, Valdivia 5110773, Chile;
| | - Rodrigo Pulgar
- Laboratory of Genomics and Genetics of Biological Interactions, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile;
| | - Omar Porras
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago 7830490, Chile; (C.K.); (M.H.)
| |
Collapse
|
3
|
Polyphyllin VI Induces Caspase-1-Mediated Pyroptosis via the Induction of ROS/NF-κB/NLRP3/GSDMD Signal Axis in Non-Small Cell Lung Cancer. Cancers (Basel) 2020; 12:cancers12010193. [PMID: 31941010 PMCID: PMC7017302 DOI: 10.3390/cancers12010193] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Trillium tschonoskii Maxim (TTM), a traditional Chinese medicine, has been demonstrated to have a potent anti-tumor effect. Recently, polyphyllin VI (PPVI), a main saponin isolated from TTM, was reported by us to significantly suppress the proliferation of non-small cell lung cancer (NSCLC) via the induction of apoptosis and autophagy in vitro and in vivo. In this study, we further found that the NLRP3 inflammasome was activated in PPVI administrated A549-bearing athymic nude mice. As is known to us, pyroptosis is an inflammatory form of caspase-1-dependent programmed cell death that plays an important role in cancer. By using A549 and H1299 cells, the in vitro effect and action mechanism by which PPVI induces activation of the NLRP3 inflammasome in NSCLC were investigated. The anti-proliferative effect of PPVI in A549 and H1299 cells was firstly measured and validated by MTT assay. The activation of the NLRP3 inflammasome was detected by using Hoechst33324/PI staining, flow cytometry analysis and real-time live cell imaging methods. We found that PPVI significantly increased the percentage of cells with PI signal in A549 and H1299, and the dynamic change in cell morphology and the process of cell death of A549 cells indicated that PPVI induced an apoptosis-to-pyroptosis switch, and, ultimately, lytic cell death. In addition, belnacasan (VX-765), an inhibitor of caspase-1, could remarkably decrease the pyroptotic cell death of PPVI-treated A549 and H1299 cells. Moreover, by detecting the expression of NLRP3, ASC, caspase-1, IL-1β, IL-18 and GSDMD in A549 and h1299 cells using Western blotting, immunofluorescence imaging and flow cytometric analysis, measuring the caspase-1 activity using colorimetric assay, and quantifying the cytokines level of IL-1β and IL-18 using ELISA, the NLRP3 inflammasome was found to be activated in a dose manner, while VX-765 and necrosulfonamide (NSA), an inhibitor of GSDMD, could inhibit PPVI-induced activation of the NLRP3 inflammasome. Furthermore, the mechanism study found that PPVI could activate the NF-κB signaling pathway via increasing reactive oxygen species (ROS) levels in A549 and H1299 cells, and N-acetyl-L-cysteine (NAC), a scavenger of ROS, remarkably inhibited the cell death, and the activation of NF-κB and the NLRP3 inflammasome in PPVI-treated A549 and H1299 cells. Taken together, these data suggested that PPVI-induced, caspase-1-mediated pyroptosis via the induction of the ROS/NF-κB/NLRP3/GSDMD signal axis in NSCLC, which further clarified the mechanism of PPVI in the inhibition of NSCLC, and thereby provided a possibility for PPVI to serve as a novel therapeutic agent for NSCLC in the future.
Collapse
|
4
|
Antimutagenic Effects of Selenium-Enriched Polysaccharides from Pyracantha fortuneana through Suppression of Cytochrome P450 1A Subfamily in the Mouse Liver. Molecules 2016; 21:molecules21121731. [PMID: 27999293 PMCID: PMC6272851 DOI: 10.3390/molecules21121731] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/24/2016] [Accepted: 12/02/2016] [Indexed: 11/17/2022] Open
Abstract
Both selenium (Se) and polysaccharides from Pyracantha fortuneana (Maxim.) Li (PFPs) (P. fortuneana) have been reported to possess antioxidative and immuno-protective activities. Whether or not Se-containing polysaccharides (Se-PFPs) have synergistic effect of Se and polysaccharides on enhancing the antioxidant and immune activities remains to be determined. We previously reported that polysaccharides isolated from Se-enriched P. fortuneana (Se-PFPs) possessed hepatoprotective effects. However, it is not clear whether or not they have anti-mutagenic effects. In the present study, we compared and evaluated anti-mutagenic effects of Se-PFPs at three concentrations (1.35, 2.7 and 5.4 g/kg body weight) with those of PFPs, Se alone or Se + PFPs in mice using micronucleus assay in bone marrow and peripheral blood as well as mitomycin C-induced chromosomal aberrations in mouse testicular cells. We also elucidated the underlying mechanism. Our results demonstrated that Se-PFPs inhibited cyclophosphamide (CP)-induced micronucleus formation in both bone marrow and peripheral blood, enhanced the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in mouse liver, and reduced the activity and expression of cytochrome P450 1A (CYP4501A) in mouse liver in a dose-dependent manner. In addition, we found that the anti-mutagenic potential of Se-PFPs was higher than those of PFPs, Se alone or Se + PFPs at the same level. These results suggest that the anti-mutagenic potential of Se-PFPs may be mediated through the inhibition of the activity and expression of CYP4501A. This study indicates that application of Se-PFPs may provide an alternative strategy for cancer therapy by targeting CYP1A family.
Collapse
|
5
|
Wang W, Lee S, Hung SSO, Deng DF. Responses of heat shock protein 70 and caspase-3/7 to dietary selenomethionine in juvenile white sturgeon. ACTA ACUST UNITED AC 2016; 2:45-50. [PMID: 29766994 PMCID: PMC5940976 DOI: 10.1016/j.aninu.2016.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 01/15/2023]
Abstract
An 8-week feeding trial was conducted to investigate the responses of juvenile white sturgeon (Acipenser transmontanus) to elevated dietary selenium (Se) based on the determination of the RNA/DNA ratio in muscle, heat shock protein 70 (Hsp70), and caspase-3/7 in muscle and/or liver tissues. Four semi-purified test diets were prepared by adding different levels of L-selenomethionine (0, 50, 100, and 200 mg/kg diet). The analytical determinations of total Se were 2.2, 19.7, 40.1, and 77.7 mg/kg diet. The sturgeon (initial body weight: 30 ± 2 g; mean ± SEM) were raised in indoor tanks provided with flow through freshwater (18–19 °C). There were three replicates for each dietary treatment with 25 fish per replicate. The liver and muscle tissues were collected at 4 and 8 weeks after feeding the test diets. A significant interaction between duration and levels of dietary Se exposures on RNA/DNA ratio in the muscle tissue was detected (P < 0.05). Although there was no significant main effect due to the duration of dietary Se exposures (i.e., 4 weeks versus 8 weeks) on muscle RNA/DNA ratio (P ≥ 0.05), the ratio was significantly decreased with increasing dietary Se levels. Significant main effects were caused by the duration and levels of dietary Se exposures on Hsp70 in both the muscle and liver tissues, with significant increases in Hsp70 due to a longer exposure (8 weeks) and higher levels (40.1 and 77.7 mg Se/kg diet) of dietary Se. The caspase-3/7 activity in the liver were significantly higher in fish fed the diets containing 40.1 and 77.7 mg Se/kg diet than those fed the other diets. The toxic thresholds of Se in the muscle were estimated to be 32.2 and 26.6 mg Se/kg for the depressed specific growth rate and the induced Hsp70 response in muscle, respectively. This result indicated that the Hsp70 response in muscle is a more sensitive biomarker than the SGR of sturgeon for evaluating Se toxicity in white sturgeon. Results of the current study suggest that a mechanism involved with the activation of stress protein production and apoptosis protects white sturgeon from the lethal effect of Se.
Collapse
Affiliation(s)
- Weifang Wang
- Qingdao Key Laboratory of Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Seunghyung Lee
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee 53204, USA
| | - Silas S O Hung
- Department of Animal Science, University of California, Davis 95616-8521, USA
| | - Dong-Fang Deng
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee 53204, USA
| |
Collapse
|
6
|
Wang K, Fu XY, Fu XT, Hou YJ, Fang J, Zhang S, Yang MF, Li DW, Mao LL, Sun JY, Yuan H, Yang XY, Fan CD, Zhang ZY, Sun BL. DSePA Antagonizes High Glucose-Induced Neurotoxicity: Evidences for DNA Damage-Mediated p53 Phosphorylation and MAPKs and AKT Pathways. Mol Neurobiol 2015; 53:4363-74. [DOI: 10.1007/s12035-015-9373-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 07/21/2015] [Indexed: 01/12/2023]
|
7
|
Guo CH, Hsia S, Shih MY, Hsieh FC, Chen PC. Effects of Selenium Yeast on Oxidative Stress, Growth Inhibition, and Apoptosis in Human Breast Cancer Cells. Int J Med Sci 2015; 12:748-58. [PMID: 26392813 PMCID: PMC4571553 DOI: 10.7150/ijms.12177] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/17/2015] [Indexed: 11/12/2022] Open
Abstract
Recent evidence suggests that selenium (Se) yeast may exhibit potential anti-cancer properties; whereas the precise mechanisms remain unknown. The present study was aimed at evaluating the effects of Se yeast on oxidative stress, growth inhibition, and apoptosis in human breast cancer cells. Treatments of ER-positive MCF-7 and triple-negative MDA-MB-231 cells with Se yeast (100, 750, and 1500 ng Se/mL), methylseleninic acid (MSA, 1500 ng Se/mL), or methylselenocysteine (MSC, 1500 ng Se/mL) at a time course experiment (at 24, 48, 72, and 96 h) were analyzed. Se yeast inhibited the growth of these cancer cells in a dose- and time-dependent manner. Compared with the same level of MSA, cancer cells exposure to Se yeast exhibited a lower growth-inhibitory response. The latter has also lower superoxide production and reduced antioxidant enzyme activities. Furthermore, MSA (1500 ng Se/mL)-exposed non-tumorigenic human mammary epithelial cells (HMEC) have a significant growth inhibitory effect, but not Se yeast and MSC. Compared with MSA, Se yeast resulted in a greater increase in the early apoptosis in MCF-7 cells as well as a lower proportion of early and late apoptosis in MDA-MB-231 cells. In addition, nuclear morphological changes and loss of mitochondrial membrane potential were observed. In conclusion, a dose of 100 to 1500 ng Se/mL of Se yeast can increase oxidative stress, and stimulate growth inhibitory effects and apoptosis induction in breast cancer cell lines, but does not affect non-tumorigenic cells.
Collapse
Affiliation(s)
- Chih-Hung Guo
- 1. Institute of Biomedical Nutrition, Hung-Kuang University, Taichung 433, Taiwan ; 2. Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan ; 3. Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan ; 4. Taiwan Nutraceutical Association, Taipei 115, Taiwan
| | - Simon Hsia
- 1. Institute of Biomedical Nutrition, Hung-Kuang University, Taichung 433, Taiwan ; 4. Taiwan Nutraceutical Association, Taipei 115, Taiwan
| | - Min-Yi Shih
- 1. Institute of Biomedical Nutrition, Hung-Kuang University, Taichung 433, Taiwan
| | - Fang-Chin Hsieh
- 1. Institute of Biomedical Nutrition, Hung-Kuang University, Taichung 433, Taiwan
| | - Pei-Chung Chen
- 4. Taiwan Nutraceutical Association, Taipei 115, Taiwan ; 5. College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan ; 6. College of Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
8
|
The p38 MAPK-regulated PKD1/CREB/Bcl-2 pathway contributes to selenite-induced colorectal cancer cell apoptosis in vitro and in vivo. Cancer Lett 2014; 354:189-99. [DOI: 10.1016/j.canlet.2014.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 12/20/2022]
|
9
|
Weisthal S, Keinan N, Ben-Hail D, Arif T, Shoshan-Barmatz V. Ca(2+)-mediated regulation of VDAC1 expression levels is associated with cell death induction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2270-81. [PMID: 24704533 DOI: 10.1016/j.bbamcr.2014.03.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/07/2014] [Accepted: 03/25/2014] [Indexed: 12/16/2022]
Abstract
VDAC1, an outer mitochondrial membrane (OMM) protein, is crucial for regulating mitochondrial metabolic and energetic functions and acts as a convergence point for various cell survival and death signals. VDAC1 is also a key player in apoptosis, involved in cytochrome c (Cyto c) release and interactions with anti-apoptotic proteins. Recently, we demonstrated that various pro-apoptotic agents induce VDAC1 oligomerization and proposed that a channel formed by VDAC1 oligomers mediates cytochrome c release. As VDAC1 transports Ca(2+) across the OMM and because Ca(2+) has been implicated in apoptosis induction, we addressed the relationship between cytosolic Ca(2+) levels ([Ca(2)(+)]i), VDAC1 oligomerization and apoptosis induction. We demonstrate that different apoptosis inducers elevate cytosolic Ca(2+) and induce VDAC1 over-expression. Direct elevation of [Ca(2+)]i by the Ca(2+)-mobilizing agents A23187, ionomycin and thapsigargin also resulted in VDAC1 over-expression, VDAC1 oligomerization and apoptosis. In contrast, decreasing [Ca(2+)]i using the cell-permeable Ca(2+)-chelating reagent BAPTA-AM inhibited VDAC1 over-expression, VDAC1 oligomerization and apoptosis. Correlation between the increase in VDAC1 levels and oligomerization, [Ca(2+)]i levels and apoptosis induction, as induced by H2O2 or As2O3, was also obtained. On the other hand, cells transfected to overexpress VDAC1 presented Ca(2+)-independent VDAC1 oligomerization, cytochrome c release and apoptosis, suggesting that [Ca(2+)]i elevation is not a pre-requisite for apoptosis induction when VDAC1 is over-expressed. The results suggest that Ca(2+) promotes VDAC1 over-expression by an as yet unknown signaling pathway, leading to VDAC1 oligomerization, ultimately resulting in apoptosis. These findings provide a new insight into the mechanism of action of existing anti-cancer drugs involving induction of VDAC1 over-expression as a mechanism for inducing apoptosis. This article is part of a Special Issue entitled: Calcium Signaling in Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Shira Weisthal
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nurit Keinan
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Danya Ben-Hail
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Tasleem Arif
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|